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Abstract. Although the privacy threats and countermeasures associated with 
location data are well known, there has not been a thorough experiment to 
assess the effectiveness of either. We examine location data gathered from 
volunteer subjects to quantify how well four different algorithms can identify 
the subjects’ home locations and then their identities using a freely available, 
programmable Web search engine. Our procedure can identify at least a small 
fraction of the subjects and a larger fraction of their home addresses. We then 
apply three different obscuration countermeasures designed to foil the privacy 
attacks: spatial cloaking, noise, and rounding. We show how much obscuration 
is necessary to maintain the privacy of all the subjects.  
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1   Introduction 

Location is an important aspect of context in pervasive computing. As location-
sensitive devices pervade, it becomes important to assess privacy threats and 
countermeasures for location data. Privacy advocates worry that location data can be 
used to harm a person economically, invite unwelcome advertisements, enable 
stalking or physical attacks, or infer embarrassing proclivities[7, 28]. Except for 
isolated incidents, these threats have remained largely hypothetical, as have the 
proposed countermeasures. This paper is a first attempt at actually testing and 
quantifying one type of privacy threat using real location data: we try to identify 
individuals based on anonymized GPS tracks. With an attack in place, we are also 
able to quantify the effectiveness of some countermeasures that have been proposed in 
the literature. 

Despite the potential harm, people generally do not place a high value on the 
privacy of their location data. Danezis et al.[6] found that 74 students set a median 
price of £10 (about US$ 18 at the time of publication) to reveal 28 days of personal 
location tracks for research purposes. The median set price doubled if the data was 
going to be used for commercial purposes. In our own GPS survey (described below), 
we easily convinced 219 people from our institution to gives us two weeks of their 
driving data for a 1 in 100 chance to win a US$ 200 MP3 player. A survey of 11 
participants with a mobile, location-sensitive message service found that privacy 
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concerns were fairly light[16]. In our GPS study, only 13 of 62 (21%) whom we 
asked insisted on not sharing their location data outside our institution. In 55 
interviews with subjects in Finland, Kaasinen[17] found that “… the interviewees 
were not worried about privacy issues with location-aware services.” However, he 
adds, “It did not occur to most of the interviewees that they could be located while 
using the service.”  

It may be that the implications of leaked location data will not be adequately 
understood until there is a widely publicized incident of an innocent victim being 
seriously harmed. A recent story[8] in the New York Daily News describes how a 
suspected killer was caught via cell phone tracking, but the tracked person was not 
one of the “good guys”. There have been at least two incidents in the U.S. where a 
man tracked an ex-wife or ex-girlfriend by secretly installing a GPS in her car[25]. 

This paper takes a different approach to exposing the risks of leaked location data 
by quantitatively assessing the threat using real location tracks to infer a person’s 
identity. Tracks such as these can be used benevolently to assess traffic[22], train a 
system about a user’s habits[26], create customized driving routes[20], help predict 
where a user is going[19], or create a travelogue[10]. To protect this data from 
malicious inferences, researchers have proposed pseudonymity[27], which attaches a 
persistent ID to the GPS data but that does not link the ID to the identity of the user. 
Pseudonymity was the same scheme used to protect the identities of AOL search users 
when their search query logs were released and subsequently retracted by AOL. The 
identity of searcher pseudonym “4417749” was uncovered from the search logs by a 
reporter[3]. In this paper, we assess the effectiveness of pseudonymity on GPS logs. 

Based on two-week (or longer) GPS tracks from 172 known individuals, we 
developed four heuristic algorithms to identify the latitude and longitude of their 
homes. From these locations, we used a free Web service to do a reverse “white 
pages” lookup, which takes a latitude and longitude coordinate as input and gives an 
address and name. We report the fraction of the individuals we were able to correctly 
identify and the fraction whose home address we found based on our four home-
finding algorithms. We go on to assess the effectiveness of three obscuration 
algorithms that attempt to alter the GPS data in a way to prevent our privacy attacks. 
This is the first paper we know of to assess quantitatively the risk of identifying the 
persons associated with leaked, pseudonymized location tracks. 

