
Hidden Markov Map Matching
Through Noise and Sparseness

Paul Newson and John Krumm
Microsoft Research

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052 USA
+1 425 705 4507, +1 425 703 8283

{pnewson, jckrumm}@microsoft.com

ABSTRACT

The problem of matching measured latitude/longitude points to

roads is becoming increasingly important. This paper describes a

novel, principled map matching algorithm that uses a Hidden

Markov Model (HMM) to find the most likely road route

represented by a time-stamped sequence of latitude/longitude

pairs. The HMM elegantly accounts for measurement noise and

the layout of the road network. We test our algorithm on ground

truth data collected from a GPS receiver in a vehicle. Our test

shows how the algorithm breaks down as the sampling rate of the

GPS is reduced. We also test the effect of increasing amounts of

additional measurement noise in order to assess how well our

algorithm could deal with the inaccuracies of other location

measurement systems, such as those based on WiFi and cell tower

multilateration. We provide our GPS data and road network

representation as a standard test set for other researchers to use in

their map matching work.

Categories and Subject Descriptors

I.5.1 [Computing Methodologies]: Pattern Recognition, --

Models (Statistical)

General Terms

Algorithms, Measurement.

Keywords

Map matching, road map, location, driving routes.

1. INTRODUCTION
Map matching is the procedure for determining which road a

vehicle is on using data from sensors. The sensors almost always

include GPS because of its nearly ubiquitous availability. Map

matching has been important for many years on in-vehicle

navigation systems which must determine which road a vehicle is

traversing in real time. More recently, map matching is becoming

important as vehicles are used as traffic probes for measuring road

speeds and building statistical models of traffic delays. These

models, in turn, can be used to find time-optimal driving routes

that avoid traffic jams. Data from such traffic probes has been

used in the commercial routing engines of Microsoft [6], Dash [7],

and Inrix [8]. Map matching is also growing in importance for

research in route prediction [11], interpreting GPS traces [1], and

activity recognition [14].

This paper makes three contributions to the research in map

matching. First, it presents a new map matching algorithm based

on the Hidden Markov Model (HMM). While the HMM has been

used before in map matching, e.g. by Hummel [9], our

formulation is novel in some important respects, detailed

subsequently. We place particular emphasis on maintaining a

principled approach to the problem while simultaneously making

the algorithm robust to location data that is both geometrically

noisy and temporally sparse. Our second contribution is a test of

our map matching algorithm where we vary the levels of noise

and sparseness of the sensed location data over a 50 mile urban

drive. Varying the amount of noise lets us intelligently speculate

about how map matching would work with less accurate location

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. ACM GIS '09 , November

4-6, 2009. Seattle, WA, USA (c) 2009 ACM ISBN 978-1-60558-649-

6/09/11...$10.00.

1

2

3

actual path

Figure 1: Map matching consists of matching measured

locations (black dots) to the road network in order to

infer the vehicle’s actual path (light gray curve). Merely

matching to the nearest road is prone to mistakes.

sensors, like multilateration from cell towers and WiFi access

points. Varying the sampling rate shows the minimum amount of

data required for good map matching. This is important for

practitioners who must decide on how often their GPS receivers

should sample location data, which affects requirements for

memory and bandwidth. Our third contribution is that we make

our GPS data, ground truth, and road network representation

publicly available for other researchers to use in their map

matching work. We believe this is the first time that such a data

set has been made publicly available. Until now, all the work on

map matching used private data sets for testing, making it

impossible to objectively compare results from different

algorithms.

2. THE MAP MATCHING PROBLEM
The map matching problem is illustrated in Figure 1. There are

three measured locations in sequence shown as black dots. The

problem is to find which roads the vehicle was on. The most

obvious algorithm is to simply match each point with the nearest

road. Due to measurement noise, however, this algorithm is prone

to error. In the illustration, the actual path is obvious, but the 2nd

and 3rd point would be mismatched if they were associated with

the nearest road. Even using modern GPS receivers, we have

observed gross outliers and extended sequences of of erroneous

points, likely due to urban canyons and other terrestrial features

that affect GPS signals. Because of problems like this, modern

map matching takes into account sequences of points before

deciding on a match. In the example, there is really only one

reasonable path on the road network that could have produced the

observed measurements.

