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Abstract. The join of two sets of facts, E1 and E2, is defined as the set
of all facts that are implied independently by both E1 and E2. Congru-
ence closure is a widely used representation for sets of equational facts
in the theory of uninterpreted function symbols (UFS). We present an
optimal join algorithm for special classes of the theory of UFS using the
abstract congruence closure framework. Several known join algorithms,
which work on a strict subclass, can be cast as specific instantiations of
our generic procedure. We demonstrate the limitations of any approach
for computing joins that is based on the use of congruence closure. We
also mention some interesting open problems in this area.

1 Introduction

Computational logic is used extensively in formal modeling and analysis of sys-
tems, particularly in areas such as verification of hardware and software systems,
and program analysis. A wide variety of logical theories are used for this pur-
pose. However, even for the simplest of theories, reasoning on formulas in the
presence of the conjunction ∧ and disjunction ∨ connectives is computationally
hard. Unsurprisingly, therefore, almost all practical uses of logical computation
have come in the form of decision procedures that work on facts stored as con-
junctions of atomic formulas. What happens when the application requires the
computation of the logical disjunction of two such facts? Join algorithms provide
an approximate solution by constructing a conjunction of atomic formulas that
is implied by the original disjunction.

Join algorithms were first studied in the context of program analysis. Ab-
stract interpretation [5] is a well-known static program analysis technique that
can be used to automatically generate program invariants, and to verify program
assertions, even in the absence of loop invariants. The program is evaluated over
a lattice of abstract states, each one representing one or more concrete execution
states. The lattice join operation (t) is used to compute the abstract state follow-
ing a merge in a control-flow graph, from the abstract states before the merge
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point. The join operation can be viewed as computing the intersection of the
facts (or union of the models) before the merge point. The lack of a suitable join
algorithm restricts the utility of several interesting theories for abstract inter-
pretation. Nevertheless, join algorithms are known for some important theories
such as linear arithmetic [10], linear inequalities [6,3], polynomial equations [17],
and the initial term algebra [8,18].

A join algorithm for a theory Th takes as input two sets of atomic facts
and produces the strongest set of facts that is implied independently by both
the input sets of facts in Th. For example, the join of the sets {a = 2, b = 3}
and {a = 1, b = 4} in the theory of linear arithmetic can be represented by
{a + b = 5}. The join of {a = x, b = f(x)} and {a = y, b = f(y)} in the theory
of uninterpreted function symbols (UFS) can be represented by {b = f(a)}.

It is interesting to point out that though decision procedures for satisfiability
of a conjunction of atomic formulas are well studied for a wide class of logical
theories, the same is not true for join algorithms. Join algorithms appear to be
much harder than the decision procedures for the same theory. While there are
efficient congruence closure based decision procedures for the theory of UFS, join
algorithms for this theory have been studied in this paper and independently
in [19]. In the special case of the theory of initial term algebra, several join
algorithms have been proposed [1,18,8]. All of these algorithms primarily use
EDAG/value graph like data structures [15,12].

This paper has two main technical contributions. In Section 3, we present an
abstract congruence closure based algorithm that generalizes all the known join
algorithms for subclasses of UFS and can compute the join for a strictly bigger
subclass of the theory of UFS than these algorithms. We show that the existing
algorithms are a special case of our algorithm.

In Section 4 we present some results concerning the limitations of any congru-
ence closure based approach for obtaining join algorithms for the general theory
of UFS. We show that the join of two finite sets of ground equations cannot
be finitely represented (using ground equations). In special cases when it can
be finitely represented, the presentation can become exponential. This partially
explains the lack of any known complete join algorithms for even special classes
of the UFS theory.

2 Notation

A set Σ of function symbols and constants is called a signature. Function sym-
bols in Σ are denoted by f, g and constants by a, b. In the context of program
analysis, these constants arise from program variables, and henceforth we refer
to them as (program) variables. We use T (Σ) to refer to the set of ground terms
over Σ, which are constructed using symbols only from Σ. We use the notation
ft1 . . . tk to refer to the term f(t1, . . , tk). We also use the notation f it to denote
i applications of the unary function f on term t.

Definition 1 (Join). Let Th be some (first-order) theory over a signature Σ.
Let E1 and E2 be two sets of ground equations over Σ. The join of E1 and E2



in theory Th is denoted by E1 tTh E2, and is defined to be (any presentation
for) the set {s = t | s, t ∈ T (Σ), Th |= E1 ⇒ s = t, Th |= E2 ⇒ s = t}.

