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Abstract
Heuristics make MDP solvers practical by reducing their
space and memory requirements. Some of the most effective
heuristics (e.g. the FF heuristic) first determinize the MDP to
a classical approximation and then solve a relaxation of the
resulting classical problem (e.g., one which ignores the ac-
tions’ delete effects). While these heuristics can be computed
quite quickly, they frequently yield overly-optimistic value
estimates.
This paper proposes a novel class of heuristics, called
THUDS, which improve on the existing methods by using
full-fledged classical planners to solve the non-relaxed deter-
minizations. THUDS produces more informative state value
estimates than those given by the FF heuristic, causing many
fewer states to be explored. Of course, invoking a determin-
istic planner can be very slow; to overcome this high cost
THUDS generalizes the heuristic value of one state to many
others by extracting basis functions from the plans discov-
ered in the process of heuristic computation. Thus, the clas-
sical planner is only called for states without basis functions
— amortizing its costly invocation. Experiments show that
THUDS can provide large time and memory savings com-
pared to the FF heuristic and that generalization is vital in
making THUDS computationally feasible.

INTRODUCTION
Heuristics are a popular means of reducing space and mem-
ory requirements of probabilistic planning algorithms. In
heuristically guided MDP solvers, e.g. LRTDP [1] and
LAO∗ [4], heuristics help avoid many states (or state-action
pairs) that are not part of the optimal policy.

While there are many ways of constructing a good heuris-
tic function, some of the most effective ones were taken from
classical planning. A notable example is the FF heuristic [5],
which we will refer to as hFF in this paper. They presently
rely on determinizing the MDP at hand and trying to solve
the resulting classical planning problems. However, since
deterministic planning is hard in itself, the heuristics relax
the problem further in various ways. hFF , for instance, ig-
nore the delete lists of all the actions and look for the cheap-
est sequence of these modified actions that brings it to the
goal. The cost of such a sequence is an approximation of
the true optimal cost of a solution to the deterministic prob-
lem and is taken as the heuristic value of the state where
the sequence originates. However, since the delete effects
are ignored, these heuristics don’t take negative interactions

among actions into account, and as a result often yield overly
optimistic plan cost estimates.

In this paper, we propose a new class of heuristics called
THUDS (Template for Heuristics that Use Deterministic
Solvers). THUDS heuristics solve the non-relaxed deter-
minizations of an MDP with full-fledged classical planners.
We empirically demonstrate that such heuristics are typi-
cally more informative than hFF and provide greater space
savings by causing fewer states to be explored. However,
even though modern classical planners are very efficient, in-
voking them for every explored state would be too costly.
To cope with this issue, we generalize the heuristic values of
some states to many others by using conjunctions of literals
called basis functions. The basis functions are computed by
regressing each of the deterministic plans obtained as part of
the heuristic computation, and are therefore certificates of
positive-probability trajectories in the original problem. Any
state that subsumes a basis function is thus proved to have
the corresponding trajectory to the goal. Minimizing over
costs of these trajectories yields a heuristic estimate for the
state’s value. We call the deterministic planner (and hence
augment the basis function set) only from the states which
subsume none of the basis functions we have so far. The
set of basis functions we accrue requires little extra space
but lets us amortize the time cost of using the deterministic
planner. Thus, the primary novelty of our work is the insight
that we can obtain informative heuristic estimates offered
by classical planners while avoiding a potentially enormous
overhead of the deterministic planner invocation by using
the cached basis functions. Our experimental results show
that THUDS can reduce the time and memory consump-
tion of probabilistic planning algorithms by orders of mag-
nitude more than the FF heuristic. They also demonstrate
that generalization is vital for THUDS’s performance, mak-
ing THUDS at least 20-25 times faster than our heuristic
would be without it. We conclude by identifying limitations
of our heuristic and ways of addressing them.

BACKGROUND
MDPs. In this paper, we focus on probabilistic plan-
ning problems that are modeled by factored indefinite-
horizon MDPs. They are defined as tuples of the form
〈S,A, T , C,G, s0〉, where S is a finite set of states, A is a
finite set of actions, T is a transition function S ×A×S →
[0, 1] giving the probability of moving from si to sj by exe-



cuting a, C is a map S × A → R+ specifying action costs,
s0 is the start state, and G is a set of (absorbing) goal states.
Indefinite horizon refers to the fact that the total action cost
is accumulated over a finite-length action sequence whose
length is unknown.

