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ABSTRACT
The correctness of object-oriented programs relies on object invari-
ants. A system for verifying such programs requires a systematic
method for coping with object invariants that can be violated tem-
porarily. This paper describes a sound methodology for flexibly
changing data locally in object structures, supporting programming
patterns that occur frequently in practice. In more detail, to handle
subclasses, previous approaches have been geared toward programs
that update the fields of an object only in overridable virtual meth-
ods of the object. The enhanced methodology in this paper handles
field updates in a much more flexible way. The flexibility can be
applied to a field in the common case where the field is not men-
tioned in subclass invariants.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Class invariants; Programming by contract; Assertion checkers

General Terms
Languages, Verification

Keywords
Specification, Verification, Object-oriented programming, Subclass-
ing, Tool support, Automation

0. INTRODUCTION
Computer programs would not work if their variables always

could take on arbitrary values. They work because programmers
design their implementation to confine the values to meet certain
constraints. For example, a binary-tree implementation might be
designed to keep the data values in a sorted infix order. In object-
oriented programming, the data consistency is described by object
invariants. Object invariants do not always hold in a program; there
are intermediate states during operations when the invariants are
temporarily violated. When verifying programs, it is important to
be precise about when the object invariants are expected to hold. In
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class Car {
int speed ;
invariant 0 6 speed ;
. . .
}
class LuxuryCar extends Car {

int cruiseControlSetting ;
invariant cruiseControlSetting = −1
∨ speed = cruiseControlSetting ;

. . .
}

Figure 0: Fragments of two example classes. Class Car uses
the invariant keyword to specify an object invariant that
constrains its speed field to be non-negative. Car ’s subclass
LuxuryCar declares an additional field, cruiseControlSetting ,
and declares an invariant that specifies a relation between it
and speed .

this paper, we describe a methodology for specifying and verifying
object-oriented programs that takes advantage of the fact that many
object invariants are violated only within a small scope.

Consider the example in Fig. 0 where class Car introduces a
field speed and declares with an object invariant that speed is to
be non-negative. A program verifier must check that updates of
speed maintain the invariant.

We are interested in modular verification, where one verifies a
class without having the program text of either the clients or the
subclasses. Modular verification enables the verification of pro-
gram libraries and makes verification scalable.

To illustrate the interplay between modular verification, object
invariants, and subclassing, consider the example in Fig. 0. Sub-
class LuxuryCar declares an invariant that mentions the inher-
ited superclass field speed , thus further constraining speed for
LuxuryCar objects. If a program updates the speed field of a
LuxuryCar object, then the verifier must check that the (Car
invariant and) LuxuryCar invariant is maintained. Because of
polymorphic subtyping, the static type of the LuxuryCar object
being updated might be just Car . Without the program text for
LuxuryCar , a modular verification of Car must instead rely on
that the unknown parts of the program follow some systematic
rules.

The Boogie methodology [1, 13, 3, 14, 9, 10, 16, 11, 15] provides
such systematic rules for modular verification. To achieve modular
verification, the methodology needs to restrict how fields are up-
dated (we give details in Sections 1 and 2). Because the Boogie
methodology allows invariants to mention fields declared in super-



classes, its restrictions on field updates in effect come down to this:
if a field f is declared in a non-sealed class (that is, in a class that
admits further subclasses), then updates of f must be performed
by a virtual method.

In our experience with Spec# [2], which implements the Boogie
methodology, we have found that a large number of field updates
do not occur in virtual methods. The Spec# static program verifier
(called Boogie [0]) reports errors for such updates, thus revealing
places where the code has not been designed to cater for subclass
extensions. Verifying the programs requires introducing virtual
methods or declaring classes to be sealed. However, in many cases,
these remedies may be heavy-handed or inappropriate, because the
fields being updated are not intended to be further constrained by
subclass invariants. An extreme, but common, example of this oc-
curs with private fields, which cannot be mentioned outside the
declaring class. In short, the fact that the Boogie methodology al-
lows invariants to mention superclass fields comes at a high price.

We propose a more liberal set of rules for updating fields. These
rules apply when invariants do not mention fields declared in su-
perclasses. More precisely, the rules are more liberal for updates
of fields that are known not to be mentioned in any subclass invari-
ant, for instance if the fields are declared to be private. For fields
that may be mentioned in subclass invariants, we retain the clas-
sic rules of the Boogie methodology (with one exception, which
regards dereferencing fields of fields, see Section 6).

Our methodology applies to modern object-oriented languages,
including Java and C#. We have implemented the methodology in
Spec# and its static program verifier, Boogie. We have found that
this makes it much easier to write verifiable programs and to verify
existing programs. By making the new rules the default, programs
can pay the price of the classic Boogie methodology only for those
fields whose use is intended to be refined by subclasses.

We begin in Section 1 by introducing the details of our liberal
rule set. In Section 2, we incorporate the classic rules in a new
guise. Then, in Section 3, we give some examples that show what
is gained by our enhanced methodology. We explain our imple-
mentation encoding in Section 4 and reflect on our experience with
the enhanced methodology in Section 5. We show how to incorpo-
rate the classic rules for ownership, which allows aggregate objects
whose invariants can span several objects (Section 6), and wrap up
the paper with related work (Section 7) and conclusions (Section 8).

1. LOCAL FIELDS AND INVARIANTS
We consider a Java-like object-oriented language with single-

inheritance classes. The class hierarchy is rooted at a built-in class
called object . We think of the fields of an object as being par-
titioned into class frames, with one class frame for every super-
class of its allocated type. For example, an object of allocated type
LuxuryCar in Fig. 0 has three class frames: object , Car , and
LuxuryCar .

