
Modular verification of static class invariants

K. Rustan M. Leino1 and Peter M̈uller2

1 Microsoft Research, Redmond, WA, USA,leino@microsoft.com
2 ETH Zürich, Switzerland,peter.mueller@inf.ethz.ch

Abstract. Object invariants describe the consistency of object-oriented data struc-
tures and are central to reasoning about the correctness of object-oriented soft-
ware. But object invariants are not the only consistency conditions on which a
program may depend. The data in object-oriented programs consists not just of
object fields, but also of static fields, which hold data that is shared amongob-
jects. The consistency of static fields is described bystatic class invariants, which
are enforced at the class level. Static class invariants can also mention instance
fields, describing the consistency of dynamic data structures rooted in static fields.
Sometimes there are even consistency conditions that relate the instance fields of
many or all objects of a class; static class invariants describe these relations, too,
since they cannot be enforced by any one object in isolation.
This paper presents a systematic way (amethodology) for specifying and verify-
ing static class invariants in object-oriented programs. The methodology supports
the three major uses of static fields and invariants in the Java library. The method-
ology is amenable to static, modular verification and is sound.

Keywords: Static class invariant, verification, object-oriented programming, sta-
tic field

1 Introduction

A central problem in reasoning about a computer program’s correctness comes down
to reasoning about which program states the program can everreach. Programmers
rely on that only some states are reached, most prominently by assuming that the pro-
gram’s data structures satisfy certain properties. These properties are calledinvariants.
By declaring invariants explicitly, the programmer can getsupport from tools (like the
tools for JML [4] or Spec# [2]) that make sure the program maintains the invariants. In
this paper, we present a systematic way (amethodology) for specifying and reasoning
about invariants in object-oriented programs. In particular, we consider invariants that
are described and enforced at the level of each class, calledstatic class invariants.

The main data structures in modern object-oriented programs are stored as the state
of individual objects, in variables known asinstance fields, and as the state of classes,
in variables known asstatic fields. We have identified three major uses of static fields
and invariants in the standard Java libraries (Java 2 Standard Edition version 5.0). First
and foremost, static fields are used to store shared values. For example, the well-known
static fieldSystem.out in Java provides an output stream whose characters flow to the
console. Second, static fields are used to hold the roots of object data structures. For
example, the implementation of theString class in Java has a shared pool of interned
strings, storing canonical string references for certain character sequences. Third, static
fields are occasionally used to reflect something about all instances of a class. For ex-
ample, Java’sThread class assigns unique identifiers to its instances and uses a static

2

field to keep track of which identifiers are in use. In all of these three cases, implicit or
informally documented static class invariants describe the intended consistency condi-
tions. The methodology we present in this paper enables the explicit specification and
formal verification of these invariants.

Previous work on specifying and verifying invariants in object-oriented programs
have developed methodologies forobject invariants, which describe the consistent state
of individual objects and aggregate objects, formations ofindividual objects into one
logic unit [16, 1, 10, 3]. However, these methodologies do not apply to static class in-
variants, because the classes of a program build on each other in a way that is different
from the principal way in which objects in an aggregate buildon each other: whereas an
object has a unique point of use in an aggregate, a class is used by many other classes.

Our basic methodology draws from the Boogie methodology forobject invariants [1,
10, 3], but innovates in significant ways to handle static class invariants. First, to ad-
dress the abstraction problem that arises when a class is used by several other classes,
our methodology performs different bookkeeping for invariants, tailored to work with
any partial order among classes. Second, our methodology introduces such a partial or-
der on classes. This order makes it possible for a method override to rely on the static
class invariant of the subclass even when the method specification in a superclass is not
able to name the subclass. The order also prescribes how to initialize classes, which
provides a way to avoid unexpected class initialization errors. Third, our methodology
adds the ability for an invariant to quantify over objects (for example, specifying that
no two linked-list nodes have the same successor), which involves a syntactic restric-
tion on programs. We present our methodology for a programming language similar to
the sequential subset of Java or C#. The only major semantic difference is how class
initialization is performed, as explained later.

To support programming in the large, a crucial aspect of any specification and veri-
fication methodology is that it bemodular. That is, it should be possible to reason about
smaller portions of a program at a time, say a class and its imported classes, without
having access to all pieces of code in the program that use theclass or extend the class.
Our methodology is modular.

To save space, we combine the three kinds of static class invariants into one running
example, theService andClient classes in Figs. 1 and 2. Objects of classService rep-
resent instances of a system service. These instances sharea common job cache, which
is referenced from the static fieldjobs . The first class invariant inService says that
jobs is non-null, and the second says that the non-null elements of the cache are dis-
tinct. Objects of classClient represent users of the service. Each client has an ID and
the static fieldids keeps track of the number of IDs ever given out. The first classinvari-
ant says thatids is a natural number, the second says thatids exceeds all client IDs, and
the third says that clients have unique IDs. Here and throughout, quantifications over
objects range over allocated, non-null objects. The quantifications in the class invariants
in Client are also restricted tovalid Client objects, indicated byc.invClient = valid

and explained later. Note that the third invariant inClient does not mention any static
fields, but we nevertheless consider it a class invariant since individual objects cannot
maintain this invariant. No previous methodology can handle these kinds of invariants