In our work, like most other map matching work, the raw input

data consists of vehicle locations measured by GPS, as shown in

Figure 2. Each measured point consists of a time-stamped

latitude/longitude pair. The roads are also represented in the

conventional way, as a graph of nodes and edges. The nodes are at

intersections, dead ends, and road name changes, and the edges

represent road segments between the nodes. Some edges are

directional to indicate one-way roads. Each node has an associated

latitude/longitude to indicate its location, and each edge has a

polyline of latitude/longitude pairs to represent its geometry.

Since point-by-point, nearest road matching often fails,

researchers have developed methods that match several points at

once. One way to do this is to create a (possibly smoothed) curve

from the location measurements and attempt to find matching

roads with similar geometry. As an example, White et al. [16]

present four algorithms, starting with the simple, nearest match

scheme. Their second algorithm adds orientation information to

the nearest match approach, comparing the measured heading to

the angle of the road. Their third algorithm evolves the second

algorithm to include connectivity constraints, and their fourth

algorithm does curve matching. They were surprised to discover

that their most sophisticated algorithm, the fourth one, was

outperformed by the simpler second algorithm when tested on a

total of about 17 km of driving data. Another purely geometric

approach comes from Greenfeld [5], whose algorithm builds up a

topologically feasible path through the road network. Matches are

determined by a similarity measure that weights errors based on

distance and orientation. The algorithm was found to perform

Figure 2: This is the GPS data we used for testing in the Seattle, Washington, USA area. The trip starts in the upper right near

Marymoor Park. It consists of 7531 GPS points sampled at 1 Hz, and it covers about 80 kilometers (50 miles) over about 2

hours.

flawlessly, even though the GPS data was collected while

Selective Availability was turned on, leading to noisier location

measurements than are available now. Kim and Kim [10] look at a

way to measure how much each GPS point belongs to any given

road, taking into account its distance from the road, the shape of

the road segment, and the continuity of the path. The measure is

used in a fuzzy matching scheme with learned parameters to

optimize performance. One of the most sophisticated geometric

matching algorithms is from Brakatsoulas et al. [3]. Their

algorithm uses variations of the Fréchet distance to match the

curve of the GPS trace to candidate paths in the road network.

They tested their algorithms on 45 routes in Athens, Greece. Alt et

al. [2]give a generalization of the Fréchet for matching curves.

One potential problem with purely geometric approaches is their

sensitivity to measurement noise and sampling rate. Clearly,

connecting the dots of a set of noisy measurements sampled at a

slow rate would not match well with the road geometry, especially

direction information. Hidden Markov Models (HMM) solve this

problem by explicitly modeling the connectivity of the roads and

considering many different path hypotheses simultaneously. One

of the earliest applications of the HMM to map matching is from

Lamb and Thiébaux [13] who use a combination of a Kalman

filter and HMM. Several Kalman filters track the vehicle along

different hypothesized paths, and the HMM chooses between

them. Other work from Hummel [9] and Krumm et al. [12] use an

HMM to balance the measurement noise and path probabilities.

We will compare and contrast this work with ours subsequently

after we explain the details of our algorithm.

3. HMM MAP MATCHING
As illustrated in Figure 1, the key problem in map matching is the

tradeoff between the roads suggested by the location data and the

feasibility of the path. While the location data is important as the

sole indicator of the path, naively matching each noisy point to the

nearest road will result in extremely unreasonable paths involving

strange U-turns, inefficient looping, and overall bizarre driving

behavior. To avoid unreasonable paths, we can introduce

knowledge of the connectivity of the road network to help pull the

solution away from clearly bizarre behavior. The Hidden Markov

Model is an algorithm that can smoothly integrate noisy data and

path constraints in a principled way.

The HMM models processes that involve a path through many

possible states, where some state transitions are more likely than

others and where the state measurements are uncertain. In speech

understanding, HMMs are used to model the time sequence of

spoken phonemes. The model fits well, because some phoneme-

to-phoneme transitions are more likely than others, and because

classifying each individual phoneme from microphone

measurements is not 100% accurate.

In our map matching algorithm, the states of the HMM are the

individual road segments, and the state measurements are the

noisy vehicle location measurements. The goal is to match each

location measurement with the proper road segment. This state

representation naturally fits the HMM, because transitions

between road segments are governed by the connectivity of the

road network.