In this section, we restrict our attention to object invariants that
only mention fields declared in the enclosing class. We call ob-
ject invariants that adhere to that restriction admissible. The Car
invariant in Fig. 0 is admissible, because speed is declared in the
class Car , but the LuxuryCar invariant is not admissible, be-
cause speed is declared in LuxuryCar ’s superclass.

To keep track of whether or not object invariants hold, we follow
the Boogie methodology and introduce two states for every class
frame of an object, mutable and valid. If a class frame T of an
object o is mutable, then the fields of o declared in class T are
allowed to be updated and the invariant declared in T may be vi-
olated. If the class frame is valid, then the invariant holds and the
fields are not allowed to be updated.

class Car {
int speed ;
int windResistance;
invariant 0 6 speed
∧ windResistance = K ∗ speed ∗ speed ;

void SetSpeed(int kmph) {
expose (this at Car) {

speed = kmph;
windResistance = K ∗ speed ∗ speed ;
}
}
}

Figure 1: An example class with an invariant that constrains
the value of windResistance to be proportional to the square
of speed (where K is some constant whose definition we omit).
The expose statement marks a block of code that updates the
fields and eventually re-establishes the invariant.

We encode the two states by adding a boolean field valid to
every class frame. For an object o and a class frame T , we
write (o, T ).valid to refer to this field. For convenience, we write
(o, T ).mutable as a synonym for ¬(o, T ).valid . When all class
frames of an object are valid, we say that the object is consistent.

Next, we introduce rules that in every program state maintain the
condition

( ∀ o, T • (o, T ).valid ⇒ InvT (o) ) (0)

where o ranges over non-null, allocated objects and T ranges over
class names, and where we write InvT (o) to stand for the invariant
of o declared in class T . We call a condition that holds in every
program state a program invariant.

To change the value of valid , we follow the Boogie methodol-
ogy and use an expose statement:

expose (o at T ) {S}

changes (o, T ).valid from true to false , then executes state-
ment S , and finally resets (o, T ).valid to true . Before resetting
valid , the expose statement checks that InvT (o) holds. Typi-
cally, T is the static type of o , but in this paper we show it explic-
itly.

The example in Fig. 1 shows the Car class with a method that
updates speed . The method uses an expose statement to obtain
the permission to modify the two fields. Note that the code might
violate the invariant in the intermediate state between the two as-
signments. The expose statement checks that the object invariant
holds again at the closing curly brace.

Formal Encoding.
To describe the various state transitions in detail, we represent

the “open curly brace” and “close curly brace” of the statement
expose (o at T ) {S} with the operations unpack o from T
and pack o as T , respectively. The meaning of the unpack and
pack operations are as follows:

unpack o from T ≡
assert o 6= null ∧ (o, T ).valid ;
(o, T ).valid := false



pack o as T ≡
assert o 6= null ∧ (o, T ).mutable;
assert InvT (o);
(o, T ).valid := true

where we use assert statements to denote conditions that are to be
checked. It is an unrecoverable error if an asserted condition does
not hold. We use the symbol := to distinguish the assignments
above from ones contained in the source program.

When an object is allocated, all of its class frames start off in
the mutable state. The end of a constructor in a class T implicitly
packs the object being constructed for T :

pack this as T

where this denotes the object being constructed.
Finally, to enforce the rule that only fields of mutable class frames

can be updated, we add a precondition to field updates:

o.f = E ≡
assert o 6= null ∧ (o, T ).mutable;
o.f := E

where f is a field declared in a class T .
It is instructive at this time to give a proof sketch that these rules

do achieve program invariant (0). We look at four state changing
operations: allocation, unpack, pack, and field update.

• The object-allocation operation increases the range of o in
(0). Since a newly allocated object starts off with all class
frames in the mutable state, program invariant (0) is main-
tained.

• The unpack operation changes (o, T ).valid to false , which
falsifies the antecedent of (0). Hence, program invariant (0)
is maintained.

• The pack operation changes (o, T ).valid to true , but does
so only if InvT (o) holds (that is, the pack operation asserts
that InvT (o) holds). Hence, program invariant (0) is main-
tained.

• From our definition of admissible invariant, the only object
invariant that can be violated by a field update o.f = E is
InvT (o) where T is the class that declares f . But since the
update proceeds only if (o, T ).mutable , program invariant
(0) is maintained.

Note that the definition of admissible invariant is crucial to the
argument above. Under the rules we presented in this section, con-
dition (0) would not hold if, say, an object invariant could men-
tion fields declared in superclasses or fields of fields. For exam-
ple, since updates of c.speed only require (c, Car).mutable , not
(c, LuxuryCar).mutable , program invariant (0) would not be guar-
anteed if the LuxuryCar invariant in Fig. 0 would be admissible.
In Sections 2 and 6, we accommodate such invariants, respectively,
by amending the definition of admissible invariant; the amended
definitions will come at the price of more complicated rules.

Writing Method Specifications.
Program invariant (0) lets us conclude that the T invariant for

an object o holds from knowing that the T frame of o is valid.
Let us see what that means for program verification and method
specifications.