We ignore the subscript Th from tTh whenever it is clear from the context.
In this paper, we mainly concern ourselves with the theory of UFS. If E is a
set of equations (interpreted as a binary relation over terms, not necessarily
symmetric), the notation →E denotes the closure of E under the congruence
axiom. If → is a binary relation, we use the notation →∗ and ↔∗ to denote the
reflexive-transitive and reflexive-symmetric-transitive closure of →. Note that
↔∗

E is the equational theory induced by E.
The theory of uninterpreted function symbols (UFS) is just the pure the-

ory of equality, that is, there are no additional equational axioms. Treating the
constants in Σ as variables, we define the theory of initial term algebra as the
extension of UFS with the axioms (a) if fs1 . . . sm = gt1 . . . tn for m,n ≥ 1, then
f = g, m = n, and si = ti for all i, and (b) C[a] 6= a for any nontrivial context
C[ ] and variable a.

3 Join Algorithms for Uninterpreted Functions

We represent (the equational theory induced by) finite sets of ground equa-
tions using an “abstract congruence closure” [9,2], which is closely related to a
bottom-up tree automaton where the automaton specifies an equivalence on a
set of terms, rather than specifying a set of accepted terms. Abstract congruence
closure is reviewed in Section 3.1. The join of two abstract congruence closures
is closely related to their product, which we describe in Section 3.2.

3.1 Abstract Congruence Closure

An abstract congruence closure provides a rewrite rules (tree-automata) based
representation for a finite set of ground equations [2]. An abstract congruence
closure R is a convergent set of ground rewrite rules of the form fc1 . . . ck → c0

or c1 → c2, where f ∈ Σ is a k-ary function symbol (k ≥ 0) and ci’s are all
special constants from a set K disjoint from Σ. If E is a set of ground equations
over Σ, then R is said to be an abstract congruence closure for E if for all
s, t ∈ T (Σ), s↔∗

E t iff there exists a term u ∈ T (Σ ∪K) such that s→∗
R u and

t →∗
R u. We will assume that R is fully-reduced, that is, if fc1 . . . ck → c0 ∈ R,

then there is no rule in R such that ci →R d for any i = 0, 1, . . . and any d. R is
fully-reduced implies that R is convergent.

If s →∗
R c, then we say that c represents s (via R). Given an abstract con-

gruence closure R, it is not the case that every term s ∈ T (Σ) is represented by
a constant. Note that an abstract congruence closure provides a formal way for
reasoning about EDAG data-structure [15], as illustrated in Figure 1.

3.2 Join of Two Congruence Closures

We use congruence closures to represent sets of equations. If R1 and R2 are
abstract congruence closures over signatures Σ ∪ K1 and Σ ∪ K2 respectively,
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Consider the set E = {fab = a, f(fab)b = b}. An EDAG
representing the set E is shown in Figure 1. An EDAG con-
sists of a term graph (dark directed edges) and a set of
congruence closed equality (dotted) edges. A corresponding
abstract congruence closure representation is {a → c0, b →
c1, fc0c1 → c2, fc2c1 → c3, c1 → c0, c2 → c0, c3 → c0}. A
fully-reduced abstract congruence closure for E is R = {a →
c0, b → c0, fc0c0 → c0}. The rewrite system R can be seen
as a specification of a tree-automaton over the set K = {c0}
of states.

Fig. 1. EDAG and abstract congruence closure for E = {fab = a, f(fab)b = b}

then we want to construct an abstract congruence closure R3 such that for all
terms s, t ∈ T (Σ), it is the case that s↔∗

R1
t and s↔∗

R2
t, if and only if, s↔∗

R3
t.

The solution involves the construction of the product congruence closure.

Definition 2. Let R1 and R2 be abstract congruence closures over signatures
Σ ∪ K1 and Σ ∪ K2. We define the product congruence closure R3 over the
signature Σ ∪ (K1 ×K2) as follows:

R3 = {f(〈c1, d1〉, 〈c2, d2〉, . . . , 〈ck, dk〉) → 〈c, d〉 :
f ∈ Σ, fc1c2 . . . ck → c ∈ R1, fd1d2 . . . dk → d ∈ R2}

Example 1. Let E1 = {f2a = a} and E2 = {f3a = a}. A fully-reduced abstract
congruence closure for E1 is R1 = {a → c0, fc0 → c1, fc1 → c0}, and that for
E2 is R2 = {a→ d0, fd0 → d1, fd1 → d2, fd2 → d0}.