More formally, the discrete states of the HMM are the 𝑁𝑟 road

segments, 𝑟𝑖 , 𝑖 = 1 … 𝑁𝑟 . In our representation, distinct road

segments run between intersections. For each 2D

latitude/longitude location measurement 𝑧𝑡 , the goal is to find the

road segment that the vehicle was actually on. Figure 3 shows an

illustration of the HMM for the map matching problem illustrated

in Figure 1. Here, each vertical slice represents a point in time

corresponding to a location measurement 𝑧𝑡 for the three times

𝑡 = 1, 2, 3. At 𝑡 = 1 there are three roads near 𝑧1, shown as three

black dots in the first column. There is a feasible driving path,

possibly very circuitous, from each of the nearest points on these

three roads to points on the two roads near 𝑧2 at 𝑡 = 2, and

similarly for 𝑡 = 3. The goal of our algorithm is to find the most

probable path through the lattice by picking one road segment for

each 𝑡. This path should be sensitive to both the measurements

and the reasonability of the paths between the road segments. This

tradeoff is made based on the probabilities governing the

measurements and probabilities governing the transitions between

the road choices at each time, which we describe next.

We note that our algorithm, as presented, solves map matching as

a batch problem, after all the data has been collected. We

speculate that a sliding window version of our algorithm would

work well for real time map matching, say, on a vehicle’s

navigation system.

3.1 Measurement Probabilities
Measurement probabilities (also called emission probabilities)

give the likelihood that a measurement resulted from a given state,

based on that measurement alone. For map matching, given a

location measurement 𝑧𝑡 , there is an emission probability for each

road segment 𝑟𝑖 , 𝑝 𝑧𝑡 𝑟𝑖 . This gives the likelihood that the

measurement 𝑧𝑡 would be observed if the vehicle were actually on

road segment 𝑟𝑖 . Our intuition is that road segments farther from

the measurement are less likely to have produced the

measurement. For a given 𝑧𝑡 and 𝑟𝑖 , we denote the closest point

on the road segment as 𝑥𝑡,𝑖 . An example of this notation is shown

in Figure 4. The great circle distance on the surface of the earth

between the measured point and the candidate match is 𝑧𝑡 −

𝑥𝑡,𝑖 𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 . For the correct match, this difference is due to

GPS noise. Based on previous work [15], we can model GPS

noise as zero-mean Gaussian, meaning that

r1

r2

r3

r4

r5

rNr

t=1

z1

...

t=2

z2

...

t=3

z3

...

road

segment

time

Figure 3: For each measurement zt, the HMM considers

all the road segments ri as well as all the transitions

between the road segments.

𝑝 𝑧𝑡 𝑟𝑖 =
1

 2𝜋𝜎𝑧

𝑒
−0.5

 𝑧𝑡−𝑥𝑡,𝑖 𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒

𝜎𝑧

2

(1)

Here 𝜎𝑧 is the standard deviation of GPS measurements, which we

estimate in Section 5.2 (Parameter Estimation). While we know

that GPS errors are not strictly Gaussian, this assumption proved

effective in our map matching algorithm.

Another required probability is the initial state probabilities 𝜋𝑖 ,

𝑖 = 1 … 𝑁𝑟 , which in the case of map matching gives the

probability of the vehicle’s first road over all the roads at the

beginning of the drive. While some HMM formulations assign a

uniform distribution to 𝜋𝑖 , assuming no measurements have been

taken, we start at the first measurement and have 𝜋𝑖 = 𝑝 𝑧1 𝑟𝑖 ,

i.e. using the first measurement 𝑧1.

In practice, we do not consider matching to road segments that are

quite distant from the measurement. In our algorithm, we set to

zero any measurement probability from a road segment that is

more than 200 meters away from 𝑧𝑡 . This helps reduce the number

of candidate matches that our algorithm has to consider,

decreasing its running time. This is illustrated in Figure 3 with the

unfilled circles representing road segments that are too far away to

consider.