3

class Service imports Client {
static rep Client [] jobs ;

static invariant Service.jobs 6= null ; // simple
static invariant (∀ int i , j

>>> 0 ≤ i < j < Service.jobs.length •
Service.jobs[i] 6= null ⇒ Service.jobs[i] 6= Service.jobs[j]) ; // ownership

static initializer {Service.jobs := new 〈Service〉Client [10] ;}

static void cache(Client c)
requires Service.sinv = tvalid ∧ c 6= null ;
{

if (c 6∈ Service.jobs) {
int free := arbitrary value in{ 0, . . . , Service.jobs.length − 1 } ;
expose Service {

expose Service.jobs for Client [] ; Service.jobs[free] := c ;
unexpose Service.jobs for Client [] ;

} } } }

Fig. 1. Service has a static fieldjobs , which references an array ofClient objects. The class
invariants guarantee thatjobs is not null and that eachClient object is stored at most once
in the jobs array. Both invariants are established by the static initializer. Therep keyword in
the declaration ofjobs indicates an ownership relation between theService class and the array
referenced byjobs .

in an object-oriented setting where the dynamic call order does not follow any statically
determined order on the classes, but our methodology handles all of them.

In Sec. 2, we present our methodology forsimple class invariants, which talk about
the static fields of a class, handling the shared-values use of static fields. In Sec. 3, we
extend this methodology toownership-based class invariants, handling the roots-of-
object-structures use of static fields. In Sec. 4, we furtherextend the methodology to
global class invariants, which quantify over all valid objects of the class, handling the
all-instances use of static fields and invariants. We formalize the methodology and state
a soundness theorem in Sec. 5. We end the paper with related work and a conclusion.

2 Methodology

In this section, we introduce our methodology for class invariants, explain how we
overcome the central problem of abstraction and information hiding, and prescribe class
initialization. We focus on the general ideas, tightening up the details in Section 5.

As illustrated by the examples in Figs. 1 and 2, class invariants are declared by
clauses of the formstatic invariant P ; where P is a predicate that can mention
fields. A classC can contain several invariant clauses.The class invariant ofC , de-
noted byClassInvC , refers to the conjunction of all invariant clauses declared in C . In
this section, we focus on simple class invariants, that is, invariants where the only fields
mentioned inP are static fields ofC .

2.1 Basic methodology

Two fundamental issues drive the design of a methodology forclass invariants. First, in
general, class invariants relate the values of several fields. Therefore, it is not possible

4

class Client imports String {
int id ; static int ids ;

static invariant 0 ≤ Client .ids ; // simple
static invariant (∀Client c

>>> c.invClient = valid • c.id < Client .ids) ; // global
static invariant (∀Client c

>>> c.invClient = valid •
(∀Client d

>>> d .invClient = valid • c 6= d ⇒ c.id 6= d .id)) ; // global

static initializer {Client .ids := 0 ; }

Client()
requires Client .sinv = tvalid ;
ensures this.invClient = valid ;
{

expose Client {
id := Client .ids ; Client .ids := Client .ids + 1 ;
unexpose this for Client ;
}
}

static String debugMsg()
requires Client .sinv = tvalid ;
{ result := “Client objects created : ” .appendNat(Client .ids) ; }
}

Fig. 2. Every object of classClient has an ID. The next available ID is stored in the static field
ids . Class invariants guarantee thatids has not been assigned to aClient object and that all
Client objects have different IDs.

to expect class invariants to hold at every program point; wemust allow class invariants
to be temporarily violated.

Second, it is not possible to completely free clients of the responsibility of making
sure the class invariant holds when a method of the class is called. This is because of
the possibility of reentrancy: a methodm declared in classC can call methods that
cause control to reenterC . A problem would occur ifm makes such a call at a time
C ’s invariant is temporarily violated and the method throughwhich C is reentered
expects the invariant to hold. It would be overly restrictive to forbid method calls while
an invariant is temporarily violated. For example, one may want to invoke a method on
the data structure rooted in a static field.

To deal with these two fundamental issues, the methodology must permit times
when the class invariant becomes violated. For this reason,we introduce a special pro-
gram statement,expose C { s } , which allows the invariant of classC to be violated
for the duration of the sub-statements , throughout which time we say thatC is muta-
ble. Any update of any static fieldC .g must take place whileC is mutable (but there
are no restrictions on when variables can be read). The classinvariant is checked to hold
at the end of theexpose block. We defineexpose blocks to be non-reentrant; that
is, it is illegal to expose an already mutable class. (Non-reentrancy and condition J2,
below, are what guarantee that the class invariant holds on entry to sub-statements .)

When reasoning modularly about a program, it is important to know whether or
not a class is mutable. For example,Client ’s constructor in Fig. 2 needs to declare a
precondition that says classClient is valid, that is, not mutable; otherwise, it would
not be possible to prove that the program meets the non-reentrancy requirement of the

5

expose block in the constructor’s implementation. To facilitate mentioning the valid-
ity status of a class, we introduce for each classC a special static fieldC .sinv (whose
possible values we will describe later), which can be mentioned in method specifica-
tions. C .sinv is an abstraction of the static class invariant inC : a specification can
mentionC .sinv to requireC to be valid, which in effect says thatC ’s invariant holds
but does not reveal the details of the invariant itself.