A fully reduced abstract congruence closure for the join E1 t E2 is given
over the signature {a, f} ∪ {〈ci, dj〉 : i ∈ {0, 1}, j ∈ {0, 1, 2}} as R3 = {a →
〈c0, d0〉, f〈c0, d0〉 → 〈c1, d1〉, f〈c1, d1〉 → 〈c0, d2〉, f〈c0, d2〉 → 〈c1, d0〉, f〈c1, d0〉 →
〈c0, d1〉, f〈c0, d1〉 → 〈c1, d2〉, f〈c1, d2〉 → 〈c0, d0〉}. Here R3 is just the product of
R1 and R2.

The following lemma shows that product construction is sound (i.e., it rep-
resents only true equivalences), but complete (i.e., it represents all true equiva-
lences) only on terms represented explicitly by constants in R1 and R2.

Lemma 1. Let R1 and R2 be fully reduced abstract congruence closures over
signatures Σ ∪K1 and Σ ∪K2. Let R3 be the product congruence closure. Then,
for all terms s, t ∈ T (Σ), it is the case that s→∗

R1
c←∗

R1
t and s→∗

R2
d←∗

R2
t

for some constants c ∈ K1 and d ∈ K2, if and only if, s→∗
R3
〈c, d〉 ←∗

R3
t.

Proof. By induction on the structure of the term s, we can prove that it is the
case that s→∗

R1
c and s→∗

R2
d, iff s→∗

R3
〈c, d〉. The lemma follows immediately.

3.3 Special Cases for which the Join Algorithm is Complete

In this section, we show that for certain special cases, the product captures the
exact join.



Injective Functions. An important special case, from the point of view of pro-
gram analysis, is the theory of injective functions. In this case, all function sym-
bols f ∈ Σ are assumed to be injective, that is, whenever fs1 . . . sk = ft1 . . . tk,
then si = ti for all i.

Uninterpreted functions are a commonly used abstraction for modeling pro-
gram operators for the purpose of program analysis. If the conditionals of a
program are abstracted as non-deterministic, and all program assignments are
of the form a := e (where a is a program variable and e is some uninterpreted
function term), then it can be shown that if fs1 . . . sk = ft1 . . . tk holds at some
program point, then si = ti for all i must also be true at that program point [8].
Hence, the analysis of such programs can use the theory of injective functions.
Furthermore, injective functions can be used to model fields of tree-like data
structures in programs.

As a consequence of injectivity, there cannot be two distinct rules f . . . → c
and f . . .→ c in any fully-reduced abstract congruence closure.

Theorem 1. Let R1 and R2 be fully reduced abstract congruence closures over
signatures Σ ∪K1 and Σ ∪K2 that satisfy the injectivity assumption described
above. Let R3 be the product congruence closure. Then, the relation ↔∗

R3
is equal

to ↔∗
R1
∩ ↔∗

R2
over T (Σ).

Proof. Suppose s, t ∈ T (Σ) such that s↔∗
R1

t and s↔∗
R2

t. Consider the cases:
(1) there are constants c ∈ K1 and d ∈ K2 equivalent to s modulo R1 and R2

respectively: Since R1 and R2 are fully-reduced, it follows that s →∗
R1

c′ ←∗
R1

t
and s →∗

R2
d′ ←∗

R2
t for some constants c′, d′. It follows from Lemma 1 that

s↔∗
R3

t.
(2) there is no constant in the equivalence class of s modulo R1: Then s =
fs1 . . . sm and t = ft1 . . . tm for some f ∈ Σ and si ↔∗

R1
ti for all i. Since s and

t are also equivalent modulo R2, by injectivity it follows that for all i, si and ti
are equivalent modulo R2. By induction on the depth of s and t, we conclude
that si ↔∗

R3
ti, and consequently, s↔∗

R3
t.

(3) there is no constant in the equivalence class of s modulo R2: This case is
analogous to the second case above.

Finite Number of Congruence Classes. As a second specialization, consider the
case when only a finite number of distinct congruence classes are induced by
both R1 and R2. In this case, the product of R1 and R2 represents the complete
join of R1 and R2.