3.2 Transition Probabilities
Each measurement 𝑧𝑡 has a list of possible road matches, as does

the next measurement 𝑧𝑡+1. Transition probabilities give the

probability of a vehicle moving between the candidate road

matches at these two times. Intuitively, some transitions will be

very unlikely, such as those requiring a complicated set of

maneuvers. Practically, we favor transitions whose driving

distance is about the same as the great circle distance between the

measurements.

Specifically, for a measurement 𝑧𝑡 and candidate road segment 𝑟𝑖 ,

the latitude/longitude point on the road segment nearest the

measurement is 𝑥𝑡,𝑖 . For the next measurement 𝑧𝑡+1 and candidate

road segment 𝑟𝑗 , the corresponding point is 𝑥𝑡+1,𝑗 . We compute

the driving distance between these two points using a

conventional route planner configured to give the route with the

shortest distance. We note that the correct pair of matched points

typically results in a very short route, because the matched points

on the road come from closely spaced GPS points. We refer to

this driving distance as the “route distance”, notated as 𝑥𝑡,𝑖 −

𝑥𝑡+1,𝑗 𝑟𝑜𝑢𝑡𝑒 . We compare the route distance to the great circle

distance between the measured points, 𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 .

Figure 4 shows an example of these distances.

Our intuition, confirmed by experiment, is that these two

distances will be about the same for correct matches. This is

because the relatively short distance traveled on the road(s)

between a pair of correct matches will be about the same as the

distance between the measured GPS points. We confirmed this by

looking at the ground truth matched roads, which we detail in

Section 5 (GROUND TRUTH DATA). We computed a histogram

of the absolute values of the differences between the great circle

distances and the route distances from the correct matches, shown

in Figure 5. This histogram fits well to an exponential probability

distribution given by Equation (2):

𝑝 𝑑𝑡 =
1

𝛽
𝑒

−𝑑𝑡
𝛽 (2)

Here

𝑑𝑡 = 𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 − 𝑥𝑡,𝑖∗ − 𝑥𝑡+1,𝑗 ∗
𝑟𝑜𝑢𝑡𝑒

 (3)

where 𝑖∗ and 𝑗∗ indicate the ground truth road segments of the

route that we describe in Section 5. We estimate the value of 𝛽 in

Section 5.2 (Parameter Estimation).

3.3 Optimal Path
With measurement probabilities from Equation (1) and transition

probabilities from Equation (2), we used the Viterbi algorithm to

compute the best path through the HMM lattice. The Viterbi

algorithm uses dynamic programming to quickly find the path

through the lattice that maximizes the product of the measurement

probabilities and transition probabilities. This gave us an

zt

zt+1

r1

r2

r3

xt,1

xt,3

xt+1,2

||xt,1-xt+1,2||route

||xt,3-xt+1,2||route

||z
t-
z t+

1
|| g

re
at

 c
irc

le

Figure 4: This shows an example of our notation. There

are three road segments, r1, r2, and r3, and two measured

points, zt and zt+1. The first measured point, zt, has

candidate road matches at xt,1 and xt,3 . Each match

candidate results in a route to xt+1,2 , which is a match

candidate for the second measured point, zt+1. These two

routes have their own lengths, as does the great circle

path between the two measured points. Our data shows

that the route distance and great circle distance are closer

together for correct matches than for incorrect matches.

Figure 5: The histogram of 𝒛𝒕 − 𝒛𝒕+𝟏 𝒈𝒓𝒆𝒂𝒕 𝒄𝒊𝒓𝒄𝒍𝒆 −

 𝒙𝒕,𝒊 − 𝒙𝒕+𝟏,𝒋 𝒓𝒐𝒖𝒕𝒆
 follows an exponential probability

distribution.

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2
abs(great circle distance - route distance) (meters)

Distance Difference Probability

Data Histogram

Exponential Distribution

inference of the correct road segment for each location

measurement.

Having explained our basic algorithm, we can now compare it to

two similar algorithms in the research literature. Hummel [9] used

an HMM for map matching. Her measurement probabilities used

the same Gaussian GPS noise assumption as ours, but she also

added a term for the heading mismatch between the vehicle and

the road. We did not use heading data, mostly because we are

assuming we have no compass data from the vehicle. While

heading can be computed from measured GPS points, this can be

very inaccurate when there is a long interval between GPS

measurements, which is a condition we investigated as part of our

research. Our transition probabilities are different from Hummel’s

in that ours take into account the empirical difference between

great circle distances and route distances, while Hummel uses a

simpler model that only accounts for roads immediately adjacent

to the current match candidate.