Consider the TicketManager class in Fig. 2. The following

class TicketManager {
int[ ] tickets;
int n;
invariant tickets 6= null ∧ 0 6 n 6 length(tickets);

TicketManager()
ensures (this, TicketManager).valid ;
{

tickets = new int[0];
n = 0;
}

void AddTicket(int t)
requires (this, TicketManager).valid ;
{ . . . }

int DispenseTicket()
requires (this, TicketManager).valid ;
{

int t = −1;
if (n < length(tickets)) {

t = tickets[n];
expose (this at TicketManager) { n = n + 1; }
}
return t ;
}
}

Figure 2: An example class showing a ticket manager that
keeps a queue of service tickets, represented by integers. The
first n tickets of the queue have been serviced. Tickets can be
added to the queue using the AddTicket method, whose im-
plementation we have omitted. The DispenseTicket method
returns an unserviced ticket from the queue, if any, or -1 other-
wise. The correctness of the array dereference tickets[n] relies
on the specified object invariant. The requires and ensures
keywords introduce pre- and postconditions, respectively, and
the fixed length of an array is retrieved by the function length .

code fragment shows how this class can be used:

TicketManager tm = new TicketManager();
tm.AddTicket(32);
tm.AddTicket(27);
int t = tm.DispenseTicket();

Note that this code does not need to know the TicketManager
invariant in detail: to prove the preconditions of AddTicket and
DispenseTicket , it suffices to know that the constructor returns
with tm in the valid state (and that the other method calls do not
change valid , a condition we ignore in this paper).

Let us also consider the verification of the implementation of
TicketManager .

Since newly allocated objects start off with all class frames mu-
table, we can assume (this, TicketManager).mutable on entry
to the constructor, which meets the preconditions of the two field
updates. An implicit pack this as TicketManager operation
ends the constructor. Since this is mutable at that time and the
TicketManager invariant has been established, the precondition
of the pack operation is met and (this, TicketManager).valid
is set to true , thus establishing the declared postcondition of the
TicketManager constructor.



By the precondition of method DispenseTicket and program
invariant (0), we deduce that the TicketManager invariant holds
for this on entry to DispenseTicket . That, and the guard of the if
statement, is what we need to prove that the array access tickets[n]
does not dereference null or index the array outside its bounds. And
that is also what we need to prove the preconditions of the unpack
and pack operations induced by the expose statement.

As this example illustrates, the valid field serves not only as a
bookkeeping device that keeps track of whether an object invariant
can be violated, but also as an abstraction of the invariant itself,
which is useful when writing specifications in the face of informa-
tion hiding.

In practice, pre- and postconditions like those in Fig. 2 tend to
be used in a highly stylized fashion. It is therefore possible to use
good defaults when applying the methodology in practice, reducing
clutter in the program text.

2. ADDITIVE FIELDS AND INVARIANTS
In this section, we amend the definition of admissible invariant

to also allow object invariants that mention fields declared in su-
perclasses (but they cannot mention the field valid ). Thus, what
we show in this section (and Section 6) make up the classic Boo-
gie methodology [1]. However, we combine the classic Boogie
methodology with the independent frames of the previous section.

We introduce a new field modifier, additive , which distin-
guishes what we shall call additive fields from ordinary fields. Only
additive fields are allowed to be mentioned in the invariants of sub-
classes. The name “additive” indicates that subclasses are allowed
to add constraints that guide the use of the field.

An update of an additive field f might violate not just the in-
variant in the class that declares f , but also the invariants in the
subclasses thereof. Therefore, we define the semantics of field up-
date for an additive field f declared in a class T to have a stronger
precondition:

o.f = E ≡
assert o 6= null;
assert (∀U • type(o) <: U <: T ⇒ (o, U ).mutable );
o.f := E

where type(o) denotes the allocated type of o and <: denotes the
reflexive, transitive subtype relation.

Example.
Figure 3 shows a variation of the example in Fig. 2 where we

have changed n to be an additive field, made the constructor post-
condition more elaborate, and changed DispenseTicket to be a
virtual method. In Fig. 4, we show a subclass of TicketManager
that constrains n further by keeping fewer than 5 serviced tick-
ets in the queue. It provides its own implementation of the virtual
method DispenseTicket .

Note that in order to be allowed to modify tickets and n , the
PruningTM implementation of DispenseTicket must expose the
object for the class frame that declares these fields, namely Ticket-
Manager . At the end of that expose statement, the Ticket-
Manager invariant is checked. The PruningTM invariant is
checked at the end of the statement that exposes the object at Prun-
ingTM , namely at the end of the method. Inside the body of that
expose statement, which includes the call to the superclass im-
plementation of DispenseTicket , the PruningTM invariant is
allowed to be violated.

As another example of a typical use of additive fields, if the sub-
class invariant adds a constraint between the inherited additive field

class TicketManager {
int[ ] tickets;
additive int n;
invariant tickets 6= null ∧ 0 6 n 6 length(tickets);

TicketManager()
ensures n = 0 ∧ (∀U • TicketManager <: U
⇒ (this, U ).valid );

{
tickets = new int[0];
n = 0;
}
. . .
virtual int DispenseTicket()

requires . . . ; // see the prose
{

int t = −1;
if (n < length(tickets)) {

t = tickets[n];
expose (this at TicketManager) { n = n + 1; }
}
return t ;
}
}

Figure 3: A revised version of the TicketManager class from
Fig. 2. Here, field n is declared to be additive, which al-
lows subclasses to further constrain n . The modifier virtual
declares that the implementation of method DispenseTicket
varies with the allocated type of the object. An invocation of a
virtual method dynamically dispatches to the implementation
given in the allocated type of the object.

and a field declared in the subclass, as in:

class X extends TicketManager {
int p;
invariant n 6 p;
. . .
}

then a method override in the subclass may call the superclass im-
plementation to change n and then only adjust p . In such cases,
the override would only need one expose statement, exposing the
object for X but not its superclass.