Theorem 2. Let R1 and R2 be fully reduced abstract congruence closures over
signatures Σ ∪K1 and Σ ∪K2. Let R3 be the product congruence closure. If the
congruence relation ↔∗

R1
defined by R1 over T (Σ) induces only finitely many

congruence classes, and the same is true for R2, then the relation ↔∗
R3

is equal
to ↔∗

R1
∩ ↔∗

R2
over T (Σ).

Proof. If T (Σ) is partitioned into a finite number of congruence classes modulo
R1, then we claim that every term s ∈ T (Σ) is equivalent to some constant



modulo R1. Thereafter the proof is identical to case (1) of the proof of Theorem 1.
To prove the claim, note that if s is not equivalent to a constant, then all the
infinite terms C[s], where C is an arbitrary context, are in distinct equivalence
classes, thus contradicting the assumption.

3.4 Complexity and Optimizations

If the size of R1 and R2 is n1 and n2 respectively, then the product R3 of R1 and
R2 can be constructed in O(n1n2) time and the size of R3 is O(n1n2). Example 1
generalizes to show that in the case of finitely many equivalence classes, the ab-
stract congruence closure representation of the (complete) join can be quadratic
in size of the inputs, and hence product construction is optimal in this case.
Surprisingly, the same is also true for the theory of injective functions and the
special subclass of initial term algebra, as the following example demonstrates.

Example 2. Let Σ = {ai, bi, a
′
i, b

′
i | i ∈ I = {1, . . . , n}} be a set of 4n variables. It

is easy to see that the join of {a1 = · · · = an = b1 = · · · = bn = fb′1} ∪ {fb′i+1 =
bi, fai = ai+1 | i ∈ I} and {a′1 = · · · = a′n = b′1 = · · · = b′n = fb1} ∪ {fbi+1 =
bi, fai = ai+1 | i ∈ I} is {a′i = f ibi, ai = f ib′i | i ∈ I}, which can only be
represented by a congruence closure of quadratic size.

In the context of program analysis, abstract interpretation of a program with
n conditionals (in sequence) requires computing n successive joins. A quadratic
blowup in each step can lead to a double exponential complexity. In practice,
however, we would not expect the join to be quadratic in each step. Product
construction can be optimized using some heuristics. First we can delete un-
reachable constants, that is, a constant 〈c, d〉 that does not represent any term
over the original signature Σ. Rules that contain unreachable constants can also
be deleted. This optimization can be enforced at the product construction phase
by only creating constants that are guaranteed to be reachable. Second note that
any node that is not pointed to by any subterm edge or any equational edge can
also be recursively deleted. In other words, if 〈c, d〉 occurs exactly once, then the
rule containing 〈c, d〉 can be deleted, cf. [11].

3.5 Related Work

We recently discovered that Vagvolgyi [19] has shown that it is decidable if
the join of two congruence closures is finitely generated, and has described an
algorithm for computing the join that is based on tree-automata techniques. Our
work has focused on identifying classes of UFS for which joins are guaranteed to
be finitely generated in polynomial time using product construction of abstract
congruence closures.

Join algorithms for the theory of initial term algebra have been studied in
the context of the global value numbering problem [4,8]. We show here that
these algorithms are specific instantiations of our generic join algorithm. The
global value numbering problem seeks to discover equivalences of program ex-
pressions by treating all program operators as uninterpreted, all conditionals as



non-deterministic, while all assignments are of the form a := e (where a is a pro-
gram variable and e is some uninterpreted function term). In this special case, a
congruence closure R is, in fact, a unification closure, i.e. whenever s and t are
equivalent modulo R, then (a) either s or t is a constant, or (b) s = fs1 . . . sm,
t = fs1 . . . tm, and si and ti are equivalent modulo R. The three different algo-
rithms proposed for computing joins in the initial term algebra [1,18,8] can be
viewed as essentially computing the product congruence closure. However, since
there is a potential of computing n successive joins and getting an exponential
blowup [8], these algorithms use heuristics to optimize computation of n joins.

