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Abstract. Programming by Examples (PBE) has the potential to revolutionize end-
user programming by enabling end users, most of whom are non-programmers, to
create scripts for automating repetitive tasks. PBE involves synthesizing intended
programs in an underlying domain-specific language (DSL) from example based
specifications (Ispec). We formalize the notion of Ispec and discuss some principles
behind designing useful DSLs for synthesis.

A key technical challenge in PBE is to search for programs that are consistent
with the Ispec provided by the user. We present a divide-and-conquer based search
paradigm that leverages deductive rules and version space algebras for manipulat-
ing sets of programs.

Another technical challenge in PBE is to resolve the ambiguity that is inherent
in the Ispec. We show how machine learning based ranking techniques can be used
to predict an intended program within a set of programs that are consistent with the
Ispec. We also present some user interaction models including program navigation
and active-learning based conversational clarification that communicate actionable
information to the user to help resolve ambiguity in the Ispec.

The above-mentioned concepts are illustrated using practical PBE systems for
data wrangling (including FlashFill, FlashExtract, FlashRelate), several of which
have already been deployed in the real world.
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1. Introduction

Program synthesis is the task of synthesizing a program that satisfies a given specifica-
tion [7]. The traditional view of program synthesis has been to synthesize programs from
logical specifications that relate the inputs and outputs of the program. A typical aca-
demic exercise in program synthesis is to synthesize complicated algorithms such as sort-
ing algorithms [31], graph algorithms [12], and bitvector algorithms [10]. For instance,
the logical specification for a sorting algorithm would state that the sorting algorithm
takes as input an array A[1 :: n] and outputs another array B[1 :: n] s.t. B is a permutation
of A, and B is sorted, i.e.,
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∀1≤ i < n : B[i]≤ B[i+1] ∧

∃σ , a permutation of [1 :: n],such that ∀1≤ i < n : B[i] = A[σ(i)]

Programming by examples (PBE) is a subfield of program synthesis, where the spec-
ification comes in the form of input-output examples. There are two key distinguishing
aspects of PBE that motivate dedicated investment in PBE technology. First, program
synthesis is a very hard problem in general—in contrast, the nature of example-based
specification in PBE makes PBE more tractable than program synthesis since reasoning
about concrete input states is much easier than dealing with properties over symbolic pro-
gram states. Second, writing logical/relational/complete specifications is hard for those
even with a programming background—in contrast, PBE can enable non-programmers
to create programs for automating repetitive tasks. Today, billions of users have access
to computational devices. However, 99% of these end users do not have programming
expertise and they often struggle with repetitive tasks in various domains that could oth-
erwise be automated using small scripts. PBE has the potential to revolutionize this land-
scape since users can often specify their intent using examples as has been observed on
various help forums [9].

We start out by describing three useful PBE tools in the space of data wrangling
(§2). Then, we present a unifying theory and methodology for PBE (§3).

2. Practical Applications in Data Wrangling

PBE has been applied to various domains [5,18], and some recent applications include
parsing [17], refactoring [20], query construction [27], and repetitive structured draw-
ings [4]. An important application area is that of household robotics, wherein each house-
hold has its own unique geography for the robot to navigate and unique set of chores for
the robot to perform—example-based training can be an effective means for program-
ming robots in such settings. However, while we wait for household robotics to become
more common, the killer application of PBE today is in the space of data wrangling/-
cleaning/manipulation.

Data Wrangling refers to the process of transforming the data from its raw format
to a more structured format that is amenable to analysis and visualization. It is estimated
that data scientists spend 80% of their time in data wrangling. Data is locked up into doc-
uments of various types such as text/log files, semi-structured spreadsheets, webpages,
JSON/XML, and pdf documents. These documents offer their creators great flexibility in
storing and organizing hierarchical data by combining presentation/formatting with the
underlying data. However, this makes it extremely hard to extract the underlying data for
several tasks such as processing, querying, altering the presentation view, or transform-
ing data to another storage format. PBE can make data wrangling a delightful experience
for the masses.

2.1. FlashFill

FlashFill [8,28] is a PBE tool for automating string transformations. The user provides
examples of input-output strings, and FlashFill generates a program to perform similar
transformations on other input strings.



Figure 1. FlashFill [8]: An Excel 2013 feature that automates repetitive string transformations us-
ing examples. Once the user performs one instance of the desired transformation (row 2, col. B)
and proceeds to transforming another instance (row 3, col. B), FlashFill learns a program Concate-
nate(ToLower(Substring(v,WordToken,1)), “ ”, ToLower(Substring(v,WordToken,2))) that extracts
the first two words in input string v (col. A), converts them to lowercase, and concatenates them separated by
a space character.