In factored MDPs, each state is represented as a con-
junction of values of the domain variables. Solving an
MDP means finding a good (i.e. cost-minimizing) policy
π : S → A that specifies the actions the agent should take
to eventually reach the goal. The optimal expected cost of
reaching the goal from a state s satisfies the following con-
ditions, called Bellman equations:

V ∗(s) = 0 if s ∈ G, otherwise

V ∗(s) = min
a∈A

[C(s, a) +
∑
s′∈S
T (s, a, s′)V ∗(s′)]

Given V ∗(s), an optimal policy may be com-
puted as follows: π∗(s) = argmina∈A[C(s, a) +∑

s′∈S T (s, a, s′)V ∗(s′)].

Solution Methods. The above equations suggest a dynamic
programming-based way of finding an optimal policy, called
value iteration (VI), that iteratively updates state values us-
ing Bellman equations in a Bellman backup and follows the
resulting policy until the values converge.

VI has given rise to many improvements. Trial-based
methods, e.g. RTDP, try to reach the goal multiple times (in
multiple trials) and update the value function over the states
in the trial path using Bellman backups. A popular variant,
LRTDP, adds a termination condition to RTDP by labeling
those states whose values have converged as ‘solved’ [1].
Compared to VI, trial-based methods save space by consid-
ering fewer irrelevant states. LRTDP serves as the testbed in
our experiments, but the approach we present can be used by
many other search-based MDP solvers as well, e.g., LAO∗.
Heuristics. We define a heuristic as a value function used to
initialize the state values before the first time an algorithm
updates these values. In heuristically guided algorithms,
heuristics help avoid visiting irrelevant states. To guaran-
tee convergence to an optimal policy, MDP solvers require
a heuristic to be admissible, i.e. to never overestimate the
optimal value of a state (importantly, admissibility is not a
requirement for convergence to a policy). However, inad-
missible heuristics tend to be more informative in practice,
approximating V ∗ better on average. Informativeness of-
ten translates into a smaller number of explored states (and
the associated memory savings) with reasonable sacrifices
in optimality.
Determinization. Some of the most effective domain-
independent heuristics known today are based on deter-
minizing the probabilistic domain at hand. Determiniz-
ing domain D removes the uncertainty about D’s action
outcomes in a variety of ways. For example, the all-
outcomes determinization, for each action a with precon-
dition c and outcomes o1, . . . , on with respective proba-
bilities p1, . . . , pn, produces a set of deterministic actions
a1, . . . , an, each with precondition c and effect oi, yielding
a classical domain Dd. To obtain a value for state s in D,
determinization heuristics try to approximate the cost of a

plan from s to a goal in Dd (finding a plan itself is generally
NP-hard). For instance, hFF ignores the delete effects of all
actions in Dd and attempts to find the cheapest solution to
this relaxed problem.

THUDS ALGORITHM
Given a problem P over a probabilistic domain D, THUDS
starts by determinizing D into its classic counterpart, Dd.
This operation needs to be done only once, at initialization
time. Our implementation performs the all-outcomes deter-
minization because it is likely to give much better value es-
timates than the single-outcome one [11]. However, more
involved flavors of determinization described in the Related
Work section may yield even better estimation accuracy.
Calling a Deterministic Planner. Once Dd has been com-
puted, the probabilistic planner starts exploring the state
space. For every state s that needs to be evaluated heuris-
tically, THUDS first checks if it is an explicit dead end, i.e.
has no actions applicable in it. This check is in place for
efficiency reasons. For states that aren’t explicit dead ends,
THUDS has a more sophisticated estimation method.