Analyzing data in order to illegitimately gain knowledge about a subject is known 
as an “inference attack”. Our tests are intended to mimic what an attacker would do 
with a large volume of location data from several individuals, assuming he or she has 
defeated any encryption or access control on the data. We assume the attacker’s goal 
is to identify the subjects after which he or she would nefariously profit from a 
multitude of associated identities and location tracks. The large volume of data 
necessitates an automated approach of the type we implement. Clearly an attacker 
with a smaller set of potential victims could afford more time-consuming means of 
identifying them by physically staking out their neighborhood or manually inspecting 
their location tracks. Our attacks are limited to computation. 

Our tests are based on GPS data gathered from volunteer drivers, which we 
describe in the next section. 



2   Multiperson Location Survey 

Our Microsoft Multiperson Location Survey (MSMLS) is an ongoing survey of where 
people drive. We loan subjects a Garmin Geko 201 GPS receiver, capable of 
automatically recording 10,000 time-stamped latitude and longitude coordinates. The 
GPSs are powered from the car’s cigarette lighter, and a simple hardware 
modification ensures that the GPS turns on whenever it detects available power. This 
is necessary for the cars whose cigarette lighter is powered only when the car is on. 
Subjects are instructed to leave the GPS on their car’s dashboard. We set up the GPS 
in an adaptive recording mode so it ceases to record when the car is stopped. This 
prevents the memory from filling up while the car is parked. With this recording 
mode, we found that the median separation between points is 64.4 meters in distance 
and 6 seconds in time. Each subject recorded data for at least two weeks. 

We recruited subjects from our institution and allowed their adult family members 
to participate as well. Subjects are compensated by being entered in a drawing from 
100 subjects to win an MP3 player worth about US$ 200. Before receiving the GPS 
receiver, each subject fills out an online survey, whose questions include the subject’s 
name, home address, and other demographic information. The subject’s name and 
home address data serve as the ground truth for assessing our privacy attacks and 
countermeasures. At the time of the study, we had data from 172 drivers whose 
addresses were recognizable by our reverse geocoder. These are the subjects we used 
for the tests in this paper. From the demographic data, 72% were male, 75% had a 
domestic partner, 37% had children, and the average age of drivers was 37. 

Other location-gathering efforts include Ashbrook & Starner’s[2] two studies of 
subjects with wearable GPS recorders. One had a single subject for 4 months, and the 
second had six users for 7 months. Their GPS recorders could hold 200,000 points, 
compared to our 10,000. Liao et al.[21] gathered GPS data from one person for four 
months and subsequently five people for one week. As of this writing, the 
OpenStreetMap[15] project has 5511 GPS traces contributed by volunteers in an 
effort to produce copyright-free maps. 

3   Inferring Home and Identity 

Given a set of time-stamped latitude and longitude coordinates, the first step in our 
privacy attack is to infer the coordinates of the subject’s home. This section describes 
how we first computed the location of a subject’s home and then the subject’s identity 
from pseudonymous GPS data. 

3.1   Related Efforts 

The general problem of extracting significant places from location data has received 
much attention. Marmasse and Schmandt’s comMotion[24] system designated as 
significant those places where the GPS signal was lost three or more times within a 
given radius, normally due to a building blocking the signal, after which the user was 



prompted for a place name. Marmasse’s subsequent work[23] looked at a combination 
of dwell time, breaks in time or distance, and periods of low GPS accuracy as 
potentially significant locations. Ashbrook & Starner[2] clustered places where the 
GPS signal was lost and asked users to name such locations. Using locations 
generated from Place Lab, Kang et al. [18] used time-based clustering to identify 
places that the user would likely find important. Hariharan & Toyama[11] created a 
time- and location-sensitive clustering technique to hierarchically represent “stays” 
and “destinations”. Liao et al.[21] used this algorithm to find a user’s frequent 
destinations for higher-level machine learning about a user’s habits. Hightower et 
al.’s BeaconPrint[12] algorithm finds repeatable sets of GSM and Wi-Fi base stations 
where a user dwells. This is interesting in that it does not use spatial coordinates as a 
location indicator, but instead sets of consistently heard radio transmitters. 
Subramanya et al.[30] used a dynamic probabilistic model on inputs from GPS and 
other sensors to classify the user’s motion state (e.g. stationary, walking, driving, etc.) 
as well as the type of location from among indoors, outdoors, or vehicle. 

Of the work above, only Liao et al.[21] made an attempt to automatically 
determine which of the important places are the subject’s home. They used machine 
learning on labeled place data to achieve 100% classification accuracy in finding 
locations of their five subjects’ home and work places. 