A program cannot update the static fieldC .sinv directly. Instead, the value of
C .sinv is changed automatically on entry and exit of eachexpose statement. We
postpone until Section 2.4 the issue of setting the initial value ofC .sinv .

It is important to understand that our methodology does not use avisible state se-
mantics, where methods can automatically assume all class invariants to hold in the
pre-state. Instead, a method is allowed to rely only on thoseinvariants whose validity
follows from the explicit precondition. Conversely, one does not have to prove that all
class invariants hold when the method terminates. Instead,we prove that (1) the only
static fields that are assigned to are those of mutable classes, and (2) the class invariant
of a classC holds at the end of eachexpose C statement.

2.2 Abstraction and information hiding

The special static fieldsinv makes it possible for a program to record, usually in pre-
conditions of methods, when a class invariant is expected tohold. However, whenever
one class uses another, it would be clumsy, at best, to have tomention explicitly in a pre-
condition all classes whose validity is needed. For example, suppose theString class
contains a global cache of integers and theirString representations. Then, many meth-
ods of String , including appendNat which is called bydebugMsg (Fig. 2), would
have a precondition that requires theString class to be valid. MethoddebugMsg , in
turn, would then need to declare the precondition that bothClient andString are valid.
And so on, for the methods of other classes that may transitively call debugMsg . As
this example suggests, preconditions would become unwieldy. Moreover, if one class
deep in a program one day is changed to call a method ofString , then all transitive
callers would have to be changed to addString validity as a precondition. Such a pro-
gramming methodology would not respect good principles of information hiding.

To address this problem, we derive from the class declarations of a program a par-
tial order on classes, the so-calledvalidity ordering, and provide the ability, using the
special static fieldsinv , to express the transitive validity of a class. A classC is transi-
tively valid (or t-valid for short) if the invariant ofC holds and all classes that precede
C in the validity order are t-valid.

The most common edge in the validity ordering arises when oneclass is a client of
another class. We require that if a classC refers to a classD or to an entity declared in
D , then eitherD is a superclass ofC or C is declared explicitly toimport D . (Note
that in the latter case, the import declaration is mandatory, in contrast to Java’s “import”
construct, which is just a convenient alternative to writing fully qualified names.) IfC
importsD , then this import also gives rise to the edgeD ← C (“ D precedesC ”) in
the validity ordering. For instance, classClient imports String , which, in particular,
allows debugMsg to call a method ofString . The case whereD is a superclass ofC
is handled conversely as explained below.

6

It is now time we introduce actual values for thesinv field:

– C .sinv = tvalid says thatC is transitively valid, that is, that the invariant ofC
holds and that all classes that precedeC in the validity order are t-valid.

– C .sinv = valid says that the invariant ofC holds, but says nothing about the
validity of C ’s predecessors.

– C .sinv = mutable says thatC ’s invariant may be violated and that the program
is allowed to execute statements that assign to the static fields of C .

As suggested by these bullets, and as we later shall justify,our methodology guarantees
that the following properties areprogram invariants, that is, that they hold at every
control point in a program (here and throughout, quantifications over class names range
over all classes of a program):

J1: (∀C ,D • D ← C ∧ C .sinv = tvalid ⇒ D .sinv = tvalid)
J2: (∀C • C .sinv = tvalid ∨ C .sinv = valid ⇒ ClassInvC)

We can now spell out the preconditions of the methods involved in the Fig. 2 ex-
ample. SinceClient importsString , String precedesClient in the validity ordering.
Assume the following declaration in classString :

String appendNat(int n)
requires 0 ≤ n ∧ String .sinv = tvalid ;

Method debugMsg needs the preconditionClient .sinv = tvalid , since it not only
needsClient ’s invariant in order to establish that the parameter passedto appendNat

is non-negative, but also needs the t-validity ofString in order to meet the precondition
of appendNat . Client ’s constructor can requireClient .sinv = tvalid , Client .sinv =
valid , or Client .sinv = tvalid∨Client .sinv = valid , since the implementation of the
constructor does not depend on the validity of other classes. However,Client .sinv =
tvalid is generally to be preferred, because that specification is general enough to allow
the implementation to be changed to rely on the validity of other classes.

2.3 Subclasses

Since validity-ordering edges are introduced along with the imports relation, a declared
class becomes a successor of all classes it imports. In this subsection, we show that
subclassing has to be treated differently from other uses-relations between classes.

To illustrate with an example, consider a hierarchy of classes representing decision
procedures for various theories, as may be used in the implementation of an automatic
theorem prover. Each theory implements a methodassertLiteral that adds a constraint
to the decision procedure. Fig. 3 declares classTheory , the root of the hierarchy.

Now, consider a particular theory, say the theory of linear arithmetic, represented by
a subclassLATheory , see Fig. 3. Being a method override,LATheory .assertLiteral

has the same specification as the overriddenTheory .assertLiteral , and in particular,
the override cannot strengthen the precondition of the overridden method.