This method entails constructing a problem Ps with the
original problem’s goal and s as the initial state, feeding
Ps along with Dd to a classical planner DetP lan, and set-
ting a timeout (in our setup, 25 seconds). If s is an implicit
dead end (i.e., has actions applicable in it but no plan to the
goal), DetP lan either quickly proves this or unsuccessfully
searches for a plan until the timeout. In either case, it returns
without a plan, at which point s is presumed to be a dead
end and assigned a very high value. If s is not a dead end,
DetP lan usually returns a plan from s to the goal. The cost
of this plan is taken as the heuristic value of s. In rare cases,
DetP lan may fail to find a plan before the timeout, leading
the MDP solver to falsely assume s to be a dead end. In
practice, we haven’t seen this hurt THUDS’ performance.
Regression-Based Generalization. By using a full-fledged
classical planner, THUDS produces more informative state
estimates than hFF , as evidenced by our experiments. How-
ever, invoking the classical planner for every newly encoun-
tered state is costly; as it stands, THUDS would be pro-
hibitively slow. To ensure speed we modify the procedure
based on the following insight. Regressing a successful de-
terministic plan in domain Dd yields a set of literal conjunc-
tions with an important property: each such conjunction is
a precondition for the plan suffix that was regressed to gen-
erate it. We call these conjunctions basis functions, and de-
fine the weight of a basis function to be the cost of the plan
it enables. Crucially, every deterministic plan in Dd cor-
responds to a positive-probability trajectory in the original
domain D; therefore, a basis function is a certificate of such
a trajectory. Every state subsumed by a given basis function
is thus proved to have a possible trajectory to the goal.

We make this process concrete in the pseudocode of Al-
gorithm 1. Whenever THUDS computes a deterministic
plan, it regresses it and caches the resulting basis functions
with associated weights. When THUDS encounters a new
state s, it minimizes over the weights of all basis functions
stored so far that subsume s. In doing so, THUDS sets the
heuristic value of s to be the cost of the cheapest currently



Algorithm 1 THUDS
1: Input: probabilistic domain D, problem P =
〈init. state s0, goal G〉, determinization routine Det,
classical planner DetP lan

2: compute global determinization Dd = Det(D)
3: declare global map M from basis functions to weights
4:
5: function computeTHUDS(state s, timeout T )
6: if no action a of D is applicable in s then
7: return a large penalty // e.g., 1000000
8: else if some member f ′ of M holds in s then
9: return minbasis functions f that subsume s{M [f ]}

10: else
11: declare problem Ps ← 〈init. state s, goal G〉
12: declare plan pl← DetP lan(Dd, Ps, T )
13: if pl == none then
14: return a large penalty // e.g., 1000000
15: else
16: declare basis function f ← goal G
17: declare weight← 0
18: for all i = length(pl) through 1 do
19: declare action a← pl[i]
20: weight← weight+ Cost(s, a)
21: f ← (f ∪ precond(a))− effect(a)
22: insert 〈f, weight〉 into M if f isn’t in M yet
23: end for
24: return weight
25: end if
26: end if

known trajectory that originates at s. Thus, the weight of
one basis function can become generalized as the heuris-
tic value of many states. This way of computing a state’s
value is very fast, and THUDS employs it before invoking
a classical planner. The caveat, of course, is that by the time
state s needs to be evaluated THUDS may have no basis
functions that subsume it. In this case, THUDS uses the
classical planner as described above, computing a value for
s and augmenting its basis function set. Evaluating a state
first by generalization and then, if generalization fails, by
classical planning greatly amortizes the cost of each classi-
cal solver invocation and drastically reduces the computa-
tion time compared to using a deterministic planner alone.

Theoretical properties. Two especially noteworthy theo-
retical properties of THUDS are the informativeness of its
estimates and its inadmissibility. The former ensures that,
compared to hFF , THUDS causes MDP solvers to explore
fewer states. At the same time, THUDS is inadmissible, for
three reasons. One source of inadmissibility comes from the
general lack of optimality of deterministic planners. Even
if they were optimal, however, employing timeouts to ter-
minate the classical planner occasionally causes THUDS to
falsely assume states to be dead ends. Finally, the basis func-
tion generalization mechanism also contributes to inadmis-
sibility; the set of discovered basis functions is almost never
complete, and hence even the smallest basis function weight
known so far may be an overestimate of a state’s true value.
In spite of theoretical inadmissibility, in practice THUDS

usually finds very good policies whose quality is often bet-
ter than of those yielded by hFF .