Compared to the work of Krumm et al. [12], our main difference

is in the transition probabilities. While we look at route distance

differences, Krumm et al. looked at route time differences. Time

differences are much more sensitive to traffic conditions, so are

likely less reliable than distance differences. They are also

sensitive to the peculiarities of the given route-finding algorithm,

with particular values to assess the time cost of turns and stops at

intersections. Also, in this paper’s algorithm, we test against

ground truth, test against inaccurate and subsampled GPS data,

make our data available for other researchers, and give several

practical implementation details, described in the next section.

4. ALGORITHM PARTICULARS
The HMM formulation described above represents a principled

approach to balancing the effects of measurement noise and

routing behavior. In practice, the algorithm can be made to work

better and faster with some simple enhancements that we

discovered by working with real GPS data.

4.1 Preprocessing
Before the GPS points are used to construct the HMM, we move

through the points in time sequence, removing points that are

within 2𝜎𝑧 of the previous included point. The justification for

this step is that until we see a point that is at least 2𝜎𝑧 away from

its temporal predecessor, our confidence is low that the apparent

movement is due to actual vehicle movement and not noise. This

has the benefit of reducing the number of steps in the HMM for

high sample rate data, which speeds processing. For our ground

truth data described in Section 5, this step eliminated about 38.9%

of the original data.

4.2 HMM Breaks
There are various conditions that induce a break in the HMM

lattice where all the transition probabilities from one time step to

the next are zero. We detail these conditions below, after which

we give a simple method to work around these breaks, effectively

removing unmatchable data.

The conditions that lead to a break are:

 Route Localization. In a pure implementation of the

algorithm, every road in the road network would be

considered as a potential match candidate, and a

complete route would be calculated between every one

of these match candidates. As mentioned in section 3.1,

to avoid an unreasonable amount of computation, we set

to zero the measurement probability of any road

segment more than 200 meters away from the GPS

point. From an implementation perspective, this means

we simply can ignore their existence and not add them

to the HMM. It is possible that there are GPS points in

our data set that have no match candidates within 200

meters, which causes our implementation to have no

match candidates for a particular time step in the HMM.

This situation may arise when the vehicle is travelling

on a road surface or parking structure that is not marked

on the map. It may also arise if the GPS is experiencing

particularly high noise, which we have seen when the

vehicle enters a tunnel or an urban canyon.

 Low Probability Routes. Assuming a connected road

network, it should be possible to find a route between

any two road segments on the map. However, once the

route distance 𝑥𝑡,𝑖 − 𝑥𝑡+1,𝑗 𝑟𝑜𝑢𝑡𝑒
 becomes much larger

than the great circle distance 𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 , the

transition probability 𝑝(𝑑𝑡) corresponding to that route

becomes very small. This can happen when the routes

become circuitous and strange. Rather than continue

seeking for a route that is obviously incorrect, we

terminate the search for a route when 𝑥𝑡,𝑖 −

𝑥𝑡+1,𝑗 𝑟𝑜𝑢𝑡 𝑒 becomes greater than

 𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 by 2000 meters or more, and

assign a probability of zero.

 GPS Outliers. There are two more tests for

reasonableness that we apply to any route calculated as

a transition between HMM states. Since we know we

are tracking ordinary vehicles on public streets, if a

calculated route would require the vehicle to exceed a

speed of 50 m/s (112 miles per hour, 180 kilometers per

hour), or travel in excess of three times the posted speed

limit, we consider the route to be unreasonable, and set

its probability to zero.

In the pure HMM model, which considers all match candidates

and all routes, however unlikely they may be, the Viterbi

algorithm will always be able to find a complete optimal path

through the HMM. However, because of the simplifications

described above, which limit the number of match candidates and

routes that will be considered, it is possible that there is no

complete path through the HMM.

