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ABSTRACT 

The problem of matching measured latitude/longitude points to 

roads is becoming increasingly important. This paper describes a 

novel, principled map matching algorithm that uses a Hidden 

Markov Model (HMM) to find the most likely road route 

represented by a time-stamped sequence of latitude/longitude 

pairs. The HMM elegantly accounts for measurement noise and 

the layout of the road network. We test our algorithm on ground 

truth data collected from a GPS receiver in a vehicle. Our test 

shows how the algorithm breaks down as the sampling rate of the 

GPS is reduced. We also test the effect of increasing amounts of 

additional measurement noise in order to assess how well our 

algorithm could deal with the inaccuracies of other location 

measurement systems, such as those based on WiFi and cell tower 

multilateration. We provide our GPS data and road network 

representation as a standard test set for other researchers to use in 

their map matching work. 

Categories and Subject Descriptors 

I.5.1 [Computing Methodologies]: Pattern Recognition, -- 

Models (Statistical)  

General Terms 

Algorithms, Measurement. 

Keywords 

Map matching, road map, location, driving routes. 

1. INTRODUCTION 
Map matching is the procedure for determining which road a 

vehicle is on using data from sensors. The sensors almost always 

include GPS because of its nearly ubiquitous availability. Map 

matching has been important for many years on in-vehicle 

navigation systems which must determine which road a vehicle is 

traversing in real time. More recently, map matching is becoming 

important as vehicles are used as traffic probes for measuring road 

speeds and building statistical models of traffic delays. These 

models, in turn, can be used to find time-optimal driving routes 

that avoid traffic jams. Data from such traffic probes has been 

used in the commercial routing engines of Microsoft [6], Dash [7], 

and Inrix [8]. Map matching is also growing in importance for 

research in route prediction [11], interpreting GPS traces [1], and 

activity recognition [14]. 

This paper makes three contributions to the research in map 

matching. First, it presents a new map matching algorithm based 

on the Hidden Markov Model (HMM). While the HMM has been 

used before in map matching, e.g. by Hummel [9], our 

formulation is novel in some important respects, detailed 

subsequently. We place particular emphasis on maintaining a 

principled approach to the problem while simultaneously making 

the algorithm robust to location data that is both geometrically 

noisy and temporally sparse. Our second contribution is a test of 

our map matching algorithm where we vary the levels of noise 

and sparseness of the sensed location data over a 50 mile urban 

drive. Varying the amount of noise lets us intelligently speculate 

about how map matching would work with less accurate location 
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Figure 1: Map matching consists of matching measured 

locations (black dots) to the road network in order to 

infer the vehicle’s actual path (light gray curve). Merely 

matching to the nearest road is prone to mistakes. 



sensors, like multilateration from cell towers and WiFi access 

points. Varying the sampling rate shows the minimum amount of 

data required for good map matching. This is important for 

practitioners who must decide on how often their GPS receivers 

should sample location data, which affects requirements for 

memory and bandwidth. Our third contribution is that we make 

our GPS data, ground truth, and road network representation 

publicly available for other researchers to use in their map 

matching work. We believe this is the first time that such a data 

set has been made publicly available. Until now, all the work on 

map matching used private data sets for testing, making it 

impossible to objectively compare results from different 

algorithms. 

2. THE MAP MATCHING PROBLEM 
The map matching problem is illustrated in Figure 1. There are 

three measured locations in sequence shown as black dots. The 

problem is to find which roads the vehicle was on. The most 

obvious algorithm is to simply match each point with the nearest 

road. Due to measurement noise, however, this algorithm is prone 

to error. In the illustration, the actual path is obvious, but the 2nd 

and 3rd point would be mismatched if they were associated with 

the nearest road. Even using modern GPS receivers, we have 

observed gross outliers and extended sequences of of erroneous 

points, likely due to urban canyons and other terrestrial features 

that affect GPS signals. Because of problems like this, modern 

map matching takes into account sequences of points before 

deciding on a match. In the example, there is really only one 

reasonable path on the road network that could have produced the 

observed measurements. 

In our work, like most other map matching work, the raw input 

data consists of vehicle locations measured by GPS, as shown in 

Figure 2. Each measured point consists of a time-stamped 

latitude/longitude pair. The roads are also represented in the 

conventional way, as a graph of nodes and edges. The nodes are at 

intersections, dead ends, and road name changes, and the edges 

represent road segments between the nodes. Some edges are 

directional to indicate one-way roads. Each node has an associated 

latitude/longitude to indicate its location, and each edge has a 

polyline of latitude/longitude pairs to represent its geometry. 