Suppose theLATheory implementation ofassertLiteral makes use of some sta-
tic fields of LATheory and relies on the class invariant to hold of these static fields.
This means thatLATheory .assertLiteral relies on the t-validity ofLATheory . Since

7

class Theory { void assertLiteral(Literal l) { . . . } . . . }
class LATheory extends Theory imports String {

static String version ;
static invariant LATheory .version 6= null ;
static initializer {LATheory .version := “Version ” .appendNat(3) ;}
override void assertLiteral(Literal l) { . . . }
. . . }

Fig. 3. An example to illustrate the specification problem of a method override that relies on a
static class invariant.

this method override cannot strengthen the precondition for assertLiteral defined in
Theory , the precondition ofTheory .assertLiteral must imply thatLATheory is
t-valid. But how can such a precondition be declared in classTheory without ex-
plicitly mentioning LATheory (since Theory may not know about the existence of
LATheory , which may be authored long after the authoring ofTheory)?

If LATheory precedesTheory in the validity ordering, then we can solve the spec-
ification problem on account of program invariant J1. The method in classTheory then
declares the precondition

requires Theory .sinv = tvalid ;

which by J1 impliesLATheory .sinv = tvalid , as needed in the method override. In
other words, a caller of methodassertLiteral , which may not even know about the
existence ofLATheory but may nevertheless hold a reference to an object of allocated
type LATheory , must establish the t-validity ofTheory at the time of call, which
allows the implementation ofLATheory to determine thatLATheory is t-valid, too.

To allow classLATheory to define the edgeLATheory ← Theory in the validity
ordering, we use theextendsrelation that is already used to declare subclasses. That is,
as part of our methodology, a subclass precedes its superclasses in the validity ordering.
A class can extend one superclass (single inheritance) and import any number of other
classes. However, we require that the resulting validity ordering is acyclic.

An acyclic validity ordering prevents mutually dependent classes (except when one
class is a subclass of the other). Cyclic references betweenclasses can be allowed by
grouping classes intomodulesand declaring the validity ordering on modules instead of
classes. Then, the classes in one module can mutually dependon each other. We explain
and formalize this approach in our technical report [9].

2.4 Class initialization

A static class invariant is first established by the static initializer of the class, a desig-
nated block of code that is invoked exactly once. Static initializers are invoked by the
runtime system, so as to orchestrate the initialization of multiple classes. For brevity,
we do not consider dynamic class loading here, but our methodology can handle it [9].

Since the static initializer of a classC may access fields and methods of imported
classes, it requiresC ’s predecessors in the validity ordering to be valid. This isachieved
by initializing classes in the order of the validity ordering.

A program is executed by invoking the static methodmain on a specified class,
say M . Before main is actually called, the runtime system loadsM and all classes

8

that M transitively imports or extends. The static fields of all classes are initialized to
zero-equivalent values, in particular,sinv is initialized tomutable . Next, the runtime
system executes the static initializer of each class, according to the validity ordering.
After executing the static initializer of a classC , C .sinv is set totvalid .

C ’s static initializer can, therefore, assume on entry that (1) C is mutable, which
allows the initializer to assign toC ’s static fields, and (2) all predecessors ofC are
t-valid. That is,C ’s static initializer may assume that the following precondition holds:

C .sinv = mutable ∧ (∀D • D ← C ⇒ D .sinv = tvalid)

The initializer is responsible for making sure the implicitassertionassert ClassInvC
holds on exit. For example, consider classLATheory in Fig. 3. BecauseString pre-
cedesLATheory , the second conjunct of the precondition impliesString .sinv =
tvalid ; therefore, the initializer can meet the precondition ofappendNat . Because of
the first conjunct of the precondition, the assignment toLATheory .version is permit-
ted. ProvidedappendNat returns a non-null value, the implicit assertion at the end of
the initializer body will hold.

Note, by the way, that theLATheory initializer cannot assumeTheory to be t-
valid, sinceTheory does not precedeLATheory . This is different from the initializa-
tion order in Java, where superclasses are initialized before their subclasses. Most cor-
rect programs that require that superclass invariants are established before subclasses
are initialized can be modeled or rewritten to follow Java’sinitialization ordering. The
key idea is to separate out static fields and invariants of thesuperclass into a helper
class, which is imported by both the superclass and the subclasses.

2.5 Summary

We summarize the steps that lead us to our methodology: Classinvariants can state
relations between multiple static fields, and thus the methodology must permit class
invariants to be temporarily violated. To allow calls whilea class invariant is violated
and since such calls may reenter the class, we explicitly represent (bysinv) whether or
not a class invariant might be violated, which allows preconditions to be explicit about
which invariants are assumed to hold. The explicit representation reveals the central
problem of abstraction, which we address by allowing classes to be ordered (by the
validity ordering) and by representing transitive validity of classes along that ordering.
Finally, the validity ordering has an impact on class initialization.

The methodology allows programmers to specify invariants on the state of each
class. The programmer is assured that the invariant of a class C holds wheneverC .sinv

is valid or tvalid . Thus, by requiring that, for example,C .sinv = tvalid holds on en-
try to a method, the implementation of the method can safely rely onC ’s class invariant
to hold on entry. Dependencies between classes are indicated by edges in the validity
ordering, which coupled with our initialization order avoids class initialization errors.