EXPERIMENTAL RESULTS
In our experiments we compare THUDS performance to
hFF , a representative determinization heuristic, across a
wide range of domains. Our implementation of THUDS
uses a portfolio of two classical planners, FF and LPG [2].
To evaluate a state, it launches both planners as in line 12 of
Algorithm 1 in parallel and takes the heuristic value from
the one that returns sooner. We tested THUDS and hFF

as a part of the LRTDP planner available in the miniGPT
package. Our benchmarks were three probabilistic do-
mains: Machine Shop [8], Triangle Tire (IPPC-08 version)
and Exploding Blocksworld (IPPC-06 version), each having
10 problems. Additionally, we perform a brief comparison
of LRTDP+THUDS against ReTrASE [7], since the latter
uses basis functions in a somewhat related fashion.

Comparison against hFF . The Machine Shop domain in-
volves two machines and the number of objects equal to the
ordinal of the corresponding problem. Each object needs to
go through a series of manipulations, of which each machine
is able to do only a subset. The effects of some manipula-
tions may cancel the effects of others (e.g., shaping an object
destroys the paint sprayed on it). Thus, the order of actions
in a plan is critical. This domain illuminates the drawbacks
of hFF , which ignores delete effects and doesn’t distinguish
good and bad action sequences as a result. Machine Shop
has no dead ends.

Figure 1 shows the speed and memory performance
of LRTDP equipped with the two heuristics. For
LRTDP+THUDS, the memory consumption is measured
by the number of states and basis functions whose values
need to be maintained (THUDS caches basis functions and
LRTDP caches states). In the case of LRTDP+hFF all
memory used is only due to LRTDP’s state caching be-
cause hFF by itself does not memoize anything. On Ma-
chine Shop, the edge of LRTDP+THUDS is clearly vast,
reaching several orders of magnitude. In fact, LRTDP+hFF

runs out of memory on the three hardest problems, whereas
LRTDP+THUDS is far from that.

Concerning the policy quality, we found the use of
THUDS to yield optimal or nearly-optimal policies on Ma-
chine Shop. This contrasts with hFF whose policies were
on average 30% more costly than the optimal ones.

The Triangle Tire domain, unlike Machine Shop,
doesn’t have structure that is particularly inconvenient for
hFF . However, LRTDP+THUDS noticeably outperforms
LRTDP+hFF on it too, as Figure 2 indicates. Nonetheless,
neither heuristic saves enough memory to let LRTDP solve
past problem 8.

Results on Exploding Blocksworld are not as favorable
for LRTDP+THUDS. Even though the use of THUDS
does yield some memory savings, it also slows down
LRTDP considerably. Statistics in Table 1 reveal the reason
for this behavior. In this domain, a very large fraction
of the explored states are implicit dead ends. Calling a
deterministic planner on a dead-end state does not yield
any basis functions, and thus does not add to the heuristic’s
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Figure 1: THUDS outperforms hFF by a large margin both in speed and memory on Machine Shop...
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Figure 2: ...and on Triangle Tire.
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Figure 3: THUDS with generalization is much faster than without
it.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
45 51 67 42 0 57 44 63 50 55

Table 1: Percentage of implicit dead ends in the explored state
space across the first 10 problems of Exploding Blocksworld.

generalization ability. This causes the cost of using the
deterministic planner to become prohibitive, since it is
not well amortized. Therefore, in domains with many
dead ends relevant to finding a good policy we expect the
effectiveness of THUDS in its current form to be reduced.
We outline a possible solution in the Discussion section.

Benefit of Basis Functions. To measure the significance
of generalization in THUDS’ operation, we also tested
a version on THUDS with generalization turned off. It
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Figure 4: LRTDP+THUDS vastly outperforms ReTrASE on Ele-
vators.

proved to be approximately 20-25 times slower than regular
THUDS on Machine Shop (Figure 3), implying that
without our generalization technique the speedup over hFF

would not have been possible.

Computational Profile. An interesting aspect of THUDS’
modus operandi is the fraction of the computational re-
sources an MDP solver uses that is due to THUDS. Across
the Machine Shop domain, LRTDP+THUDS spends
75-90% of the time in heuristic computation, whereas
LRTDP+hFF only 8-17%. Thus, THUDS is computation-
ally heavier but causes LRTDP to spend drastically less
time exploring the state space.