Since point-by-point, nearest road matching often fails, 

researchers have developed methods that match several points at 

once. One way to do this is to create a (possibly smoothed) curve 

from the location measurements and attempt to find matching 

roads with similar geometry. As an example, White et al. [16] 

present four algorithms, starting with the simple, nearest match 

scheme. Their second algorithm adds orientation information to 

the nearest match approach, comparing the measured heading to 

the angle of the road. Their third algorithm evolves the second 

algorithm to include connectivity constraints, and their fourth 

algorithm does curve matching. They were surprised to discover 

that their most sophisticated algorithm, the fourth one, was 

outperformed by the simpler second algorithm when tested on a 

total of about 17 km of driving data. Another purely geometric 

approach comes from Greenfeld [5], whose algorithm builds up a 

topologically feasible path through the road network. Matches are 

determined by a similarity measure that weights errors based on 

distance and orientation. The algorithm was found to perform 

 

Figure 2: This is the GPS data we used for testing in the Seattle, Washington, USA area. The trip starts in the upper right near 

Marymoor Park. It consists of 7531 GPS points sampled at 1 Hz, and it covers about 80 kilometers (50 miles) over about 2 

hours. 



flawlessly, even though the GPS data was collected while 

Selective Availability was turned on, leading to noisier location 

measurements than are available now. Kim and Kim [10] look at a 

way to measure how much each GPS point belongs to any given 

road, taking into account its distance from the road, the shape of 

the road segment, and the continuity of the path. The measure is 

used in a fuzzy matching scheme with learned parameters to 

optimize performance. One of the most sophisticated geometric 

matching algorithms is from Brakatsoulas et al. [3]. Their 

algorithm uses variations of the Fréchet distance to match the 

curve of the GPS trace to candidate paths in the road network. 

They tested their algorithms on 45 routes in Athens, Greece. Alt et 

al. [2]give a generalization of the Fréchet for matching curves. 

One potential problem with purely geometric approaches is their 

sensitivity to measurement noise and sampling rate. Clearly, 

connecting the dots of a set of noisy measurements sampled at a 

slow rate would not match well with the road geometry, especially 

direction information. Hidden Markov Models (HMM) solve this 

problem by explicitly modeling the connectivity of the roads and 

considering many different path hypotheses simultaneously. One 

of the earliest applications of the HMM to map matching is from 

Lamb and Thiébaux [13] who use a combination of a Kalman 

filter and HMM. Several Kalman filters track the vehicle along 

different hypothesized paths, and the HMM chooses between 

them. Other work from Hummel [9] and Krumm et al. [12] use an 

HMM to balance the measurement noise and path probabilities. 

We will compare and contrast this work with ours subsequently 

after we explain the details of our algorithm. 

3. HMM MAP MATCHING 
As illustrated in Figure 1, the key problem in map matching is the 

tradeoff between the roads suggested by the location data and the 

feasibility of the path. While the location data is important as the 

sole indicator of the path, naively matching each noisy point to the 

nearest road will result in extremely unreasonable paths involving 

strange U-turns, inefficient looping, and overall bizarre driving 

behavior. To avoid unreasonable paths, we can introduce 

knowledge of the connectivity of the road network to help pull the 

solution away from clearly bizarre behavior. The Hidden Markov 

Model is an algorithm that can smoothly integrate noisy data and 

path constraints in a principled way. 

The HMM models processes that involve a path through many 

possible states, where some state transitions are more likely than 

others and where the state measurements are uncertain. In speech 

understanding, HMMs are used to model the time sequence of 

spoken phonemes. The model fits well, because some phoneme-

to-phoneme transitions are more likely than others, and because 

classifying each individual phoneme from microphone 

measurements is not 100% accurate. 

In our map matching algorithm, the states of the HMM are the 

individual road segments, and the state measurements are the 

noisy vehicle location measurements. The goal is to match each 

location measurement with the proper road segment. This state 

representation naturally fits the HMM, because transitions 

between road segments are governed by the connectivity of the 

road network. 