3 Ownership-based class invariants

Simple class invariants refer only to static fields of the enclosing class, but not to in-
stance fields. Preventing class invariants from depending on instance fields is too restric-
tive for many interesting programs. For instance, classService (Fig. 1) uses a global

9

cache, which is implemented by an array and rooted in the static field jobs . Service

imposes restrictions on the elements stored in this array object.
Assume that the class invariant of a classC refers to the instance fieldf of an object

X . The reason the methodology introduced so far cannot handlesuch class invariants is
that a methodm outsideC that gets hold of a reference toX can updateX .f , thereby
potentially violatingC ’s invariant. Since the invariant might not be known tom , it is
not possible to determine modularly that this update has to be guarded by an assertion
that C is mutable. In our example, any method that has a reference tothe Service.jobs

array can break theService invariant by assigning to elements of the array.
In this section, we extend our methodology by the notion ofownership. This ex-

tension allows the invariant of a classC to depend on fields of objectsownedby C

without restricting where these fields are declared. The extended methodology ensures
that a field of an object can be updated only if the object’s owning class is mutable.

3.1 Ownership

Ownership organizes objects into a hierarchy ofcontexts, where the objects in each
context have a common owner (see,e.g., [5, 16]). In this paper, we use a restricted form
of ownership where objects can be owned by a class, but not by other objects. This
restriction allows us to focus on the methodology for class invariants without getting
into details of the corresponding methodology for object invariants. An extension to
ownership among objects is presented in our report [9]. We donot restrict references;
classes and objects may have non-owning references to objects.

Following the encoding in our work on object invariants [10], we represent owner-
ship by a special fieldowner for every object. The value ofowner is a class name. It is
set when an object is created. The allocation statementx := new 〈C 〉T creates a new
object of classT owned by classC . In this paper, we assumeowner to be immutable
after object creation. We described how to handle a mutableowner field for objects
(ownership transfer) in a previous paper [10].

We allow theowner field to be mentioned in class invariants. To specify ownership
relations, we introduce a modifierrep that can be used in the declaration of any static
field. A field declarationstatic rep S g ; in a classC gives rise to the following
implicit class invariant about ownership inC :

C .g 6= null ⇒ C .g .owner = C ;

The invariant of a classC is allowed to refer to fields of objects owned byC . In
our example, therep modifier of the static fieldService.jobs indicates that the object
referenced byService.jobs is owned byService , which allows the class invariant of
Service to refer to the fields (that is, array elements) ofjobs . Accessing array elements
is handled analogously to field access, as if each element were a field.

3.2 Mutability of owned objects

Analogously to the static fieldsinv and following our methodology for objects, each
object type (class or array type)C declares a two-valued fieldinvC that indicates
whether the object invariant declared inC may be assumed to hold. IfX .invC =

10

valid , we say that objectX is valid for C , or justX is valid if the object type is clear
from the context. Conversely, we sayX is mutable forC if X .invC = mutable . An
instance fieldf declared inC can be assigned to only if the instance is mutable forC .
That is, an updateX .f := E is guarded by the preconditionX .invC = mutable .

Consider a classC that owns an objectX . C ’s invariant is allowed to depend on
X .f even if f is declared in another class. Consequently, an update ofX .f may poten-
tially violate C ’s invariant. Our methodology handles this situation by thefollowing
rule: If a classC is valid, then all objects owned byC are valid for their object type
and all supertypes. That is, ifX is mutable forD so thatX .f can be assigned to
(wheref is declared in classD), thenX ’s owner,C , is also mutable, so violations of
C ’s static class invariant are allowed.

This rule is enforced by manipulating theinvD field according to a strict protocol:
invD can be manipulated only by statements analogous in functionality to expose

for classes. However, although exposing and unexposing objects typically is done in
a block-structured way, it does not have to be. In particular, some constructors, like
Client ’s constructor in Fig. 2, unexpose the newly created object without previously
exposing it. Therefore, instead of anexpose block statement for objects, we use two
separate statements,expose X for D and unexpose X for D , which expose and
unexpose an objectX for a classD , respectively. When applied to a valid objectX and
for a classD , expose X for D checks thatX ’s owner is mutable and setsX .invD to
mutable . unexpose X for D checks thatX is mutable and setsX .invD to valid .
When an object of classC is created, itsinvD fields start off asmutable for all super-
classesD of C .

The cache method of classService in Fig. 1 illustrates how ownership-based
invariants are handled. It requiresService to be t-valid. To satisfy the precondition
Service.jobs.invClient[] = mutable of the updateService.jobs[free] := c , Service

has to be mutable. Theexpose statement setsService.sinv to mutable , which makes
the jobs array exposable and allows updates to temporarily violateService ’s class in-
variant. In our example, the invariant is not actually violated by the update, because we
insertc only if it is not already contained in the array.

Because of lack of space and to focus on static class invariants, we do not present in
this paper the complete object-centered methodology that allows a program to ensure
its field updates apply only to mutable objects, but see [1, 10].

4 Global class invariants

In this section, we explain how our methodology allows classinvariants to quantify over
all valid objects of the enclosing class.

4.1 Quantification over valid objects

A class invariant of a classC is allowed to universally quantify over allC objects that
are valid forC and to refer to those instance fields of these objects that aredeclared in
C . For example,Client ’s third invariant (Fig. 2) quantifies over validClient objects
and refers to theid field declared inClient . We only let a class invariant quantify over

11

valid objects, because during the time when an object is being updated, which occurs
when the object is mutable, the object cannot be expected to satisfy all invariants.

A global class invariant of a classC is potentially violated by unexposingC ob-
jects for C , since making aC object valid forC enlarges the range of the quantifi-
cation in the invariant. Therefore, additional requirements for unexpose are needed
to guarantee that a classC is mutable whenever one of its objects is unexposed for
C . Note that updates of instance fields do not require additional proof obligations for
global class invariants, because only fields of mutable objects can be updated.