Method Specifications Revisited.
Let us consider the specification and verification of the classes in

Figs. 3 and 4, TicketManager and PruningTM . The construc-
tor of TicketManager starts with an implicit call to the object
constructor, after which it gets to assume (this,object).valid .
Since the field initializations establish the TicketManager invari-
ant, the constructor meets the precondition of the implicit pack op-
eration, and thus establishes the constructor’s declared postcondi-
tion.

Similarly, the PruningTM constructor starts with an implicit
call to the TicketManager constructor, whose postcondition it
then gets to assume. Since n = 0 satisfies the PruningTM in-
variant, the precondition of the implicit pack operation is met, and
thus the constructor postcondition is established.

The precondition of the DispenseTicket method is trickier. To
meet the preconditions of the unpack operation and field update in



class PruningTM extends TicketManager {
invariant n < 5;

PruningTM ()
ensures ( ∀U • PruningTM <: U ⇒ (this, U ).valid );
{ }
. . .

override int DispenseTicket()
{

expose (this at PruningTM ) {
int t = base.DispenseTicket();
if (5 6 n) {

int[ ] a = new int[length(tickets)− n];
a[0 : length(a)] = tickets[n : length(tickets)];
expose (this at TicketManager) {

tickets = a; n = 0;
}
}
return t ;
}
}
}

Figure 4: A subclass of the Fig. 3 class TicketManager . Since
n is declared in superclass TicketManager to be additive, class
PruningTM is allowed to declare an invariant that further
constrains n . The keyword override is used to provide a dif-
ferent implementation of the virtual method declared in a su-
perclass. The keyword base is used by a method override to
invoke the implementation of the method declared in the super-
class. The DispenseTicket override uses an array subscript of
the form [M : N ] to indicate a sequence of indices j such that
M 6 j < N .

the TicketManager implementation of this method, we need the
precondition:

(this, TicketManager).valid ∧
( ∀U • type(this) <: U <: 6= TicketManager
⇒ (this, U ).mutable )

where we use <: 6= to denote the irreflexive, transitive subtype rela-
tion. That is, this needs to be valid for TicketManager and mu-
table for all proper-subclass frames. However, the PruningTM
implementation of the method needs the precondition:

(this, TicketManager).valid ∧ (this, PruningTM ).valid ∧
(∀U • type(this) <: U <: 6= PruningTM
⇒ (this, U ).mutable )

In conclusion, we would like to use the following polymorphic pre-
condition to specify the virtual method DispenseTicket :

( ∀U • ? <: U ⇒ (this, U ).valid ) ∧
( ∀U • type(this) <: U <: 6= ? ⇒ (this, U ).mutable )

(1)
where ? stands for the class where the implementation is given.

This leads to the problem of what precondition to check at calls
to DispenseTicket . Since a call of a virtual method dynamically
dispatches to the implementation given in the allocated type of the
target object, the precondition to check at a dynamically dispatched
call site is the polymorphic precondition with type(this) for ? .

class Counter {
int n;
invariant 0 6 n;

void Inc()
requires (∀U • type(this) <: U ⇒ (this, U ).valid );
{

expose (this at Counter) { n = n + 1; }
}
}

Figure 5: A simple Counter class with a non-virtual method to
increment the counter. The class verifies under our enhanced
methodology, but not under the classic Boogie methodology.

This amounts to the precondition:

(∀U • type(this) <: U ⇒ (this, U ).valid ) (2)

which says that all class frames of the target object are valid, that
is, that the target object is consistent.

We introduce the keyword additive as an optional modifier
for virtual methods. If supplied, we refer to the virtual method
as an additive method and automatically supply the polymorphic
precondition (1).

The soundness of this polymorphic specification approach as-
sumes that every class provides an implementation for each of its
inherited additive methods. As a programmer convenience, if no
explicit override is given, the compiler supplies one automatically,
in the form of a base call enclosed in an expose statement.

By marking method DispenseTicket in Fig. 3 with additive ,
the code in Figs. 3 and 4 verify, as does a caller code fragment like:

TicketManager tm = new PruningTM ();
tm.AddTicket(40);
tm.AddTicket(37);
int t = tm.DispenseTicket();

Note that the static type of tm is a superclass of the allocated type
of the object it is holding. Nevertheless, what is known as a post-
condition to the constructor is:

type(tm) = PruningTM ∧
( ∀U • PruningTM <: U ⇒ (tm, U ).valid )

which implies the precondition (2) of the invocation of the virtual
methods.

In the classic Boogie methodology, which also includes the poly-
morphic precondition (1), all fields and virtual methods were addi-
tive (and thus the word “additive” was never mentioned) [1]. In
what we have presented here, we allow a mix of additive and non-
additive (that is, ordinary) fields and methods.

3. BENEFITS OF NON-ADDITIVE FIELDS
The benefits of additive fields, as in the classic Boogie method-

ology, are clear: subclasses can further constrain the values of ad-
ditive fields and can constrain the subclass fields with respect to the
additive fields. Let us give some examples that show the benefits of
the more liberal rules that come with non-additive fields.

3.0 Field Updates in Non-Virtual Methods
Consider the simple Counter class in Fig. 5. We argue that the

way it is written is the most natural way to specify and implement
its non-virtual Inc method. The precondition says that the object



is consistent, which is the state of the object that typical clients will
see. The fact that this precondition is so general and useful makes
it a good candidate to be a default.

The class verifies under our methodology. (In fact, it would also
verify with the weaker precondition (this, Counter).valid .)