More formally, the discrete states of the HMM are the 𝑁𝑟  road 

segments, 𝑟𝑖  , 𝑖 = 1 … 𝑁𝑟 . In our representation, distinct road 

segments run between intersections. For each 2D 

latitude/longitude location measurement 𝑧𝑡 , the goal is to find the 

road segment that the vehicle was actually on. Figure 3 shows an 

illustration of the HMM for the map matching problem illustrated 

in Figure 1. Here, each vertical slice represents a point in time 

corresponding to a location measurement 𝑧𝑡  for the three times 

𝑡 = 1, 2, 3. At 𝑡 = 1 there are three roads near 𝑧1, shown as three 

black dots in the first column. There is a feasible driving path, 

possibly very circuitous, from each of the nearest points on these 

three roads to points on the two roads near 𝑧2 at 𝑡 = 2, and 

similarly for 𝑡 = 3. The goal of our algorithm is to find the most 

probable path through the lattice by picking one road segment for 

each 𝑡. This path should be sensitive to both the measurements 

and the reasonability of the paths between the road segments. This 

tradeoff is made based on the probabilities governing the 

measurements and probabilities governing the transitions between 

the road choices at each time, which we describe next. 

We note that our algorithm, as presented, solves map matching as 

a batch problem, after all the data has been collected. We 

speculate that a sliding window version of our algorithm would 

work well for real time map matching, say, on a vehicle’s 

navigation system. 

3.1 Measurement Probabilities 
Measurement probabilities (also called emission probabilities) 

give the likelihood that a measurement resulted from a given state, 

based on that measurement alone. For map matching, given a 

location measurement 𝑧𝑡 , there is an emission probability for each 

road segment 𝑟𝑖 , 𝑝 𝑧𝑡  𝑟𝑖 . This gives the likelihood that the 

measurement 𝑧𝑡  would be observed if the vehicle were actually on 

road segment 𝑟𝑖 . Our intuition is that road segments farther from 

the measurement are less likely to have produced the 

measurement. For a given 𝑧𝑡  and 𝑟𝑖 , we denote the closest point 

on the road segment as 𝑥𝑡,𝑖 . An example of this notation is shown 

in Figure 4. The great circle distance on the surface of the earth 

between the measured point and the candidate match is  𝑧𝑡 −

𝑥𝑡,𝑖 𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 . For the correct match, this difference is due to 

GPS noise. Based on previous work [15], we can model GPS 

noise as zero-mean Gaussian, meaning that 
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Figure 3: For each measurement zt, the HMM considers 

all the road segments ri as well as all the transitions 

between the road segments. 



𝑝 𝑧𝑡  𝑟𝑖 =
1

 2𝜋𝜎𝑧

𝑒
−0.5 

 𝑧𝑡−𝑥𝑡,𝑖 𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒

𝜎𝑧
 

2

 
( 1 ) 

Here 𝜎𝑧  is the standard deviation of GPS measurements, which we 

estimate in Section 5.2 (Parameter Estimation). While we know 

that GPS errors are not strictly Gaussian, this assumption proved 

effective in our map matching algorithm. 

Another required probability is the initial state probabilities 𝜋𝑖 ,  

𝑖 = 1 … 𝑁𝑟 , which in the case of map matching gives the 

probability of the vehicle’s first road over all the roads at the 

beginning of the drive. While some HMM formulations assign a 

uniform distribution to 𝜋𝑖 , assuming no measurements have been 

taken, we start at the first measurement and have 𝜋𝑖 = 𝑝 𝑧1 𝑟𝑖 , 

i.e. using the first measurement 𝑧1. 

In practice, we do not consider matching to road segments that are 

quite distant from the measurement. In our algorithm, we set to 

zero any measurement probability from a road segment that is 

more than 200 meters away from 𝑧𝑡 . This helps reduce the number 

of candidate matches that our algorithm has to consider, 

decreasing its running time. This is illustrated in Figure 3 with the 

unfilled circles representing road segments that are too far away to 

consider. 

3.2 Transition Probabilities 
Each measurement 𝑧𝑡  has a list of possible road matches, as does 

the next measurement 𝑧𝑡+1. Transition probabilities give the 

probability of a vehicle moving between the candidate road 

matches at these two times. Intuitively, some transitions will be 

very unlikely, such as those requiring a complicated set of 

maneuvers. Practically, we favor transitions whose driving 

distance is about the same as the great circle distance between the 

measurements. 