The work most closely related to ours is from Hoh et al.[13] who used a database 
of week-long GPS traces from 239 drivers in the Detroit, MI, USA area. Examining a 
subset of 65 drivers, their home-finding algorithm was able to find plausible home 
locations of about 85%, although the authors did not know the actual locations of the 
drivers’ homes. Our study is based on drivers’ self-reported home addresses, and we 
also attempt to infer the drivers’ names as well as home locations. 

3.2 Finding Homes in GPS Traces 

Our first challenge is to find the coordinates of each subject’s home based on their 
GPS data. For each subject, we have a list of time-stamped latitude and longitude 
points. We tested four algorithms for picking out the location of the subject’s home, 
two of which depend on segmenting the GPS data into discrete trips. Our 
segmentation is simple: we sort the list of points by time and split it into candidate 
trips at points which are separated by more than five minutes. We then retain only 
those trip segments that meet three criteria: 

1. The trip must have at least ten measured points. 
2. The trip must be at least one kilometer long. 
3. The trip must have at least one pair of points during which the speed was at 

least 25 miles/hour. This helps eliminate walking and bicycle trips which we 
are not trying to analyze. 

The first two criteria tend to eliminate noise trips that result from random data 
gathered from parked vehicles. The final point in each trip segment is the trip’s 
destination, which gives us a list of latitude and longitude points, one for each trip, 
some of which are likely the location of the subject’s home. 

These are our four heuristic algorithms for computing the coordinates of each 
subject’s home: 



 
Last Destination – This algorithm is based on the heuristic that the last destination of 
the day is often a subject’s home. For each day of the survey, we found the destination 
closest to, but not later than, 3 a.m. We computed the median latitude and longitude of 
these destinations for our estimate of the home location. 

 
Weighted Median – We assume that the subject spends more time at home than at 
any other location. Each coordinate in the survey (not just the destinations) is 
weighted by the dwell time at that point, i.e. the amount of time until the next point 
was recorded. The weighted median latitude and longitude is taken as the home 
location. The weighted median can be thought of as a regular median of a set of 
values, but values are repeated in the set proportional to a second set of corresponding 
weights. Thus, if a point is recorded at 8 p.m. as the subject parks his car at home, and 
if and nothing else recorded until 8 a.m. when the subject leaves home, the point 
recorded at 8 p.m. will have a much higher weight than points recorded at more 
frequent intervals during travel. This method implicitly accounts for the variable 
recording rate of our GPS receivers and it avoids the need for segmentation into trips. 

 
Largest Cluster – This heuristic assumes that most of a subject’s coordinates will be 
at home. We build a dendrogram of the subject’s destinations, where the merge 
criterion is the distance between the cluster centroids. The dendrogram is a common, 
agglomerative, hierarchical, clustering technique. We stop clustering when the nearest 
two clusters are over 100 meters apart. The home location is taken as the centroid of 
the cluster with the most points. 

 
Best Time – This is the most principled (and worst performing) algorithm for finding 
the subject’s home. It learns a distribution over time giving the probability that the 
subject is home. For each measured location (not just the destinations), we reverse 
geocoded the latitude and longitude coordinates into a street address. Reverse 
geocoding takes a (latitude, longitude) and returns a street address or other symbolic 
representation of the location. We used the MapPoint® Web Service (MPWS) as our 
reverse geocoder. From our survey, we took each subject’s self-reported home 
address and normalized it to the same format used by MPWS. Looking at 30-minute 
intervals in time, we computed the frequency with which the reverse geocoded points 
matched the subject’s actual address. In order to compensate for the GPS’s adaptive 
sampling times, we resampled all the measured location traces at one-minute intervals 
to avoid biasing the distribution away from times when points were recorded 
infrequently. The relative probability of being at home vs. time of day is shown in 
Figure 1. As expected, people are more likely to be home at night than during the day. 
Applying this distribution, we compute the relative probability of being home for each 
measured latitude and longitude for each subject. We extract those coordinates for 
each subject that have the maximum relative probability and take the home location as 
the median of those points. 



The work most similar to ours, Hoh et al.[13], used heuristics similar to ours for 
finding homes based on GPS traces. They first dropped GPS samples recorded at 
speeds greater than one meter/second and then applied agglomerative clustering until 
the clusters reached an average size of 100 meters. They eliminated clusters with no 
recorded points between 4 p.m. and midnight as well as clusters deemed outside 
residential areas by manual inspection of maps. 