In examining our data, we found that it typically follows a pattern

of long stretches of reasonably easy-to-match location

measurements, interspersed with occasional, short sequences that

are difficult to match, leading to the breaks described above. Our

first solution to this problem was to manually remove the

offending points, which was effective, but tedious. We automated

this process in the following way. When a break is detected

between time step 𝑡 and time step 𝑡 + 1, we remove measured

points 𝑧𝑡 and 𝑧𝑡+1 from the model, and check to see if the break

has been healed. The break is considered healed if the measured

points at 𝑡 − 1 and 𝑡 + 2 lead to a reconnection in the HMM after

rechecking the points with the bulleted conditions above. If the

break is still present, we continue to remove the points on either

side of the break until either the break is healed, or the break is

more than 180 seconds long. If the break exceeds this threshold,

we split the data into separate trips and do map matching on each

one separately. If the original data has a sampling period greater

than 180 seconds, we omit this heuristic and do not try to fix these

breaks.

5. GROUND TRUTH DATA
The data for our test route was collected by driving a known,

planned route in a vehicle containing a commercially available

consumer grade GPS device with a logging feature that records

the current latitude and longitude once per second. The device

uses the SiRF Star III GPS chipset and is enabled with WAAS. A

map of the route is shown in Figure 2. This route is about 80

kilometers (50 miles) long, and it took about 2 hours to drive. It

resulted in 7531 time stamped latitude/longitude pairs. This high

fidelity position data was then processed using a tool that applies

the map match algorithm and displays the result graphically so it

can be inspected and corrected if the algorithm has made an error.

The result of this “hand match” constitutes our ground truth data.

The scope of corrections available in the graphical tool is limited

to choosing alternate HMM states or transitions. Note that the

ground truth data is correct inasmuch that it represents the correct

path taken by the vehicle through the road network. The exact

location of the vehicle in the road network corresponding to each

GPS point in the ground truth data is unknowable, and therefore

the point selected as the match to each road, while reasonable,

should not be considered ground truth. Only the path that was

taken by the vehicle is known.

5.1 Degraded Data
We simulate degraded versions of the GPS data by removing

points and adding Gaussian random noise. We simulated sampling

periods of 2, 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300, 360,

420, 480, 540, and 600 seconds in addition to the original 1-

second data from our logger. We simulated random Gaussian

noise with standard deviations of 10, 15, 20, 30, 40, 50, 75, and

100 meters. We also included test data with no noise added. Note

that to simulate a particular noise level, we had to account for the

fact that there is already some random noise in the original data.

Fortunately, Gaussian noise is additive in the sense of the

equations below, so we could simulate any amount of additional

noise with knowledge of the original 𝜎𝑧 from the sensor.

𝑋1~𝑁 𝜇1 , 𝜎1
2

𝑋2~𝑁 𝜇2, 𝜎2
2

 𝑋1 + 𝑋2 ~𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2

(4)

In our case, since we assume zero-mean noise, 𝜇1 = 𝜇2 = 0.

5.2 Parameter Estimation
Our HMM needs two probability-related parameters. One is 𝜎𝑧 ,

which is the standard deviation of Gaussian GPS noise. We

estimate this starting with our 𝑧𝑡 measurements. For each of these,

we know the index 𝑖∗of the correctly matched road 𝑟𝑖∗ from our

manually matched ground truth data. Using the notation presented

in Section 3, the point on 𝑟𝑖∗ nearest 𝑧𝑡 is 𝑥𝑡,𝑖∗. If we assume this

was the actual location of the vehicle, then 𝑧𝑡 − 𝑥𝑡,𝑖∗
𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒

is an estimate of the magnitude of the GPS error. The standard

deviation of these values is our estimate of the GPS noise, 𝜎𝑧 . We

estimated 𝜎𝑧 using the median absolute deviation (MAD), which

is a robust estimator of standard deviation:

𝜎𝑧 = 1.4826 mediant 𝑧𝑡 − 𝑥𝑡,𝑖∗
𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒

 (5)

For our test data, this value was 𝜎𝑧 = 4.07 meters, which is a

reasonable value for GPS noise.

The other probability parameter we need is 𝛽 from the

exponential distribution in Equation (2). This describes the

difference between route distances and great circle distances. We

estimated 𝛽 with a robust estimator suggested by Gather and

Schultze [4]:

𝛽 =
1

ln 2
mediant 𝑧𝑡 − 𝑧𝑡+1 𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒

− 𝑥𝑡,𝑖∗ − 𝑥𝑡+1,𝑗 ∗
𝑟𝑜𝑢𝑡𝑒

(6)

Note that in Equations (5) and (6) we use 𝑥𝑡,𝑖∗ and 𝑥𝑡+1,𝑗 ∗ . The

stared 𝑖∗ and 𝑗∗ indicate the ground truth road segment that we

found by manually matching the measured GPS points.