Specifically, for a measurement 𝑧𝑡  and candidate road segment 𝑟𝑖 , 

the latitude/longitude point on the road segment nearest the 

measurement is 𝑥𝑡,𝑖 . For the next measurement 𝑧𝑡+1 and candidate 

road segment 𝑟𝑗 , the corresponding point is 𝑥𝑡+1,𝑗 . We compute 

the driving distance between these two points using a 

conventional route planner configured to give the route with the 

shortest distance. We note that the correct pair of matched points 

typically results in a very short route, because the matched points 

on the road come from closely spaced GPS points. We refer to 

this driving distance as the “route distance”, notated as  𝑥𝑡,𝑖 −

𝑥𝑡+1,𝑗  𝑟𝑜𝑢𝑡𝑒 . We compare the route distance to the great circle 

distance between the measured points,  𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 . 

Figure 4 shows an example of these distances. 

Our intuition, confirmed by experiment, is that these two 

distances will be about the same for correct matches. This is 

because the relatively short distance traveled on the road(s) 

between a pair of correct matches will be about the same as the 

distance between the measured GPS points. We confirmed this by 

looking at the ground truth matched roads, which we detail in 

Section 5 (GROUND TRUTH DATA). We computed a histogram 

of the absolute values of the differences between the great circle 

distances and the route distances from the correct matches, shown 

in Figure 5. This histogram fits well to an exponential probability 

distribution given by Equation ( 2 ): 

𝑝 𝑑𝑡 =
1

𝛽
𝑒

−𝑑𝑡
𝛽  ( 2 ) 

Here 

𝑑𝑡 =   𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 −  𝑥𝑡,𝑖∗ − 𝑥𝑡+1,𝑗 ∗ 
𝑟𝑜𝑢𝑡𝑒

  ( 3 ) 

where 𝑖∗ and 𝑗∗ indicate the ground truth road segments of the 

route that we describe in Section 5. We estimate the value of 𝛽 in 

Section 5.2 (Parameter Estimation). 

 

3.3 Optimal Path 
With measurement probabilities from Equation ( 1 ) and transition 

probabilities from Equation ( 2 ), we used the Viterbi algorithm to 

compute the best path through the HMM lattice. The Viterbi 

algorithm uses dynamic programming to quickly find the path 

through the lattice that maximizes the product of the measurement 

probabilities and transition probabilities. This gave us an 
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Figure 4: This shows an example of our notation. There 

are three road segments, r1, r2, and r3, and two measured 

points, zt and zt+1. The first measured point, zt, has 

candidate road matches at xt,1 and xt,3 .  Each match 

candidate results in a route to xt+1,2 , which is a match 

candidate for the second measured point, zt+1. These two 

routes have their own lengths, as does the great circle 

path between the two measured points. Our data shows 

that the route distance and great circle distance are closer 

together for correct matches than for incorrect matches. 

 

Figure 5: The histogram of   𝒛𝒕 − 𝒛𝒕+𝟏 𝒈𝒓𝒆𝒂𝒕 𝒄𝒊𝒓𝒄𝒍𝒆 −

 𝒙𝒕,𝒊 − 𝒙𝒕+𝟏,𝒋 𝒓𝒐𝒖𝒕𝒆
  follows an exponential probability 

distribution. 
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inference of the correct road segment for each location 

measurement. 

Having explained our basic algorithm, we can now compare it to 

two similar algorithms in the research literature. Hummel [9] used 

an HMM for map matching. Her measurement probabilities used 

the same Gaussian GPS noise assumption as ours, but she also 

added a term for the heading mismatch between the vehicle and 

the road. We did not use heading data, mostly because we are 

assuming we have no compass data from the vehicle. While 

heading can be computed from measured GPS points, this can be 

very inaccurate when there is a long interval between GPS 

measurements, which is a condition we investigated as part of our 

research. Our transition probabilities are different from Hummel’s 

in that ours take into account the empirical difference between 

great circle distances and route distances, while Hummel uses a 

simpler model that only accounts for roads immediately adjacent 

to the current match candidate. 

Compared to the work of Krumm et al. [12], our main difference 

is in the transition probabilities. While we look at route distance 

differences, Krumm et al. looked at route time differences. Time 

differences are much more sensitive to traffic conditions, so are 

likely less reliable than distance differences. They are also 

sensitive to the peculiarities of the given route-finding algorithm, 

with particular values to assess the time cost of turns and stops at 

intersections. Also, in this paper’s algorithm, we test against 

ground truth, test against inaccurate and subsampled GPS data, 

make our data available for other researchers, and give several 

practical implementation details, described in the next section. 