Although our ultimate goal is to infer identities, we can assess the performance of 
our algorithms at an intermediate step by evaluating how well they locate each 
subject’s home. For this evaluation, we used MPWS to geocode the location (i.e. find 
the latitude and longitude coordinates) of each subject’s home based on their reported 
addresses. We then computed the errors between the geocoded locations and the 
inferred locations given by our four algorithms. The best performing algorithm, in 
terms of median error, was “Last Destination”, whose median error was 60.7 meters. 
“Weighted Median” and “Largest Cluster” had nearly the same median errors, at 66.6 
meters. “Best Time” was significantly worse with a median error of 2390.2 meters. 
Figure 2 shows a histogram of home location errors from the best-performing “Last 
Destination” algorithm. Based on these results, we can conclude that an attacker, 
using data like ours, could computationally locate a subject’s home to within about 60 
meters at least half the time. 

The “Best Time” algorithm reveals an interesting characteristic of our reverse 
geocoding solution. Reverse geocoding is an integral part of our privacy attack, 
because it is the link from a raw coordinate to a home address and ultimately to an 
identity via a white pages lookup. In developing the probability distribution for “Best 
Time”, we found only 1.2% of the measured points were reverse geocoded to the 
subjects’ self-reported home addresses. This is after we resampled our data at a 
constant one minute interval to compensate for our GPS’s adaptive recording mode. 
This is why Figure 1 shows only relative probability (normalized to a sum of one), not 
the absolute probability of a subject being at home, because the computed absolute 
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Figure 1: The relative probability of a subject being at home varies depending on 
the time of day. We used this distribution in our "Best Time" algorithm to help 
determine the location of a subject's home. 



probabilities are clearly too small. For the purposes of “Best Time”, it is enough to 
know only the relative probabilities. In evaluating our reverse geocoder, it seems 
extremely unlikely that our subjects collectively spend only 1.2% of their time at 
home, which makes us suspicious that our reverse geocoder was usually not giving 
the correct address corresponding to the measured coordinates. This is one weak point 
in the type of attacks we are examining. 

3.3   From Home Coordinates to Identity 

Armed with a likely coordinate of a subject’s home, the final step in our privacy 
attack is to find the subject’s identity. We accomplished this with a Web-based, white 
pages lookup. Windows Live™ Search has a freely downloadable API[14] that allows 
no-cost, programmatic access to its search capabilities. In “phone book” mode, the 
search engine can be set up to return street addresses and associated names within a 
given radius of a given coordinate. There are several paid services available on the 
Web which give the same information.When our search engine returned multiple 
results, we took the one physically nearest the given coordinate based on the search 
engine’s returned latitude and longitude fields. 

3.4   Attacker Summary 

Summarizing our assumptions about the attacker, we assume the following: 
• The attacker has access to about two weeks of time-stamped GPS data recorded 

from 172 unknown drivers. The GPS receivers are in the drivers’ vehicles, not 
carried on the drivers themselves. The GPS data is recorded at a median interval 
of 6 seconds and 64.4 meters. 

• The GPS data points for each driver are tagged with a common pseudonym such 
that all the GPS data for each driver can be easily grouped together and 
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Figure 2: This is a histogram of the home location errors from the "Last 
Destination" algorithm. The median error was 60.7 meters.



distinguished from data for the other drivers. 
• The attack consists of first trying to computationally identify the latitude and 

longitude of each driver’s home based on the GPS data. Then these coordinates 
are used to find the driver’s name using a Web search. 

3.5   Results 

We applied the four algorithms in Section 3.2 to each of the subjects in our study. 
Each algorithm gives a single coordindate as a guess for the subject’s home location. 
We submitted these locations to our search engine and manually compared the 
subject’s name to the name(s) returned. Sometimes the search engine returned the 
names of two people living at the same address. We counted the return as a success if 
it contained at least the subject’s name. We also counted the return as a success if it 
returned just the subject’s first initial and last name, e.g. “G. Washington” was 
considered a valid match for “George Washington”. 