Now, suppose that its field n were additive (as it would be under
the classic Boogie methodology). Then, to verify Inc , the method
would need the precondition:

requires (this, Counter).valid ∧
(∀U • type(this) <: U <: 6= Counter
⇒ (this, U ).mutable );

(3)

This precondition is awkward to establish for a client, especially if
the client does not know the allocated type of the object.

The classic Boogie methodology offers two ways to solve this
problem, both of which we have employed many times when veri-
fying Spec# programs before we implemented our enhanced method-
ology. One solution is to make Inc into a virtual method and use
the polymorphic precondition (1), which for the implementation in
Counter works out to be exactly the needed condition (3). The
classic Boogie methodology was designed with this virtual-method
scenario in mind. But in programming practice, always using vir-
tual methods can seem heavy-handed. The other solution is to de-
clare Counter to be a sealed class, that is, one without further
subclasses. This shies away from the benefits and liabilities of sub-
typing altogether.

In contrast, note how easily the program is specified and written
when n is not additive (Fig. 5).

Before leaving this example, let us mention one other approach
to coping with the additive-field update precondition in a non-virtual
method (an approach discussed and rejected elsewhere [1]). One
can imagine replacing the expose statement in the Inc method
by some new operation that unpacked all of the class frames from
Counter to the allocated type of this . This would establish the
necessary precondition for the update of the additive field n . How-
ever, the analogous operation for packing these frames is problem-
atic for modular verification: only if the subclasses are in scope can
a static verifier check that the invariants they declare hold.

3.1 Methods that Update Fields and Invoke
Other Methods

As we have seen, there are two principal ways to write the pre-
condition of a method: either the monomorphic precondition (2) or
the polymorphic precondition (1). These preconditions are similar
in two ways. First, either precondition boils down to that the target
object of a non-base call must be consistent. Also, either pre-
condition permits base calls: for (2), a base call must be done
outside all expose statements, à la:

base.M (); expose (this at Counter) { . . . }

and for (1), a base call must be enclosed by an expose state-
ment, à la:

expose (this at Counter) { base.M (); . . . }

The difference between (2) and (1) is that (2) permits non-base
method calls whereas (1) permits, inside expose statements, up-
dates of additive fields, but not vice versa. This is a major limitation
of the classic Boogie methodology—methods must be partitioned
into field-modifying methods and method-calling methods [1]. Our
introduction of non-additive fields overcomes this limitation.

Let us illustrate this difference with an example. Consider the
CoffeeTable class in Fig. 6. It has virtual methods for setting

class CoffeeTable {
bool ready ;
void Prepare()

requires ( ∀U • type(this) <: U ⇒ (this, U ).valid );
{

if (¬ready) {
SetTable();
ServeDrink(32, TEA);
ServeDrink(37, ESPRESSO);
expose (this at CoffeeTable) { ready = true; }
}
}
additive virtual SetTable() . . .
additive virtual ServeDrink(int id , int kind) . . .
}

Figure 6: A class whose subclasses can provide a personalized
atmosphere in which to enjoy caffeinated drinks. The precon-
dition of Prepare is discussed in the prose.

the table and serving drinks, affording different CoffeeTable sub-
classes the opportunity to decorate with different tablecloths and to
use specialized baristas for preparing the drinks. These methods
are declared additive, so that their implementations can expose the
object to update additive fields. Method Prepare sets the table and
serves drinks for two, but does so only once.

The precondition of method Prepare must be strong enough to
let it invoke methods SetTable and ServeDrink . Invoking these
methods requires the object to be consistent, which is the precondi-
tion declared for Prepare in Fig. 6. Since ready is a non-additive
field, the enclosing expose statement produces a state that meets
the precondition of the field update.

At the end of this expose statement, the (trivial) CoffeeTable
invariant is checked. Note that the field update does not violate
any subclass invariants, since the definition of admissible invariant
forbids subclass invariants from mentioning the non-additive field
ready . It seems to make sense to let ready be non-additive, be-
cause it is local to the CoffeeTable class and is not intended to be
used in subclass invariants.

In contrast, if ready were an additive field, then it would not
be possible to find a precondition for Prepare that would allow it
both to call other methods (which requires the object to be consis-
tent) and to expose the object to modify the ready field (which,
as we described in the Counter example above, would require a
precondition of the form (3)).

As a final remark about this example, one might want to make
the steps performed by Prepare specific to the CoffeeTable sub-
class. For example, a subclass may set the table for more than two
people. This can be achieved by declaring the Prepare method
virtual, which would also verify under our methodology using the
monomorphic precondition shown in Fig. 6.

4. IMPLEMENTATION ENCODING
We have implemented our enhanced methodology in the Boogie

static program verifier for Spec#. Boogie works by first translating
compiled Spec# programs into the intermediate verification lan-
guage BoogiePL, from which it generates verification conditions
that it sends to an automatic theorem prover [0]. In its translation
into BoogiePL, our implementation introduces some ghost fields
that it uses to keep track of the valid/mutable state of each ob-
ject. However, for performance reasons, we use a different encod-



ing than the one immediately suggested by our presentation in the
previous sections. We now describe the encoding we use.

First, we introduce a notion that every mutable class frame is ei-
ther additively mutable or locally mutable. To change the state of
an object, we use two statements in the Spec# language: additive
expose changes a valid class frame to be additively mutable for
the duration of the body of the statement, and just expose changes
a valid class frame to be locally mutable for the duration of the
body. When an object is allocated, all of its class frames start off
in the additively mutable state, and the end of each constructor im-
plicitly changes the class frame to be valid.