4. ALGORITHM PARTICULARS 
The HMM formulation described above represents a principled 

approach to balancing the effects of measurement noise and 

routing behavior. In practice, the algorithm can be made to work 

better and faster with some simple enhancements that we 

discovered by working with real GPS data. 

4.1 Preprocessing 
Before the GPS points are used to construct the HMM, we move 

through the points in time sequence, removing points that are 

within 2𝜎𝑧  of the previous included point. The justification for 

this step is that until we see a point that is at least 2𝜎𝑧  away from 

its temporal predecessor, our confidence is low that the apparent 

movement is due to actual vehicle movement and not noise. This 

has the benefit of reducing the number of steps in the HMM for 

high sample rate data, which speeds processing. For our ground 

truth data described in Section 5, this step eliminated about 38.9% 

of the original data. 

4.2 HMM Breaks 
There are various conditions that induce a break in the HMM 

lattice where all the transition probabilities from one time step to 

the next are zero. We detail these conditions below, after which 

we give a simple method to work around these breaks, effectively 

removing unmatchable data. 

The conditions that lead to a break are: 

 Route Localization. In a pure implementation of the 

algorithm, every road in the road network would be 

considered as a potential match candidate, and a 

complete route would be calculated between every one 

of these match candidates. As mentioned in section 3.1, 

to avoid an unreasonable amount of computation, we set 

to zero the measurement probability of any road 

segment more than 200 meters away from the GPS 

point. From an implementation perspective, this means 

we simply can ignore their existence and not add them 

to the HMM. It is possible that there are GPS points in 

our data set that have no match candidates within 200 

meters, which causes our implementation to have no 

match candidates for a particular time step in the HMM. 

This situation may arise when the vehicle is travelling 

on a road surface or parking structure that is not marked 

on the map. It may also arise if the GPS is experiencing 

particularly high noise, which we have seen when the 

vehicle enters a tunnel or an urban canyon.  

 Low Probability Routes. Assuming a connected road 

network, it should be possible to find a route between 

any two road segments on the map. However, once the 

route distance  𝑥𝑡,𝑖 − 𝑥𝑡+1,𝑗  𝑟𝑜𝑢𝑡𝑒
 becomes much larger 

than the great circle distance  𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒 , the 

transition probability 𝑝(𝑑𝑡) corresponding to that route 

becomes very small. This can happen when the routes 

become circuitous and strange. Rather than continue 

seeking for a route that is obviously incorrect, we 

terminate the search for a route when  𝑥𝑡,𝑖 −

𝑥𝑡+1,𝑗  𝑟𝑜𝑢𝑡 𝑒  becomes greater than 

 𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒  by 2000 meters or more, and 

assign a probability of zero. 

 GPS Outliers. There are two more tests for 

reasonableness that we apply to any route calculated as 

a transition between HMM states. Since we know we 

are tracking ordinary vehicles on public streets, if a 

calculated route would require the vehicle to exceed a 

speed of 50 m/s (112 miles per hour, 180 kilometers per 

hour), or travel in excess of three times the posted speed 

limit, we consider the route to be unreasonable, and set 

its probability to zero. 

In the pure HMM model, which considers all match candidates 

and all routes, however unlikely they may be, the Viterbi 

algorithm will always be able to find a complete optimal path 

through the HMM. However, because of the simplifications 

described above, which limit the number of match candidates and 

routes that will be considered, it is possible that there is no 

complete path through the HMM. 

In examining our data, we found that it typically follows a pattern 

of long stretches of reasonably easy-to-match location 

measurements, interspersed with occasional, short sequences that 

are difficult to match, leading to the breaks described above. Our 

first solution to this problem was to manually remove the 

offending points, which was effective, but tedious. We automated 

this process in the following way. When a break is detected 

between time step 𝑡 and time step 𝑡 + 1, we remove measured 

points 𝑧𝑡  and 𝑧𝑡+1 from the model, and check to see if the break 

has been healed. The break is considered healed if the measured 

points at 𝑡 − 1 and 𝑡 + 2 lead to a reconnection in the HMM after 

rechecking the points with the bulleted conditions above. If the 

break is still present, we continue to remove the points on either 

side of the break until either the break is healed, or the break is 

more than 180 seconds long. If the break exceeds this threshold, 

we split the data into separate trips and do map matching on each 

one separately. If the original data has a sampling period greater 



than 180 seconds, we omit this heuristic and do not try to fix these 

breaks. 