Of the 172 subjects, the four inference algorithms performed as follows: 
 

Algorithm Number Correct Out of 172 Percent Correct
Last Destination 8 4.7%

Weighted Median 9 5.2%
Largest Cluster 9 5.2%

Best Time 2 1.2%  
This shows that there is a legitimate danger in releasing pseudonymized location 

data to potential attackers. However, the number of successful identifications was not 
high. We speculate that these low rates were caused by three main types of problems: 

• Measurements 
o Inaccurate GPS. GPS may not report a location near enough to a 

subject’s house due to its inherent inaccuracies. 
o Missing GPS. Our adaptive recording mode may not have captured 

points close enough to the subject’s home, especially if a subject, 
upon arriving at home, drove immediately into a parking structure 
that blocks GPS. 

o Inaccurate home location heuristics. As shown above, our best home 
location algorithm has a median error of 60.7 meters. 

• Database 
o Inaccurate reverse geocoding. This is apparent from the reverse 

geocoding we did for the “Best Time” algorithm, in which only 1.2% 
of the measured GPS points were coded to the subject’s self-reported 
home address. Reverse geocoding normally works by linearly 
interpolating to a house number based on addresses at the street 
intersections. The reverse geocoder is generally unaware of different 
sized land lots and house number gaps. 

o Outdated and/or inaccurate white pages data. We performed a white 
pages search for the self-reported addresses of our subjects. As shown 
in Figure 3, only 33% of the subjects’ names were found listed with 
their addresses. 11% of the address listings had different names listed, 



possibly because the subject had moved. 43% of the addresses were 
not found in the white pages. 

• Subject behavior 
o Parking locations distant from home locations. Some subjects may 

park their cars at a distance from their actual homes. Tracking the 
subjects themselves rather than their vehicles may have compromised 
more identies. 

o Multiunit buildings. The coordinates of a parked vehicle are not a 
good clue to the exact housing unit of subject who lives in an 
apartment building or condominium. Using the analysis from the 
Figure 3, we found that 13% of our subjects lived in multiunit 
buildings. 

 
Figure 3 shows that, based on the white pages, 33% of the subjects could have been 

found, while the remainder were masked in one way or another. Despite these 
vagaries, we can say that there is a least a 5% chance that an attacker can infer a 
subject’s identity based on two weeks of GPS data like ours using a fairly simple 
algorithm and free, Web-based lookups. 

Clearly there are countermeasures available, such as encryption and strict privacy 
policies. Our study is intended to highlight the need for such countermeasures by 
showing how vulnerable location data is to simple privacy attacks. In the next section 
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Figure 3: We used our white pages search to look up the name(s) associated with 
our subjects' self-reported addresses. Of all the addresses, only 33% yielded a set 
of names that included the corresponding subject. The rest were either addresses in 
a multiunit building giving several possible names (for which the subject usually 
did not appear), a different name given for the address, or the address was not 
found. 



we test some computational countermeasures that are designed to obscure the location 
of the subject’s home by corrupting the data. 

4 Countermeasures 

Pseudonymity is one countermeasure to protect the identity of people if their location 
history is exposed. In this section, we test three additional countermeasures that have 
been previously proposed in the research literature. These could be applied to 
pseudonymized location data to foil the attack presented in the previous section. In 
addition to regulatory and privacy policy methods, Duckham and Kulik[7] describe a 
variety of computational approaches to protecting location privacy: 

 
Pseudonymity – This is the technique we examined above, which consists of 
stripping names from location data and replacing them with arbitrary IDs. 

 
Spatial Cloaking – Gruteser and Grunwald[9] introduce the concept of spatial 
cloaking. A subject is k-anonymous if her reported location is imprecise enough for 
her to be indistinguishable from at least k-1 other subjects. Scott et al. [29] speculate 
that software agents could be used to implement spatial cloaking. Beresford and 
Stajano[4] introduce a related concept called “mix zones”. These are physical regions 
in which subjects’ pseudonyms can be shuffled among themselves to confuse an 
inference attack. 

 
Noise – If location data is noisy, it will not be useful for inferring the actual location 
of the subject. This technique is called “value distortion” in Agrawal and Srikant’s 
work on privacy-preserving data mining[1]. 

 
Rounding – If the location data is too coarse, it will not correspond to the subject’s 
actual location. This is called “value-class membership” in [1]. 
 
Vagueness – Subjects may report a place name (e.g. home, work, school, mall) 
instead of latitude and longitude. In their study on disclosure of location to social 
relations, Consolvo et al.[5] found that vagueness was not popular for mobile users 
communicating their locations to family and friends, although it would likely be more 
acceptable for disclosure to strangers. 