As before, a class frame is changed to the valid state only if the
object invariant declared in that class holds, and hence we maintain
program invariant (0). In addition, by adding an appropriate pre-
condition to the additive expose statement, we ensure that a
class frame is additively mutable only if all of the subclass frames
are additively mutable. Updating an additive field declared in a
class T has the precondition that the T frame of the target ob-
ject be additively mutable, whereas the precondition for updating
a non-additive field is that the frame is either additively or locally
mutable.

Second, we impose another restriction to simplify our encoding,
namely that an object can be further exposed only when it has no lo-
cally mutable class frames. We encode the states of all class frames
by two ghost fields, inv and localinv , whose values denote some
superclass of the object’s allocated type. For any object o and class
frame T , the state of (o, T ) is:

valid if o.inv <: T ∧ o.localinv 6= base(T )
additively mutable if ¬(o.inv <: T )
locally valid if o.localinv = base(T )

(4)
where base(T ) denotes the immediate superclass of T . Since the
root class, object , has no fields that can be directly updated, it
is also convenient to disallow the object class frame from being
exposed. We thus have the following program invariant, for every
object o :

type(o) <: o.inv <: object ∧
(o.localinv = type(o) ∨ o.inv <: 6= o.localinv <: object)

At the time an object o is allocated, o.inv = object ∧
o.localinv = type(o) . We define each of the two expose state-
ments in terms of unpack and pack operations, the additive pack
operation also being implicitly executed at the end of a constructor.

additive unpack o from T ≡
assert o 6= null ∧ o.inv = T ∧ o.localinv = type(o);
o.inv := base(T )

additive pack o as T ≡
assert o 6= null ∧ o.inv = base(T ) ∧ o.localinv = type(o);
assert InvT (o);
o.inv := T

unpack o from T ≡
assert o 6= null ∧ o.inv <: T ∧ o.localinv = type(o);
o.localinv := base(T )

pack o as T ≡
assert o 6= null ∧ o.inv <: T ∧ o.localinv = base(T );
assert InvT (o);
o.localinv := type(o)

The semantics of field update is defined as follows, where f and g
denote an additive and non-additive field, respectively, declared in

Program LOC #expose #additive expose
PrettySx 424 4 0
ProverProcess 918 12 0
Tulip ≈ 2500 33 0

Figure 7: Two verified programs that use subclasses and our
enhanced methodology. For each program, the columns show
the number of lines of code, including Spec# contracts, but
excluding comments and blank lines (except the count for
Tulip); the number of expose statements; and the number
of additive expose statements.

a class T :

o.f = E ≡
assert o 6= null ∧ ¬(o.inv <: T );
o.f := E

o.g = E ≡
assert o 6= null
∧ (o.localinv = base(T ) ∨ ¬(o.inv <: T ));

o.g := E

Alternative Encoding.
With the help of Ralf Sasse, we have experimented with one al-

ternative encoding. The alternative encoding stays closer to our
description in the earlier part of the paper, using the ghost field inv
as above and using a ghost field validFor whose value is a set
of classes, representing those class frames for which the object is
valid. Under this encoding, we do not need the second restriction
that we imposed above. Alas, we found that the alternative encod-
ing degraded theorem-proving performance rather than improving
it as we had hoped.

Run-Time Behavior.
In this paper, we focus on specifications and static verification,

but the checks we prescribe can also be performed dynamically.
Indeed, Spec# performs a subset of these checks at run time. In
particular, the Spec# compiler adds one bit to every class, namely
the boolean valid as described in our previous sections. (The own-
ership system that we describe in Section 6 is not represented at run
time.) Thus, the run-time representation used in Spec# for our en-
hanced methodology is the same as when Spec# supported only the
classic Boogie methodology.

5. EXPERIENCE
We have found our enhanced methodology to be widely applica-

ble in programming practice. Since we implemented it in Boogie—
now more than 12 months ago—we have found that we use non-
additive fields almost exclusively. The enhanced methodology makes
a noticeable difference in the ease with which programs are archi-
tected and specified.

Three programs that are specified and verified with the enhanced
methodology are reported in Fig. 7. PrettySx is a program for
parsing, refactoring, and pretty printing S-expressions, Prover -
Process is the part of Boogie itself that communicates with the un-
derlying theorem provers, and Tulip is an operating-system driver.
All of these programs make use of class hierarchies and subclasses.
The programs make use of expose statements, but never any
additive expose statements, because there are no additive fields.

In PrettySx , a method ReadToken contains both field updates



class LuxuryCar extends Car {
Radio r ;
invariant r 6= null
∧ (100 6 speed ⇒ r .soundBoosterSetting = MAX );

. . .
}

Figure 8: A variation of the LuxuryCar class in Fig. 0. The in-
variant says that for sufficiently high speeds, the radio’s sound
booster is in the highest setting.

(inside an expose statement) and a call to PeekToken , which
also contains field updates. These methods could be used as pub-
lic entry points of the class, but doing so under the classic Boo-
gie methodology would require making the two methods virtual
and putting the body of PeekToken into a worker routine that is
called from it and ReadToken , unlike the current design where
ReadToken calls PeekToken directly.

The restrictions described in Section 4 that we imposed to enable
our current implementation encoding—introducing two flavors of
mutability that are obtained by different statements, and allowing
only one of an object’s class frames to be locally mutable at any
one time—have not been confining, even noticed, in practice.

The first attempt to verify the ProverProcess class hierarchy
was done under the classic Boogie methodology, that is, by treat-
ing all fields as being additive. This led to a number of complica-
tions where it was not clear how to proceed. In contrast, under the
enhanced methodology, specification and verification was straight-
forward.