Comparison against ReTrASE. Superficially, ReTrASE



extracts and uses basis functions in a way similar to
THUDS. The major difference lies in the fact that Re-
TrASE tries to learn weights for the basis functions, whereas
THUDS only employs basis functions to initialize state val-
ues and lets a conventional MDP solver improve on these
values. In practice, this discrepancy translates to ReTrASE’s
learning procedure providing very few quality guarantees.
While it is very memory-efficient on many hard problems,
the solutions are poor on some domains with rather sim-
ple structure, e.g. Elevators from IPPC-06 [7]. In contrast,
THUDS admits the use of conventional MDP solvers with
strong theoretical machinery, making the outcome of its ap-
plication more predictable. In particular, LRTDP+THUDS
achieves a 100% success rate on all 15 Elevators problems
(Figure 4) and takes at most 5 minutes per problem. As
another example, LRTDP+THUDS achieves a 100% suc-
cess rate on the first 8 problems of Triangle Tire. ReTrASE
performs equally well on the first 8 problems but, unlike
LRTDP+THUDS, can also solve problems 9 and 10. Thus,
THUDS’s use of basis functions yields qualitatively and
quantitatively different results than ReTrASE’s.

DISCUSSION
Promise shown by THUDS indicates several directions for
its further development. An important issue we need to ad-
dress is THUDS’ underperformance on domains with many
implicit dead ends. If THUDS could generalize dead ends,
it would potentially need to save many fewer basis functions
than it has discovered dead ends, dramatically increasing
space savings. Crucially, dead end identification would not
be so costly time-wise. Similarly to generalizing heuristic
values of ordinary states with basis functions, we propose
devising a procedure that would use known dead ends to
learn logical formulas to characterize “dead-endness”.

Another direction is experimenting with domain deter-
minizations THUDS could rely on, e.g. the one proposed by
the authors of HMDPP [6] and described in Related Work.

RELATED WORK
The use of determinization for solving MDPs was in-

spired by advances in classical planning, most notably the
FF solver [5]. The practicality of the new technique was
demonstrated by FF-Replan [11] that used the FF planner
on an MDP determinization for direct selection of action
to execute in a given state. More recent planners to em-
ploy determinization that are, in contrast to FF, successful at
dealing with probabilistically interesting problems include
RFF-RG/BG [10]. Unlike THUDS, they normally use de-
terministic planners to learn the state or action values and
not just to initialize their values heuristically. As a conse-
quence, they invoke FF many more times than we do. This,
in turn, forces them to avoid all-outcome determinization as
invoking FF would be too costly otherwise.

To a large degree, the FF planner owes its performance to
hFF [5]. LRTDP [1] and HMDPP [6] adopted this heuristic
with no modifications as well. In particular, HMDPP runs
hFF on a “self-loop determinization” of an MDP, thereby
forcing hFF ’s estimates to take into account some of the
problem’s probabilistic information.

Several algorithms generate basis functions by regression
like we do, [3], [9], and [7] to name a few. However, the
role of basis functions in them is entirely different. In these
methods, basis functions serve to map the planning prob-
lems to smaller parameter spaces consisting of basis func-
tion weights. Parameter learning in such transformed spaces
is usually approximate and gives few theoretical guaran-
tees (see, for instance, [7]). In THUDS, basis functions
are used to generalize heuristic values over multiple states
and thereby to avoid invoking the classical planner too many
times. Importantly, however, the parameter space in which
learning takes place is unchanged — it is still the set of state
values. We can therefore use conventional techniques like
LRTDP in conjunction with THUDS that give substantial
predictability of the solution quality. THUDS achieves the
reduction in the number of required parameters through the
increased informativeness of initial heuristic estimates, not
through parameter space transformation.

CONCLUSION
We have proposed a new class of heuristics, THUDS, that
use full-fledged deterministic planners to solve MDP deter-
minizations. Although invoking a classical solver is expen-
sive, this cost is amortized by using basis functions to gen-
eralize heuristic values across many states, thereby greatly
reducing the number of times the deterministic planner has
to used. The resulting heuristic is inadmissible but gives
more informative state value estimates than hFF , provid-
ing significant memory savings to the MDP solvers. In ad-
dition, generalization allows THUDS to yield speedups as
well. We believe that extending the generalization proce-
dure to handle dead ends will render THUDS an integral
component of future successful planners.
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