The popular partition refinement algorithm proposed by Alpern, Wegman,
and Zadeck (AWZ) [1] is efficient, however at the price of implementing an in-
complete join. The novel idea in AWZ algorithm is to represent the values of
variables after a join using a fresh selection function φ, similar to the functions
used in the static single assignment form [7]. The φ functions are an abstraction
of the if-then-else operator wherein the conditional in the if-then-else expression
is abstracted away, but the two possible values of the if-then-else expression are
retained. However, the AWZ algorithm treats the φ functions as new uninter-
preted functions. It then performs congruence partitioning and finally eliminates
the φ functions. For example, the join of {x = a, y = f(a), z = a} and {x =
b, y = f(b), z = b} is represented as {x = φ(a, b), y = φ(f(a), f(b)), z = φ(a, b)}
and computed to be {x = z}. Note that the equality y = f(x) is missing in the
join. The AWZ algorithm is incomplete because it treats φ functions as unin-
terpreted. In an attempt to remedy this problem, Rüthing, Knoop and Steffen
have proposed a polynomial-time algorithm (RKS) [18] that alternately applies
the AWZ algorithm and some rewrite rules for normalization of terms involv-
ing φ functions (namely φ(a, a) → a and φ(f(a), f(b)) → f(φ(a, b))), until the
congruence classes reach a fixed point. Their algorithm discovers more equiva-
lences than the AWZ algorithm. Recently, Gulwani and Necula [8] gave a join
algorithm (GN) for the initial term algebra that takes as input a parameter s
and discovers all equivalences among terms of size at most s.

The GN algorithm. In our framework, the basic strategy of the GN algorithm [8]
for computing the join of two congruence closures R1 and R2 can be described
by the recursive function match:

match(c,d) =
if ∃a : a→ c ∈ R1, a→ d ∈ R2 create a→ 〈c, d〉; return;
else if ∃fc1 . . . ck → c ∈ R1 and ∃fd1 . . . dk → d ∈ R2

create f〈c1, d1〉 . . . 〈ck, dk〉 → 〈c, d〉; match(c1, d1); . . . ;match(ck, dk);
else delete all rules created until now;

For each variable a ∈ Σ such that a → c ∈ R1 and a → d ∈ R2, the function
match(c, d) is invoked once. Note that rules are deleted if they contain unreach-
able nodes. If R1 = {a → c1, fc2 → c1, b → c2} and R2 = {a → d1, fd2 →
d1, b → d2}, then the GN algorithm creates the rules {a → 〈c1, d1〉, f〈c2, d2〉 →
〈c1, d1〉, b→ 〈c2, d2〉} in that order.



The RKS algorithm. This algorithm [18] uses the special φ function to represent
the join problem. The binary φ function corresponds to the pairing operator
〈 , 〉 : K1 ×K2 7→ K3, but extended to terms 〈 , 〉 : T (Σ ∪K1)×T (Σ ∪K2) 7→
T (Σ ∪K3). The process of creating the rewrite rule f〈c1, d1〉 . . . 〈ck, dk〉 → 〈c, d〉
from the two initial rewrite rules fc1 . . . ck → c ∈ R1 and fd1 . . . dk → d ∈ R2 is
achieved by first explicitly representing the rewrite rule 〈fc1 . . . ck, fd1 . . . dk〉 →
〈c, d〉, and then commuting the φ function with the f symbol to get f〈c1, d1〉 . . .-
〈ck, dk〉 → 〈c, d〉. Finally, in the base case, when we get 〈a, a〉 → 〈c, d〉, the second
property of φ functions is used to simplify the left-hand side to a.

The AWZ algorithm. The AWZ algorithm [1] also uses the special φ function, but
does not use any of the two properties of it (as described above). Consequently,
it only computes a few rewrite rules of the product congruence closure and not
all of them.

4 Limits of Congruence Closure based Approaches

The congruence closure representation is inherently limited in its expressiveness.
It can only represent sets of equations that have a finite presentation. However,
the join of two finite sets of ground equations may not have a finite presentation.
For example, consider the following sets of equations E1 and E2.

E1 = {a = b} E2 = {fa = a, fb = b, ga = gb}
E1 t E2 = {gfna = gfnb | n ≥ 0}

We prove that E1 t E2 cannot be represented by a finite number of ground
equations below. We first define signature of a term.

Definition 3. Let ≡ be a congruence on the set of all ground terms. Let K
denote the set of all congruence classes induced by ≡. The signature Sig(t) of a
term t = f(t1, . . . , tk) with respect to ≡ is the term f([t1], . . . , [tk]) over Σ ∪K,
where [ti] denotes the congruence class of ti modulo ≡ and symbols in K are
treated as constants.

The following theorem gives a complete characterization of equational theo-
ries that admit finite presentations using ground equations, see also [11].