6. AGGREGATE OBJECTS
One object is often implemented in terms of other objects, all

together making up a logical aggregate object. Invariants often
span the individual objects in an aggregate, which comes down
to writing invariants that mention fields of fields. An example is
the class of radio-equipped luxury cars in Fig. 8. The definition of
admissible invariant can be changed to allow such invariants, but
doing so requires introducing some rules that constrain the struc-
ture of the heap. Without such rules, then in a module where class
Radio is in scope but LuxuryCar is not, a program could turn off
soundBoosterSetting for a radio object, even if that radio were
used in a fast-traveling luxury car, thus violating the LuxuryCar
invariant.

A useful heap structuring technique is ownership [7, 6, 18, 5],
which has been applied in the verification of object-oriented pro-
grams [17, 13, 9]. Ownership is mostly orthogonal to the issue we
address in this paper, but we include a treatment of it to show how
our formalization incorporates ownership. In our setting, an owner
is an (object reference, class frame) pair [13], which we encode by
adding a field owner to every object. The value of the owner
field is either a pair or the special value ⊥ , which indicates that the
object has no owner.

The crucial property we aim to achieve with ownership is the
following program invariant [1]:

(∀ o, T • type(o) <: T ∧ (o, T ).mutable ∧ o.owner 6= ⊥
⇒ o.owner .mutable )

(5)
where o ranges over non-null, allocated objects and T ranges over
class names. This property says that an object can have a mutable
frame only if the owner is mutable. Stated in the contrapositive, if

a frame of an object is valid, then so are all the frames of all the
objects it owns.

To maintain program invariant (5), we adjust the semantics of the
unpack and pack operations to consider ownership:

unpack o from T ≡
assert o 6= null ∧ (o, T ).valid ;
assert o.owner = ⊥ ∨ o.owner .mutable;
(o, T ).valid := false

pack o as T ≡
assert o 6= null ∧ (o, T ).mutable;
assert (∀ r • r .owner = (o, T ) ⇒ ( ∀R • (r , R).valid ));
assert InvT (o);
(o, T ).valid := true

The unpack operation checks that the owner is already mutable,
and the pack operation checks that all owned objects are valid. If
an object has an owner in the valid state, we say that the object is
committed [1]. The precondition given by the second assertion in
the semantics of unpack thus says that o is not committed.

Every method implementation that updates a field o.f and ex-
poses the object o must meet the precondition of the unpack op-
eration, and in particular must show that o is not committed. In
most cases, all reference-valued parameters (including the receiver
parameter, this ) and return values are specified to be not commit-
ted (an exception is the specification of pure methods [8]). So, for
the purposes of this paper, we implicitly apply pre- and postcondi-
tions that specify this (which makes all examples shown earlier in
the paper apply also in the presence of aggregate objects).

When an object is allocated, its owner starts off being ⊥ . We
allow programs to assign the owner field, which has the following
semantics:

o.owner = ⊥ ≡
assert o 6= null ∧ (o.owner = ⊥ ∨ o.owner .mutable);
o.owner := ⊥

o.owner = (ow , T ) ≡
assert o 6= null ∧ (o.owner = ⊥ ∨ o.owner .mutable);
assert ow 6= null ∧ type(ow) <: T ∧ (ow , T ).mutable;
o.owner := (ow , T )

These rules say that an owner assignment (ownership transfer) is
allowed only when the old and new owners are mutable.

Representation Fields.
With the ownership system in place, and in particular with pro-

gram invariant (5), we can now allow fields of owned objects to be
mentioned in invariants. By our rules, a field o.f is allowed to be
modified only if o is mutable; by program invariant (5), we then
have that o.f is modified only at times when o.owner is muta-
ble. Therefore, if o.owner = (ow , T ) , it is sound to allow the T
invariant of object ow to depend on o.f .

Following standard practice, we define admissible invariant in a
way that can be enforced syntactically: we introduce field modifier
rep (for representation), which can be applied to reference-valued
fields. If a class T declares a rep field f , then we allow the
invariant in class T (but not in proper subclasses of T , even if f
is additive) to dereference f . Moreover, such a rep declaration
gives rise to the following implicit object invariant:

invariant f = null ∨ f .owner = (this, T ); (6)

The owner field is not allowed to be mentioned explicitly in object
invariants.



class Car {
additive int speed ;
additive virtual void SetSpeed(int kmph)
. . .
}
class LuxuryCar extends Car {

rep Radio r ;
invariant r 6= null
∧ (100 6 speed ⇒ r .soundBoosterSetting = MAX );

override void SetSpeed(int kmph) {
expose (this at LuxuryCar) {

base.SetSpeed(kmph);
if (100 6 speed) { r .EngageBooster(MAX ); }
}
}
. . .
}
class Radio {

int soundBoosterSetting ;
void EngageBooster(int b)

requires ( ∀U • type(this) <: U ⇒ (this, U ).valid );
ensures soundBoosterSetting = b;

. . .
}

Figure 9: The Car and LuxuryCar example where the
LuxuryCar includes a Radio representation object and over-
rides SetSpeed to maintain its invariant about the radio. The
field modifier rep indicates that r is a representation field;
this allows r .soundBoosterSetting to be mentioned in the in-
variant and lets SetSpeed meet the precondition of its call to
EngageBooster .

Example.
Continuing the example in Fig. 8, we show the LuxuryCar im-

plementation of SetSpeed in Fig. 9. The invariant in LuxuryCar
is admissible: it is allowed to mention the superclass field speed ,
since speed is declared to be additive, and it is allowed to derefer-
ence r , since r is declared to be a representation field.