For soundness, it is sufficient to guard the statementunexpose X for C by a
preconditionC .sinv = mutable . However, stronger requirements are necessary to
achieve a practical solution, as we discuss next.

4.2 Practicality

Assume that classClient has a methodClient Foo() and that we want to verify the
statementexpose Client { v := X .Foo(); } , whereX is a valid Client object. To
prove thatClient ’s class invariant holds at the end of theexpose block, we have to
show in particular that the call toFoo does not create new validClient objects that
violate the global class invariants. For instance, the following implementation ofFoo
does violateClient ’s third invariant:

Client Foo()
requires Client .sinv = mutable ∧ this.invClient = valid ;
{

result := new 〈Object〉Client() ; result.id := this.id ;
unexpose result for Client ;
}

Since allocation and initialization of objects is typically considered an implementation
detail [8, 11],Foo ’s specification will in general be too weak to determine whetherFoo

creates valid objects, which makes it impossible to verify the expose block above.
To be able to reason about the effects of a method call on a global class invari-

ant, we impose a syntactic requirement that prevents methods and constructors from
unexposing objects forC , if called in a state in which classC is mutable: each
unexpose X for C operation has to be textually enclosed byC ’s static initializer or
by anexpose C block. This syntactic requirement guarantees thatC .sinv = mutable

holds before making an object valid forC . That is, we do not have to impose this con-
dition as a precondition for unexposingC objects explicitly.

This syntactic requirement prevents a method called from within an expose C

block from unexposing objects forC , in particular, newly created objects. This prop-
erty gives rise to an implicit postcondition that allows oneto verify the expose C

block. In our example above,Foo does not meet the requirement because it unexposes
result outside anexpose Client block.

5 Technical treatment

In this section, we define precisely which invariants are admissible, explain the proof
obligations that are necessary to maintain the program invariants J1 and J2 (Sec. 2.2),
and present a soundness theorem.

12

5.1 Admissible invariants

A class invariant of classC can refer to static fields ofC , instance fields of objects
owned byC , and, by quantification, instance fields of validC objects:

Definition 1 (Admissible class invariant).A class invariant declaration in classC is
admissible if its subexpressions typecheck according to the rules of the programming
language and if each of its field-access expressions has one of the following forms:

1. C .g .
2. C .g .f whereC .g is declaredrep .
3. o.f where f is declared inC and o is bound by a quantification of the form

(∀C o

 o.invC = valid • . . . o.f . . .)

The static fieldg must not be the predefined fieldsinv , and the instance fieldf must
be different from allinvT fields.

Simple class invariants contain only access expressions ofCase 1. Access expres-
sions of Case 2 allow ownership-based class invariants to depend on fields of objects
owned byC . Invariants that contain access expressions of Case 3 are global.

5.2 Proof rules

The methodology presented in this paper does not assume a particular programming
logic to reason about programs and specifications. Special rules are required only for
class initialization and those statements that deal with the sinv and invT fields (static
and instance field update, classexpose , and objectexpose andunexpose) as well
asowner (object creation). In this subsection, we present these rules and explain why
they are necessary to maintain the program invariants J1 andJ2 presented in Sec. 2.2.

The proof rules are formulated in terms of assertions, whichcause the program ex-
ecution to abort if evaluated tofalse . Proving the correctness of a program therefore
amounts to statically verifying that the program does not abort due to a violated asser-
tion. To do that, each assertion is turned into a proof obligation. One can then use an
appropriate program logic to show that the assertions hold (cf. [18, 7]). All of the proof
obligations can be generated and shown modularly. For the proof, one may assume that
the program invariants J1 and J2 hold.

Class loading and initialization.The program invariants J1 and J2 are first established
during class loading and initialization. Program execution starts with a class loading
phase, followed by a class initialization phase. In the loading phase, each class of
the program is loaded and its static fields are set to zero-equivalent values. The zero-
equivalent value forsinv is mutable . This guarantees that all classes are mutable after
the loading phase, which implies that both J1 and J2 hold.

In the following initialization phase, classes are initialized according to the validity
ordering, that is, a classC is initialized after its predecessors in the validity order-
ing. For each classC , C ’s static initializer is called before settingC .sinv to tvalid .
SinceC .sinv is set tomutable by the loading phase and sinceC ’s predecessors in the
validity ordering are initialized beforeC , the precondition ofC ’s static initializer is
established (see Sec. 2.4). In particular, all predecessors of C are t-valid. The postcon-
dition of this initializer, ClassInvC , guarantees that J2 is preserved whenC .sinv is

13

set totvalid . SinceC ’s predecessors are tvalid, J1 is preserved as well. Consequently,
both J1 and J2 hold after the initialization phase.

The static initializer of a classD can create valid objects only forD ’s prede-
cessors in the validity ordering. Consider a classC that isnot a predecessor ofD .
D ’s static initializer cannot exposeC since C is mutable, that is, the precondition
of expose C is not satisfied. Therefore, it cannot unexpose an object forC since
the unexpose X for C statements can occur only withinexpose C blocks and
C ’s static initializer. ConsequentlyC ’s static initializer may assume the precondition
(∀C X • X .invC = mutable) , which is important to prove that it establishesC ’s
global class invariants.