Theorem 3. A congruence relation ≡ on the set of ground terms (over Σ) can
be represented by a finite set of ground equations iff there are only finitely many
congruence classes that contain terms with different signatures, and each such
congruence class contains terms with only finitely many different signatures.

We will only use the forward (⇒) implication of this theorem, which follows
immediately using either an abstract congruence closure construction of the finite
set of ground equations, or analyzing the equational proofs.

Note that the two terms gfna and gfnb, for a fixed n ≥ 0, are equal in
E3 = E1 t E2, but their arguments are not (because E2 6|= a = b.) Thus,



E1 t E2 contains infinitely many congruence classes with two distinct signatures.
Hence it follows from Theorem 3 that E3 does not admit a finite presentation
using ground equations. We conclude that the congruence closure based approach
cannot be used to obtain a complete join algorithm for the full theory of UFS.
In fact, this example shows that this is true for even the special class of unary
UFS.

A set E of ground equations is said to be cyclic if there exists a term that
is equivalent to a proper subterm of itself modulo E, otherwise it is acyclic.
The acyclic subclass of UFS is closed under joins and guaranteed to have finite
presentations. Unfortunately, the (complete) join of two sets of acyclic ground
equations can be exponential in the size of the inputs. For example, consider the
following sets of equations E1 and E2.

E1 = {a = b}
E2 = {g(b′, a) = g(b′, b), b′ = f(a1, . . , an), a1 = a′1, . . . , an = a′n}

E1 t E2 = {g(s, a) = g(s, b) | s ∈ f(t1, . . , tn), ti ∈ {ai, a
′
i}} ∪ {g(b′, a) = g(b′, b)}

The set E1 t E2 requires an exponential number of ground equations for rep-
resentation. We conclude that the congruence closure based approach cannot be
used to get a polynomial time complete join algorithm for the acyclic subclass of
UFS. This remains true even when the signature is restricted to unary symbols,
as the following example shows.

E1 = {x0 = y0}
E2 = {fx0 = x1, . . , fxn−1 = xn, gx0 = x1, . . , gxn−1 = xn,

fy0 = y1, . . , fyn−1 = yn, gy0 = y1, . . , gyn−1 = yn, xn = yn}
E1 t E2 = {sx0 = sy0 | s ∈ (f |g)n}

Note that the set E1 t E2 contains 2n equations. The smallest set of ground
equations representing E1 t E2 is exponentially large.

4.1 Relatively Complete Join Algorithm

We cannot hope to get a complete join algorithm using the congruence closure,
or EDAG, data-structure. We can, however, get an algorithm that is complete
on a given set I of important terms.

Definition 4 (Relatively Complete Join Algorithm). A relatively com-
plete join algorithm for a theory Th over a signature Σ takes as input two
sets of ground equations E1 and E2, and a set I of terms over Σ and returns
E3 such that Th |= (E1 t E2) ⇒ E3 and Th |= E3 ⇒ (E1 t E2)|I , where
(E1 t E2)|I = {s = t | s and t occur as sub-terms in I, (s = t) ∈ E1 t E2}.

Lemma 1 shows that the product construction method will detect exactly
those equivalences which involve terms that are explicitly represented (via con-
stants) in the two congruence closures. Hence, we can obtain relatively complete



join algorithms by first representing the set I of important terms in R1 and R2.
Define the function addTerm(K, R, s), which takes as input a set K of constants,
an abstract congruence closure R over Σ ∪K, and a term s, and returns a tuple
〈K ′, R′, c〉 as follows:

addTerm(K, R, c) = 〈K, R, c〉, if c ∈ K

addTerm(K, R, fc1 . . . ck) = 〈K, R, c〉, if fc1 . . . ck → c ∈ R

addTerm(K, R, fc1 . . . ck) = 〈K ∪ {c}, R ∪ {fc1 . . . ck → c}, c〉, if ci ∈ K, c 6∈ K

addTerm(K, R, f . . . si . . .) = addTerm(K1, R1, f . . . c . . .),
if 〈K1, R1, c〉 = addTerm(K, R, si)

The function addTerm(K, R, s) adds new rules to R, if necessary, so that the
term s is explicitly represented (by a constant) in R. We extend this function
to add a set I of terms by successively calling the function addTerm(K, R, s)
for each s ∈ I. The relatively complete join algorithm relJoin for UFS involves
adding the new terms and then computing the product.
relJoin(R1,R2,I) =
〈K1, R1〉 := addTerm(K1, R1, I);
〈K2, R2〉 := addTerm(K2, R2, I);
R3 := product(R1, R2); return R3;