For the verification of the LuxuryCar implementation of the
additive method SetSpeed , the polymorphic precondition for ad-
ditive methods and the implicit not-committed precondition of all
parameters imply the precondition of the unpack operation. With
the effect of the unpack operation, the precondition of the call to
the Car implementation of SetSpeed is met. The precondition of
the call to r .EngageBooster requires r to be not committed and
all of r ’s class frames to be valid. The first part of this precondition
is met on account of that r has a mutable owner: the implicit rep -
field invariant (6) says r .owner is (this, LuxuryCar) , which is
mutable at the time of the call. The second part of the precondi-
tion is met on account of that (this, LuxuryCar) is valid on entry
to the expose statement, which by program invariant (5) implies
that all class frames of owned objects are valid, and the fact that
valid changes only for (this, LuxuryCar) between the entry of
the expose statement and the call to EngageBooster .

Note that without the rep declaration and program invariant (5),
it would not have been possible to prove the precondition of the call
to EngageBooster .

Implementation Encoding.
Boogie implements the two components of the pair-valued field

owner as separate fields, ownerRef and ownerFrame . From
that and the encoding (4), the encoding of what we have mentioned
in this section follows straightforwardly. For example, the condi-
tion o.owner .valid is encoded as:

o.ownerRef .inv <: o.ownerFrame ∧
o.ownerRef .localinv 6= base(o.ownerFrame)

and the second assertion in the semantics of the pack operation in
this section is encoded as:

(∀ r • r .ownerRef = o ∧ r .ownerFrame = T ⇒
r .inv = type(r) ∧ r .localinv = type(r) )

The condition we described in this section as o.owner = ⊥ is
encoded in our implementation as o.ownerFrame = ⊥ . (When
o.ownerFrame = ⊥ , our implementation still treats the value of
o.ownerRef as significant, but for reasons that are not directly
related to this paper.)

The soundness of our methodology depends on that a rep field
declared in a class T can be dereferenced only in the invariants of
class T , not in the invariants of proper subclasses of T . In our
implementation, we enforce this restriction by disallowing fields
that are both rep and additive .

7. RELATED WORK
Another approach to modularly verifying object-oriented pro-

gram is based on universe types by Müller et al. [17, 19]. That
approach does not tease out the various class frames of objects
and does not let different class frames guard their own universes
of representation objects. Instead, object invariants apply to entire
objects and owners are single objects.

In the encoding of Jacobs and Piessens [10], a subclass frame
owns its superclass frame. This shifts the subclass problem into the
ownership problem. It is not clear how to adapt our methodology
in that setting, because it would need a weaker version of program
invariant (5), where one class frame could be valid even when a
superclass frame that it owns is not. Solving this problem could
give a more general solution that allows arbitrary parts of aggregate
objects temporarily to violate their invariants.

There may be some hope for such a more general solution, be-
cause a situation of a similar nature exists for class invariants (that
is, invariants that govern the data common to all instances of a
class). Leino and Müller allow a class to be exposed even if not
all the classes that depend on it have been exposed [14]. This is
achieved by distinguishing between a class being valid and a class
being transitively valid, meaning that it and all its transitive depen-
dees are valid.

Verification of object-oriented program has also been studied in
the context of separation logic [20], but the work is more similar to
the classic Boogie methodology in its treatment of subclasses.

Dynamic frames [12] are a general and promising specification
technique that handles abstraction and information hiding in the
heap. To use the technique for examples like ours, one would need
to develop a suitable specification idiom that would take the place
of our methodology.

Throughout the paper, we have mentioned the Boogie method-
ology. Of the work we have mentioned in this section, the Boogie
methodology is the one with the most elaborate implementation in
a program verifier. Extensions of the Boogie methodology have
been developed, for example for visibility-based invariants [13, 3]
and concurrency [9, 11].

Another variation on the Boogie methodology, where violated
invariants have to be listed as exclusions, is investigated by Mid-
delkoop et al. [16]. It has not yet been applied in the context of ag-



gregate objects, but it would be interesting to explore how it might
be used with the non-additive fields in our work.

A software design issue similar to the one we have described
arises in the context of concurrent programs with non-reentrant
monitors (see, for example, [4]). Instead of deciding the placement
of expose statements and using appropriate methods precondi-
tions, concurrent programming involves the decision of where to
place lock statements in order to avoid race conditions and dead-
locks. The placement of lock statements thus affects method pre-
conditions and sometimes involves the use of worker routines.

8. CONCLUSIONS
The extensibility of well-designed object-oriented classes can

make writing large programs more manageable. However, extensi-
bility comes at a price and is not always used. In this paper, we have
presented a methodology for specifying and verifying programs
where programmers can decide when they want to make use of the
extensibility and when they want to limit it. The methodology is
a refinement of the Boogie methodology for object invariants. We
have implemented the methodology in the Boogie program verifier
for Spec#, and we have found that the additional flexibility in the
enhanced methodology makes a noticeable difference when speci-
fying and writing programs to be verified.

In our experience, we have not come across the need for an ob-
ject to have more than one locally mutable class frame at a time.
Therefore, it seems realistic to impose that restriction, which we
have done in our implementation and which for us has resulted in
improved theorem-prover performance.

A remaining challenge is to overcome our methodology’s limi-
tation that a field cannot be both rep and additive , which could
potentially be useful in some programs. Since the encoding of the
methodology affects the correctness checks performed throughout
the program (for example as preconditions of method calls and field
updates), another improvement we would like to see is some alter-
native encoding of our methodology that would streamline theorem-
prover performance.
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