Static field update.Updating a static field cannot affect program invariant J1. For J2,
we have to ensure that a static field update does not break the invariant of a valid or
t-valid classC . The only static fieldsC ’s class invariant can refer to are static fields
of C (Def. 1). Consequently, we can maintain J2 by requiringC to be mutable, which
is enforced by guarding each static field update of the formC .f := E by the check
assert C .sinv = mutable .

Instance field update.Program invariant J1 is trivially preserved. An updateX .f := E

potentially breaks the class invariant of a classC if (1) X is owned byC (ownership-
based invariants) or (2)f is declared inC and X is valid for C (global invariants).
The checkassert X .invC = mutable guarantees that (1)X ’s owner class is mutable
(see proof rule forexpose) and (2)X is not valid forC .

Class expose.As explained in Sec. 2.1,expose C { s } essentially setsC .sinv to
mutable , executess , and restores the original value ofC .sinv . To prevent reentrant
expose blocks, an assertion checks thatC is not already mutable before the statement.
Program invariant J2 is maintained by asserting thatC ’s class invariant holds before
C .sinv is restored.

Maintaining J1 is a bit more involved. ChangingC .sinv from tvalid to mutable

implies thatC ’s t-valid successors in the validity ordering are no longert-valid, but just
valid. Therefore, for each classD that transitively succeedsC (that is, C ← D), if
D .sinv = tvalid , then theexpose statement temporarily changesD .sinv to valid .
At the end of theexpose block, the initial values of theD .sinv ’s are restored. This
results in the following pseudo code forexpose :

expose C { s } ≡
assert C .sinv 6= mutable ;
let Q = {D

>>> C ← D ∧ D .sinv = tvalid } ;
foreach D ∈ Q { D .sinv := valid ; }
C .sinv := mutable ;
s ;
assert ClassInvC ;
foreach D ∈ {C} ∪Q { D .sinv := old(D .sinv) ; }

Object expose.expose andunexpose for objects do not modifysinv of any class,
so J1 is preserved. Exposing an object cannot break a class invariant.expose X for C

requiresX ’s owner to be mutable before settingX .invC to mutable to maintain
the property that an object can be mutable only if its owner class is mutable. Since

14

unexpose X for C modifies only the fieldX .invC , the only class invariant that can
be potentially broken by this operation is a global class invariant in classC . As dis-
cussed in Sec. 4.2, a syntactic requirement guarantees thatC is mutable at the time
whenX is unexposed forC , so no extra precondition is required. The Boogie method-
ology for object invariants requiresX ’s object invariant to hold beforeX is unexposed.
We omit this assertion since we do not consider object invariants in this paper. In sum-
mary, we have the following pseudo code forexpose andunexpose :

expose X for C ≡ unexpose X for C ≡
assert X 6= null ∧ X .invC = valid ; assert X 6= null ∧ X .invC = mutable ;
assert X .owner .sinv = mutable ;
X .invC := mutable X .invC := valid

Object creation. Again, program invariant J1 is trivially preserved. As explained in
Sec. 3.2, the created object has itsinvT fields set tomutable and its owner field
initialized with the classC given in the creation expression. These assignments have
no impact on class invariants with field-access expressionsof Forms 1 (no static field
involved), 2 (the new object is not referenced from a static field), or 3 (the new object
is not valid for its class) of Def. 1. Since the new object is mutable, its owner class,C ,
has to be mutable as well, which is checked by the precondition C .sinv = mutable .

5.3 Soundness

A programP is well-formed ifP is syntactically correct and type correct,P’s invariants
are admissible (Def. 1), and the syntactic requirement forunexpose (Sec. 4.2) is met.

Theorem 1. In each reachable state of a well-formed program, J1 and J2 hold.

For a lack of space, we do not present the soundness proof in this paper. We have
explained the arguments of the soundness proof along with the presentation of the proof
rules. The complete proof is found in our technical report [9].

6 Related Work

Classical proof systems for objects and invariants such as Meyer’s work [15] or the
approach of Liskov, Wing, and Guttag [13, 12] do not considerstatic fields or quantifi-
cation over objects.

JML [8, 4] provides both object and class invariants (calledinstance and static in-
variants, respectively). Object invariants may refer to static fields, but class invariants
cannot refer to the states of objects. In contrast to our work, JML applies a visible state
semantics, where invariants have to hold in the pre- and post-states of all non-helper
methods. It does not provide a sound modular proof system.

The use of static fields is sometimes considered bad programming style that can be
avoided by using instance fields of a singleton object,u . Simple and ownership-based
class invariants can then be expressed as an object invariant of u . However, such a
programming model requires that all objects that need access to the shared state ofu
have references tou and can expose and modifyu . Therefore, reasoning about the

15

shared object, in particular, about the validity ofu , is tedious. It is generally based on
the fact thatu is a singleton, which is difficult to express by standard object invariants.

Eiffel’s once methods[14] provide a better abstraction mechanism for shared ob-
jects. A once method computes its result when it is called thefirst time. This result
is cached and then returned upon succeeding calls. Therefore, each object can access
shared data (in particular, a reference to the singletonu) through a once method instead
of storing the reference in a field. Validity ofu can then be guaranteed by the postcon-
dition of the once method returning the reference. However,sinceu may not be valid
in all execution states in which the method might be called, an additional flag is needed
for each once method, indicating whether the object returned by the method is valid.
The methodology required to maintain such a flag is identicalto our methodology for
class invariants and thesinv field.