The parameters 𝜎𝑧 and 𝛽 are the two, basic, adjustable parameters

for our map matching algorithm, and they explicitly represent the

tradeoff between our trust in the location measurements and

candidate routes. A larger value of 𝜎𝑧 , which measures noise in

the location measurements, represents less trust in the location

measurements. A larger value of 𝛽, which measures the difference

between great circle distances and route distances, represents

more tolerance of non-direct routes. In our work, we estimate

these two parameters directly from the data. An alternative would

be to find the values of 𝜎𝑧 and 𝛽 that optimize performance of the

algorithm. We leave this for future work.

5.3 Public Data Availability
Our GPS data, ground truth, and relevant road network are

available on a public Web page1. We made this data available to

facilitate the fair comparison of map matching algorithms. We

believe this is the only public data set in existence for map

matching.

6. RESULTS
We ran our algorithm on the test route shown in Figure 2. This 50-

mile route was sampled at 1 Hz, giving 7531 time stamped

latitude/longitude pairs. After removing points as described in

Section 4.1 (Preprocessing), there were 4605 remaining. The

result of running our algorithm is a road segment match for each

point except for about 100 that were discarded due to breaks, as

described in Section 4.2 (HMM Breaks).

We quantified the accuracy of the map matching by comparing

the ground truth route to the route determined by our algorithm. In

1 http://research.microsoft.com/en-us/um/people/jckrumm/MapMatchingData/data.htm

d+

d-

d0= length of correct route

(d-+d+)/d0 = reported error

d-= length erroneously subtracted

d+= length erroneously added

correct route matched route

Figure 6: This illustrates how we measured the error

between the correct route and the route from map

matching.

particular, we sum the lengths of incorrect road added to

and subtracted from the correct route. We divide this sum

by the length of the correct route to compute the fraction

of incorrect route, which is the error value we report. This

is shown in Figure 6. We chose this way to quantify

accuracy over these other candidates:

 Locations on Road. This accuracy measure

says that the matched point should be in the

same location as the actual vehicle. Since we

measured the vehicle’s location with inherently

noisy GPS, we do not know its actual location.

 Road Segment. This accuracy measure says

that the matched point should be on the same

road segment as the actual vehicle. While the

correct road segment is easier to guess than the

correct location, it is still ambiguous at

intersections, where a noisy measurement could

match to any of the roads converging at that

point.

Our map matching algorithm gave exactly the same route

as our ground truth in our test, which means it worked

perfectly at a one second sampling period and with GPS

accuracy location measurements.

We are interested in the performance of our algorithm

with degraded input data, as described in Section 5.1 (Degraded

Data). We degraded the data by subsampling and adding noise.

Subsampling is interesting because it shows how robust our

algorithm would be if the location sensor were to collect data at a

slower rate. If the algorithm works well at lower sampling rates,

this can lead to savings in bandwidth and storage for institutions

that collect data with the intent to match it to roads. Figure 7

shows how our results degrade with subsampling. We note that

the error is only 0.11% even when the sampling period grows to

30 seconds.

Added noise is interesting, because it gives an idea of how the

algorithm would perform if the location sensor were less accurate,

such as multilateration from WiFi access points or cell towers.

The plot in Figure 8 shows how well our algorithm performs with

added noise at different sampling periods. Surprisingly, it is more

sensitive to noise with a 1 second sampling period than at longer

periods. This is likely because frequent, noisy points tend to pull

the route rather violently in different directions. At longer

sampling periods, the algorithm shows robustness to measurement

noise as high as 50 meters standard deviation, which is roughly

the accuracy of WiFi-based multilateration.

To our knowledge, these are the first reported tests of these kind

for a map matching algorithm. We believe tests like this are

important to assess when the algorithm breaks down, which in

turn guides choices for how to sense the data.