5. GROUND TRUTH DATA 
The data for our test route was collected by driving a known, 

planned route in a vehicle containing a commercially available 

consumer grade GPS device with a logging feature that records 

the current latitude and longitude once per second. The device 

uses the SiRF Star III GPS chipset and is enabled with WAAS. A 

map of the route is shown in Figure 2. This route is about 80 

kilometers (50 miles) long, and it took about 2 hours to drive. It 

resulted in 7531 time stamped latitude/longitude pairs. This high 

fidelity position data was then processed using a tool that applies 

the map match algorithm and displays the result graphically so it 

can be inspected and corrected if the algorithm has made an error. 

The result of this “hand match” constitutes our ground truth data. 

The scope of corrections available in the graphical tool is limited 

to choosing alternate HMM states or transitions. Note that the 

ground truth data is correct inasmuch that it represents the correct 

path taken by the vehicle through the road network. The exact 

location of the vehicle in the road network corresponding to each 

GPS point in the ground truth data is unknowable, and therefore 

the point selected as the match to each road, while reasonable, 

should not be considered ground truth. Only the path that was 

taken by the vehicle is known. 

5.1 Degraded Data 
We simulate degraded versions of the GPS data by removing 

points and adding Gaussian random noise. We simulated sampling 

periods of 2, 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300, 360, 

420, 480, 540,  and 600 seconds in addition to the original 1-

second data from our logger. We simulated random Gaussian 

noise with standard deviations of 10, 15, 20, 30, 40, 50, 75, and 

100 meters. We also included test data with no noise added. Note 

that to simulate a particular noise level, we had to account for the 

fact that there is already some random noise in the original data. 

Fortunately, Gaussian noise is additive in the sense of the 

equations below, so we could simulate any amount of additional 

noise with knowledge of the original 𝜎𝑧  from the sensor. 

𝑋1~𝑁 𝜇1 , 𝜎1
2  

𝑋2~𝑁 𝜇2, 𝜎2
2  

 𝑋1 + 𝑋2 ~𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2  

( 4 ) 

In our case, since we assume zero-mean noise, 𝜇1 = 𝜇2 = 0. 

5.2 Parameter Estimation 
Our HMM needs two probability-related parameters. One is 𝜎𝑧 , 

which is the standard deviation of Gaussian GPS noise. We 

estimate this starting with our 𝑧𝑡  measurements. For each of these, 

we know the index 𝑖∗of the correctly matched road 𝑟𝑖∗ from our 

manually matched ground truth data. Using the notation presented 

in Section 3, the point on 𝑟𝑖∗ nearest 𝑧𝑡  is 𝑥𝑡,𝑖∗. If we assume this 

was the actual location of the vehicle, then  𝑧𝑡 − 𝑥𝑡,𝑖∗ 
𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒

 

is an estimate of the magnitude of the GPS error. The standard 

deviation of these values is our estimate of the GPS noise, 𝜎𝑧 . We 

estimated 𝜎𝑧  using the median absolute deviation (MAD), which 

is a robust estimator of standard deviation: 

𝜎𝑧 = 1.4826 mediant   𝑧𝑡 − 𝑥𝑡,𝑖∗ 
𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒

  ( 5 ) 

For our test data, this value was 𝜎𝑧 = 4.07 meters, which is a 

reasonable value for GPS noise. 

The other probability parameter we need is 𝛽 from the 

exponential distribution in Equation ( 2 ). This describes the 

difference between route distances and great circle distances. We 

estimated 𝛽 with a robust estimator suggested by Gather and 

Schultze [4]: 

𝛽 =
1

ln 2 
mediant    𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡  𝑐𝑖𝑟𝑐𝑙𝑒

−  𝑥𝑡,𝑖∗ − 𝑥𝑡+1,𝑗 ∗ 
𝑟𝑜𝑢𝑡𝑒

   

( 6 ) 

 

Note that in Equations ( 5 ) and ( 6 ) we use 𝑥𝑡,𝑖∗ and 𝑥𝑡+1,𝑗 ∗ . The 

stared 𝑖∗ and 𝑗∗ indicate the ground truth road segment that we 

found by manually matching the measured GPS points. 