For example, consider the congruence closures R1 = {a → c, b → c} and R2 =
{a → d1, b → d2, fd1 → d3, fd2 → d3, gd1 → d4, gd2 → d4} for {a = b}
and {fa = fb, ga = gb} respectively. The product of R1 and R2 will be a
congruence closure for the empty set {} of equations since fa, fb, ga and gb are
not represented in R1. If I = {fa}, then we will add, say, the rule fc → c′ to
R1, and the product now represents {fa = fb}. It will still miss the equality
ga = gb.

The correctness of the relatively complete join algorithm outlined above fol-
lows immediately from Lemma 1 and noting that addTerm returns a fully re-
duced congruence closure if the input congruence closure is fully reduced [2]. As
a post-processing step, we can only keep those rules in R3 that are used in the
proof of s →∗

R3
c for some s ∈ I. This way the size of the output can be forced

to be linear in the size of the input I.

5 Interesting Future Extensions

Join Algorithms for Other Theories: Join algorithms for the theory of
commutative UFS can be used to reason about program operators like bitwise
operators and floating-point arithmetic operators. However, the join algorithm
for commutative UFS (cufs) may be more challenging than the one for UFS. For
example, consider the following sets of equations E1 and E2.

E1 = {a = a′, b = b′} E2 = {a = b′, b = a′}
E1 tufs E2 = ∅

E1 tcufs E2 ⊃ {f(C[a], C[b]) = f(C[a′], C[b′]) | C is any context }



Here f is a binary symbol assumed commutative in the cufs theory. Note that
E1 tcufs E2 contains equalities like f(a, b) = f(a′, b′) and is not finitely repre-
sentable using ground equations even though E1 tufs E2 is finite.

Context-Sensitive Join Algorithm: Precise inter-procedural program anal-
ysis requires computing “context-sensitive procedure summaries”, that is, invari-
ants parameterized by the inputs so that given an instantiation for the inputs,
the invariant can be instantiated to the most precise result for that input. Reps,
Horwitz, and Sagiv described a general way to accomplish this for a simple class
of data-flow analyses [16] . It is not clear how to do this in general for any abstract
interpretation. The real challenge is in building an appropriate data-structure
and a join algorithm for it that is context sensitive. For example, consider the
following sets of equations E1 and E2.

E1 = {a = a′, b = F (a′)} E2 = {a = b′, b = F (b′)}
E1 t E2 = {b = F (a)}

E1[a′ = b′] t E2[a′ = b′] = {a = a′, b = F (a)}
(E1 t E2)[a′ = b′] = {b = F (a)}

This example illustrates that our join algorithm is not context-sensitive since
it represents E1 t E2 as {b = F (a)} which when instantiated in the context
a′ = b′ does not yield the most precise result. This suggests that a different
data structure is required to obtain a context-sensitive join algorithm. Recently,
Olm and Seidl have described a context-sensitive join algorithm for the theory of
linear arithmetic with equality [13]. Their data structure is very different from
the one used in Karr’s join algorithm [10], which is not context-sensitive.

Combining Join Algorithms: Combining the join algorithm for UFS with
the one for linear arithmetic (la) will give a join algorithm for the combined
theory (la ufs), which can be used to analyze programs with arrays and pointers.
There are some nice results in the literature for combining decision procedures
for different theories [14], but none for combining join algorithms. Consider, for
example, the following sets of equations E1 and E2.

E1 = {a = a′, b = b′} E2 = {a = b′, b = a′}
E1 tla E2 = {a + b = a′ + b′} E1 tufs E2 = ∅
E1 tla ufs ⊂ {∀i ≥ 0, f ia + f ib = f ia′ + f ib′}

Here f is uninterpreted. Note that E1 tla ufs E2 does not even admit finite
presentation using ground equations. However, it may be possible to obtain a
relatively complete join algorithm for the combined abstraction.

6 Conclusion

This paper explores the closure properties of congruence closure under the join
operation. We show that the congruence closure representation is neither expres-
sive enough nor compact enough to be able to represent the result of a join in



the theory of UFS. The product of two congruence closures is related to the join
and we show that it indeed provides a complete algorithm for certain special
cases. This generalizes the known specific case of unification closures.
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