 
In addition, Hoh et al.[13] describe one other computational technique: 
 

Dropped Samples – Hoh et al. found that reducing the GPS sampling interval from 
one minute to four minutes reduced the home identification rate from 85% to 40%. 
 

We have already tested the effectiveness of pseudonymity in the previous section. 
In this section, we measure the effectiveness of noise, rounding, and one type of 
spatial cloaking applied on top of pseudonymity. 

These computational countermeasures contrast with information-preserving 



countermeasures like encryption and access control, which are beyond the scope of 
this paper. While these other techniques may be better, we speculate that drivers 
would be more comfortable releasing corrupted data than they would accepting an 
authority’s promise to be careful with the uncorrupted data. 

4.1   Countermeasure Specifics 

Our three countermeasures apply to the raw latitude and longitude data. In a real 
setting, they would be applied to the data near the source before it is transmitted 
anywhere an attacker could access it. The specifics of the three methods are: 

 
Spatial Cloaking – Previously described spatial cloaking is applied to groups of 
people in the same region. We implemented an alternative that uses only a single 
user’s data. It simply deletes coordinates near the subject’s home, creating ambiguity 
about the home’s actual location. A simple version of the algorithm would delete all 
points in a circle centered at the subject’s home. However, a geometrically-minded 
attacker might be able to guess the circle’s radius and find the center. Instead, we 
center the “invisibility circle” at a random point inside a smaller circle which is 
centered on the home’s location. Specifically, we have a circle of radius r  centered 
on the home. We pick a uniformly distributed, random latitude and longitude 
coordinate inside this circle as the center of a larger circle of radius R , Rr < . We 
delete all the measured coordinates inside the larger circle. This is illustrated in Figure 
4. This process is applied to each subject with a different random point for each one. 
This ensures that points at and near the home will be deleted, and the randomness for 
each subject makes it more difficult for the attacker to infer the geometry of the 
deletions. 

 
Noise – We implement noise by simply adding 2D, Gaussian noise to each measured 
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Figure 4: We delete data inside the large circle to help conceal the home's location. 



latitude and longitude coordinate. For each point, we generate a noise vector with a 
random uniform direction over )2,0[ π  and a Gaussian-distributed magnitude from 

( )2,0 σN . A negative magnitude reverses the direction of the noise vector. 
 

Rounding – We snap each latitude and longitude to the nearest point on a square grid 
with spacing ∆  in meters. 

 
Figure 5 shows the effect of these three methods on data from one of our survey’s 

subjects. 

  
Uncorrupted GPS data Spatial Cloaking – Points inside circle 

deleted. 100 meter radius circle was 
centered at a random point near the 
home. 

  
Noise – Added Gaussian noise with 50 
meter standard deviation 

Rounding – Each point snapped to 
nearest point on 50 meter × 50 meter 
grid. 

Figure 5: This demonstrates the effect of our three methods of corrupting GPS data 
to enhance privacy on a set of data from one of our subjects. The upper left image 
shows the raw, uncorrupted GPS data. The white circle in each image shows the 
location of the subject's house. 



4.2   Countermeasure Results 

We evaluated the effectiveness of our three countermeasures as a function of their 
various parameters. In evaluating pseudonymity above, we considered what fraction 
of names we could correctly identify. However, this is highly dependent on the 
quality of our white pages lookup, which we demonstrated as poor. For evaluating the 
three countermeasures, we instead measured how many correct home addresses we 
could find, which eliminates the uncertainty caused by poor white pages. To find the 
address associated with the inferred coordinates of a home, we used the MapPoint® 
Web Service. As a baseline, when run on unaltered coordinate data, the four inference 
algorithms correctly find these fractions of the subjects’ home addresses: 

 
Algorithm Number Correct Out of 172 Percent Correct

Last Destination 22 12.8%
Weighted Median 20 11.6%
Largest Cluster 19 11.0%

Best Time 6 3.5%  
 
We are trying to find how much we have to corrupt the GPS data for the three 

countermeasures to significantly reduce the number of correct address inferences. 
 