7. CONCLUSIONS
As map matching becomes increasingly important for probing

traffic and driving behavior, it is important to have principled,

well-characterized map matching algorithms. We have presented a

new algorithm based on the HMM that explicitly accounts for

measurement noise and the feasible routes through the road

network. We tested the algorithm on an 80-kilometer (50 mile)

drive. Compared to manually matching the data, our algorithm

performed perfectly. We also tested how the accuracy of our

algorithm degrades when the location sampling rate decreases and

when the measurement noise increases. Significantly, we found

that even with 30 seconds between measured locations, the

accuracy of our algorithm was barely degraded. We believe this is

the first reported test of this kind for a map matching algorithm.

Finally, we made our test data, ground truth data, and road

network publicly available for other researchers to develop, test,

and compare their own map matching algorithms.

REFERENCES
1. Agapie, E., et al., Seeing Our Signals: Combining Location

Traces and Web-Based Models for Personal Discovery, in

International Conference On Mobile Systems, Applications

And Services (MobiSys 2009). 2008: Napa Valley, California,

USA. p. 6-10.

2. Alt, H., et al., Matching Planar Maps. Journal of Algorithms,

2003. 49: p. 262–283.

3. Brakatsoulas, S., et al., On Map-Matching Vehicle Tracking

Data, in 31st International Conference on Very Large

Databases (VLDB 2005). 2005: Trondheim, Norway p. 853-

864.

Figure 8: This shows how well our map matching algorithm performs

with different sampling periods and noise on the location

measurements. A lower value is better.

0

0.2

0.4

0.6

0.8

1

1 2 5 1
0

2
0

3
0

4
5

6
0

9
0

1
2

0

1
8

0

2
4

0

3
0

0

3
6

0

4
2

0

4
8

0

5
4

0

6
0

0

R
o

u
te

 M
is

m
at

ch
 F

ra
ct

io
n

Sampling Period (seconds)

Error vs. Sampling Period

Figure 7: Our algorithm's performance is still quite good

when the GPS samples are 30 seconds apart.

4. Gather, U. and V. Schultze, Robust Estimation of Scale of an

Exponential Distribution. Statistica Neerlandica, 2001. 53(3):

p. 327-341.

5. Greenfeld, J.S., Matching GPS Observations to Locations on a

Digital Map, in 81th Annual Meeting of the Transportation

Research Board. 2002: Washington, DC, USA.

6. http://www.bing.com/maps/. [cited 2009].

7. http://www.dash.net/. [cited 2009].

8. http://www.inrix.com/. [cited 2009].

9. Hummel, B., Map Matching for Vehicle Guidance, in Dynamic

and Mobile GIS: Investigating Space and Time, J. Drummond

and R. Billen, Editors. 2006, CRC Press: Florida.

10. Kim, S. and J.-H. Kim, Adaptive Fuzzy-Network-Based C-

Measure Map-Matching Algorithm for Car Navigation

System. IEEE Transactions on Industrial Electronics, 2001.

48(2): p. 432-441.

11. Krumm, J., A Markov Model for Driver Turn Prediction, in

Society of Automotive Engineers (SAE) 2008 World

Congress. 2008: Detroit, Michigan, USA.

12. Krumm, J., J. Letchner, and E. Horvitz, Map Matching with

Travel Time Constraints, in Society of Automotive Engineers

(SAE) 2007 World Congress. 2007: Detroit, Michigan, USA.

13. Lamb, P. and S. Thiebaux, Avoiding Explicit Map-Matching

in Vehicle Location, in 6th World Conference on Intelligent

Transportation Systems (ITS-99). 1999: Toronto, Canada.

14. Patterson, D.J., et al., Inferring High-Level Behavior from

Low-Level Sensors, in Fifth Internation Conference on

Ubiquitous Computing (UbiComp 2003). 2003, Springer. p.

73-89.

15. VanDiggelen, F., GNSS Accuracy: Lies, Damn Lies, and

Statistics, in GPS World. 2007. p. 26-32.

16. White, C.E., D. Bernstein, and A.L. Kornhauser, Some map

matching algorithms for personal navigation assitants.

Transportation Reserach Part C: Emerging Technologies,

2000. 8(1-6): p. 91-108.

http://www.bing.com/maps/
http://www.dash.net/
http://www.inrix.com/