The parameters 𝜎𝑧  and 𝛽 are the two, basic, adjustable parameters 

for our map matching algorithm, and they explicitly represent the 

tradeoff between our trust in the location measurements and 

candidate routes. A larger value of 𝜎𝑧 , which measures noise in 

the location measurements, represents less trust in the location 

measurements. A larger value of 𝛽, which measures the difference 

between great circle distances and route distances, represents 

more tolerance of non-direct routes. In our work, we estimate 

these two parameters directly from the data. An alternative would 

be to find the values of 𝜎𝑧  and 𝛽 that optimize performance of the 

algorithm. We leave this for future work. 

5.3 Public Data Availability 
Our GPS data, ground truth, and relevant road network are 

available on a public Web page1. We made this data available to 

facilitate the fair comparison of map matching algorithms. We 

believe this is the only public data set in existence for map 

matching. 

6. RESULTS 
We ran our algorithm on the test route shown in Figure 2. This 50-

mile route was sampled at 1 Hz, giving 7531 time stamped 

latitude/longitude pairs. After removing points as described in 

Section 4.1 (Preprocessing), there were 4605 remaining. The 

result of running our algorithm is a road segment match for each 

point except for about 100 that were discarded due to breaks, as 

described in Section 4.2 (HMM Breaks). 

We quantified the accuracy of the map matching by comparing 

the ground truth route to the route determined by our algorithm. In 

                                                                 

1 http://research.microsoft.com/en-us/um/people/jckrumm/MapMatchingData/data.htm 
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Figure 6: This illustrates how we measured the error 

between the correct route and the route from map 

matching. 



particular, we sum the lengths of incorrect road added to 

and subtracted from the correct route. We divide this sum 

by the length of the correct route to compute the fraction 

of incorrect route, which is the error value we report. This 

is shown in Figure 6. We chose this way to quantify 

accuracy over these other candidates: 

 Locations on Road. This accuracy measure 

says that the matched point should be in the 

same location as the actual vehicle. Since we 

measured the vehicle’s location with inherently 

noisy GPS, we do not know its actual location. 

 Road Segment. This accuracy measure says 

that the matched point should be on the same 

road segment as the actual vehicle. While the 

correct road segment is easier to guess than the 

correct location, it is still ambiguous at 

intersections, where a noisy measurement could 

match to any of the roads converging at that 

point. 

Our map matching algorithm gave exactly the same route 

as our ground truth in our test, which means it worked 

perfectly at a one second sampling period and with GPS 

accuracy location measurements. 

We are interested in the performance of our algorithm 

with degraded input data, as described in Section 5.1 (Degraded 

Data). We degraded the data by subsampling and adding noise. 

Subsampling is interesting because it shows how robust our 

algorithm would be if the location sensor were to collect data at a 

slower rate. If the algorithm works well at lower sampling rates, 

this can lead to savings in bandwidth and storage for institutions 

that collect data with the intent to match it to roads. Figure 7 

shows how our results degrade with subsampling. We note that 

the error is only 0.11% even when the sampling period grows to 

30 seconds. 

Added noise is interesting, because it gives an idea of how the 

algorithm would perform if the location sensor were less accurate, 

such as multilateration from WiFi access points or cell towers. 

The plot in Figure 8 shows how well our algorithm performs with 

added noise at different sampling periods. Surprisingly, it is more 

sensitive to noise with a 1 second sampling period than at longer 

periods. This is likely because frequent, noisy points tend to pull 

the route rather violently in different directions. At longer 

sampling periods, the algorithm shows robustness to measurement 

noise as high as 50 meters standard deviation, which is roughly 

the accuracy of WiFi-based multilateration. 

To our knowledge, these are the first reported tests of these kind 

for a map matching algorithm. We believe tests like this are 

important to assess when the algorithm breaks down, which in 

turn guides choices for how to sense the data. 

7. CONCLUSIONS 
As map matching becomes increasingly important for probing 

traffic and driving behavior, it is important to have principled, 

well-characterized map matching algorithms. We have presented a 

new algorithm based on the HMM that explicitly accounts for 

measurement noise and the feasible routes through the road 

network. We tested the algorithm on an 80-kilometer (50 mile) 

drive. Compared to manually matching the data, our algorithm 

performed perfectly. We also tested how the accuracy of our 

algorithm degrades when the location sampling rate decreases and 

when the measurement noise increases. Significantly, we found 

that even with 30 seconds between measured locations, the 

accuracy of our algorithm was barely degraded. We believe this is 

the first reported test of this kind for a map matching algorithm. 

Finally, we made our test data, ground truth data, and road 

network publicly available for other researchers to develop, test, 

and compare their own map matching algorithms. 
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