Spatial Cloaking – To simplify presentation, we present only the best-performing 
“Last Destination” algorithm for spatial cloaking. The results for varying values of R  
and r  (see Figure 4) are shown in Figure 6. It is not until a deletion radius R  of 2000 
meters that the inference rate for home addresses dropped to zero. Changing the size 

0
50

100
150

25
0

50
0

750

100
0

200
0

0
50

100
15

0
25

0
50

0
750

100
0

0

5

10

15

20

25

Number of 
Correct 

Inferences

R (meters)

r (meters)

Spatial Cloaking Effects

 
Figure 6: Based on 172 subjects, spatial cloaking was not 100% effective until all 
data within 2000 meters of the home was deleted. 



of the smaller circle, radius r , did not have a noticeable effect. 
 

Noise – The number of correct address inferences as a function of σ  is shown in 
Figure 7. As expected, the number of correct addresses found decreases with 
increasing noise, although the amount of noise required for a significant reduction in 
performance is perhaps surprising. Noise with a standard deviation of 5 kilometers 
reduced the number of found addresses to only one out of 172 for three of the 
inference algorithms and to zero for “Largest Cluster”. 

 
Rounding – Coarser discretization reduced the number of correct address inferences, 
which dropped to zero for all algorithms with a ∆  of 5 kilometers, as shown in Figure 
8. 

 
None of the home-finding algorithms stood out as uniquely robust at resisting the 

countermeasures. Likewise, none of the countermeasures proved uniquely effective at 
resisting a privacy attack. The exact points at which the countermeasures become 
effective (e.g. noise level, spatial coarseness) likely do not generalize well to other 
types of location data due to variations in the time between measurements, distance 
between measurements, the sensor’s intrinsic accuracy and precision, and the density 
of homes. From a qualitative perspective, however, the level of corruption required to 
completely defeat the best inference algorithms is somewhat high. 

In choosing a countermeasure, it would be important to assess not only its 
effectiveness but the effect on the intended application. For instance, a traffic-
monitoring application may be relatively unaffected by cloaking a few hundred 
meters around drivers’ homes, because the application uses only aggregate statistics 
from multiple drivers, and because road speeds in residential neighborhoods are 
relatively unimportant. On the other hand, noise or rounding could easily overpower 
the map matching techniques that the traffic application would use to match GPS 
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Figure 7: Adding noise with a standard deviation of five kilometers reduced the 
effect of inference attacks to near zero. 



points to actual roads. Similar arguments apply to the applications of making 
customized driving routes or travelogues, because cloaking the home location would 
have only a minor effect compared to noise or rounding. 

One unanswered question is the point at which a countermeasure becomes 
practically effective. Even if a few addresses or identities can be compromised, the 
attacker may not have any way to determine which inferences are correct. However, 
more sophisticated attacks could estimate their own uncertainty, highlighting which 
inferences are most likely correct. 

5   Summary 

This is the first paper we know of to make a thorough, experimental assessment of 
computational inference attacks on recorded location data, as well as the effectiveness 
of certain countermeasures. We showed that it is possible, using simple algorithms 
and a free Web service, to identify people based on their pseudonymous location 
tracks. Using GPS data from 172 subjects, we can find each person’s home location 
with a median error of about 60 meters. Submitting these locations to a reverse white 
pages lookup, we were able to correctly identify about 5% by name. This number is 
low partly due to our inaccuracy in finding the home locations, but also due to the 
vagaries of Web-based white pages. If we tried to identify only the home addresses, 
our accuracy rose to almost 13% using a commercially available reverse geocoder. 
Both the white pages and the reverse geocoder proved to be weak links in the 
inference attack, but both these technologies will improve as their benevolent 
applications become more important. 

We tested three different countermeasures: spatial cloaking, noise, and rounding. 
We quantified their effectiveness by how well they prevented our inference 
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Figure 8: Discretizing latitude and longitude to a five-kilometer grid was enough 
to protect all addresses from our inference attacks. 



algorithms from finding the subjects’ home addresses. Our results show how much 
the location data needs to be corrupted to preserve privacy. The best of our home-
finding algorithms proved somewhat robust to these techniques. The high degree of 
corruption required when using noise or rounding means that several location-based 
services could become unusable. 

Future work on this problem should expand the experimental matrix with 
additional attack algorithms and countermeasures. It would be useful to create a 
quantitative assessment of the effect of the countermeasures on benevolent 
applications as well as on the attack algorithms as a guide to privacy policymakers. 
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