The Boogie methodology for object invariants [1, 3, 10] doesnot admit class in-
variants. However, visibility-based object invariants [3, 10] can be generalized to allow
object invariants to mention static fields. For instance,Client ’s second class invariant
can also be expressed by the object invariantthis.id < Client .ids . With such object
invariants, a static field update potentially violates the object invariant of many objects,
all of which would have to be exposed before the update. Barnett and Naumann [3] show
thatupdate guardscan be used to exploit monotonicity properties to avoid exposing all
objects possibly affected by a field update. An update guard specifies a condition under
which a field update is guaranteed not to break an invariant. For instance, increasing the
value ofClient .ids cannot violate the above invariant for anyClient object.

Like our work, Pieriket al. [17] extend the Boogie methodology to class invari-
ants. They handle simple class invariants in the same way as we do. Ownership-based
class invariants are not supported. Therefore, class invariants can refer to instance fields
only in a limited way. Invariants are allowed to quantify over all objects of a class, for
example, to specify that a singleton object is the only instance of a class. Invariants
that quantify over all objects of a class rather than over allvalid objects can be broken
by object creation. Therefore, one has to expose a class before creating an instance of
it, an obligation that unfortunately falls on the client of aclass. The client is then re-
sponsible for reestablishing the class invariant. Alternatively, a client can prove that it
establishes acreation guard, which specifies a condition under which an object creation
is guaranteed not to break an invariant. However, a creationguard cannot refer to the
newly allocated object, so it is typicallyfalse . Pierik et al. do not address either the
abstraction problem for class invariants or the initialization-order problem for classes.

Müller’s thesis [16] also uses a visible state semantics for object invariants. It sup-
ports invariants over so-called abstract fields in a sound way, which we consider future
work for the methodology presented here.

Leino and Nelson [11] developed a modular treatment of object invariants over ab-
stract fields, which was used in the Extended Static Checker for Modula-3 [6]. Leino
and Nelson treat some aspects of class invariants, but neither Müller’s nor Leino and
Nelson’s work fully supports class invariants.

16

7 Conclusions

We have presented a verification methodology for class invariants, which allows class
invariants to specify properties of static fields, of objectstructures rooted in static fields,
and of all valid objects of a class. The methodology is sound and covers all typical ap-
plications of static fields we have found in programs. This work is part of a larger effort
to advance programming theory to catch up with the current programming practice.

As future work, we plan to build on our previous work on visibility-based invariants
[10] to support less common class invariants that refer to static fields and that quantify
over objects of other classes. Moreover, we plan to implement our methodology as
part of the .NET program checker Boogie, which is part of the Spec# programming
system [2].

References

1. M. Barnett, R. DeLine, M. F̈ahndrich, K. R. M. Leino, and W. Schulte. Verification of object-
oriented programs with invariants.Journal of Object Technology, 3(6), 2004.www.jot.fm.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS 2004, volume 3362 ofLNCS, pages 49–69. Springer-Verlag, 2004.

3. M. Barnett and D. A. Naumann. Friends need a bit more: Maintaining invariants over shared
state. InMPC 2004, volume 3125 ofLNCS, pages 54–84. Springer-Verlag, July 2004.

4. L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll. An overview of JML tools and applications.Software Tools for Technology Transfer
(STTT), 2004.

5. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexiblealias protection. In
OOPSLA ’98, pages 48–64. ACM, October 1998.

6. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking. Research
Report 159, Compaq SRC, December 1998.

7. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. InPLDI 2002, pages 234–245. ACM, 2002.

8. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report 98-06-rev27, Iowa State University, 2003.

9. K. R. M. Leino and P. M̈uller. Modular verification of global module invariants in object-
oriented programs. Technical Report 459, ETH Zürich, 2004.

10. K. R. M. Leino and P. M̈uller. Object invariants in dynamic contexts. InECOOP 2004,
volume 3086 ofLNCS, pages 491–516. Springer-Verlag, 2004.

11. K. R. M. Leino and G. Nelson. Data abstraction and information hiding.TOPLAS,
24(5):491–553, September 2002.

12. B. Liskov and J. Guttag.Abstraction and Specification in Program Development. MIT
Electrical Engineering and Computer Science Series. MIT Press, 1986.

13. B. Liskov and J. M. Wing. A behavioral notion of subtyping.TOPLAS, 16(6):1811–1841,
1994.

14. B. Meyer.Eiffel: The Language. Prentice Hall, 1992.
15. B. Meyer.Object-Oriented Software Construction. Prentice Hall, 1997.
16. P. M̈uller. Modular Specification and Verification of Object-Oriented Programs, volume

2262 ofLNCS. Springer-Verlag, 2002. PhD thesis.
17. C. Pierik, D. Clarke, and F. S. de Boer. Controlling object allocation using creation guards.

In Formal Methods (FM 2005), LNCS. Springer-Verlag, 2005. In this volume.
18. A. Poetzsch-Heffter and P. M̈uller. A programming logic for sequential Java. InESOP 1999,

volume 1576 ofLNCS, pages 162–176. Springer-Verlag, 1999.