Excel 2013: FlashFill shipped as a feature in Excel 2013, where it allows users to create
a new derived column based on existing columns. Figure 1 illustrates this feature. The
Excel product team built a good UI that avoids the discoverability issue; the result being
that this was a well received feature among popular media 2, which carried quotes like:

• “With some experimentation, you may find that Flash Fill is smarter than you
expect” [PC Magazine]

• “Excel 2013’s coolest new feature that should have been available years ago”
[CNN Money]

• “In fact it’s so good it feels like magic” [Tech Radar]
• “Excel Flash Fill Is A Brilliant Time Saver” [Life Hacker]
• “shock-and-awe feature”, “Genius”, “most notable feature in Excel”
• “Sometimes it just takes a simple new feature in a popular piece of software to re-

mind us how computer science just does cool stuff.” [Computational Complexity
Blog]

2.2. FlashExtract

FlashExtract [15] is a PBE tool for extracting structured (tabular or hierarchical) data
from semi-structured text/log files and webpages. For each field in the output data
schema, the user provides positive/negative instances of that field and FlashExtract gen-
erates a program to extract all instances of that field. Figure 2 illustrates the capability of
this tool.

2http://research.microsoft.com/en-us/um/people/sumitg/flashfill.html



Figure 2. FlashExtract [15]: A PBE technology for extracting data from text files and web pages using exam-
ples. Once the user highlights one or two examples of each field in a different color (in the text file on the left
side), FlashExtract extracts more such instances and arranges them in a structured data format (table on the
right side).

Powershell: FlashExtract shipped as the ConvertFrom-String cmdlet in Powershell in
Windows 10, wherein the user provides examples of the strings to be extracted by in-
serting tags around them in text. 3 Since then, several Microsoft MVPs (Most Valued
Professionals) have built UI experiences on top of this cmdlet. Many blogs publicized
this feature 4, and labeled it as “New kid on the block”, “This is super cool !!”, “Serious
Text wrangling”, and “must admit that this cmdlet is to me one of the best improvement
that came with WMF5.0 and Powershell v5”.

Operations Management Suite: This product is a new Saas service for IT Pros to collect
machine data from any cloud and get operational insights. The FlashExtract capability
has been surfaced in this product to allow these IT Pros to extract custom fields from log
files 5.

2.3. FlashRelate

FlashRelate [2] is a PBE tool for extracting tabular/relational data out of semi-structured
spreadsheets. The user provides examples of tuples in the output table, and FlashRelate
generates a program to extract more such tuples from the input semi-structured spread-
sheet. Figure 3 illustrates the capability of FlashRelate.

3http://bit.ly/convertfrom-string
4http://research.microsoft.com/en-us/um/people/sumitg/flashextract.html
5http://tinyurl.com/oms-custom-fields



Figure 3. FlashRelate [2]: A PBE technology that can transform the top semi-structured table into the bottom
structured table once the user provides a couple of examples of the tuples in the output table (for instance, the
highlighted ones).

Spreadsheets are easy to use since they allow users great flexibility to store data.
This flexibility comes at a price: users often treat spreadsheets as a poor man’s database,
leading to creative solutions for storing high-dimensional data by using spatial layouts
involving headers, whitespace, and relative positioning. Thus while spreadsheets allow
compact and intuitive visual representations of data well suited for human understanding,
their flexibility complicates the use of powerful data-manipulation tools (e.g., PowerBI,
relational query engines) that expect data in a certain form. We call these spreadsheets
semi-structured because their data is in a regular format that is nonetheless inaccessible
to data-processing tools. It is conjectured that around 50% of spreadsheets contain data
in this not-easy-to-use format.

3. Overview

We now highlight the two main challenges in designing a good PBE system, and present
a brief overview of our approach in handling those challenges. This section also provides
a roadmap for the various technical sections in this article.

Challenge 1: Search Algorithm

An important challenge in PBE relates to designing a real-time search algorithm that
can facilitate an interactive session with the user. One of our key ideas is to restrict
the search over an appropriate domain-specific language (DSL), as also suggested by
the recent SyGuS methodology [1]. Another key idea is to exploit the semantics of the



operators in the underlying DSL to perform an intelligent search as opposed to, say, only
performing an enumerative brute-force search. Each of the PBE systems described in §2
is associated with a DSL and a search algorithm that is specialized to searching over that
DSL. Gulwani et.al. describe this general methodology in a CACM research highlights
article [9].

It turns out that there is a unifying theme that runs beneath each of those DSL-
specialized search algorithms. We capture this theme as part of a generic PBE search
algorithm that is parameterized by a DSL. The generic search algorithm (§7) takes as
input an example-based specification (§4), a DSL (§5), and produces a set of programs in
that DSL that are consistent with the example-based specification. The set of programs
synthesized by the search algorithm are represented succinctly using a data-structure
called version space algebras (§6).

Challenge 2: Dealing with Ambiguity

Examples are an ambiguous form of specification: there can be different programs that
are consistent with the provided examples, but these programs differ in their behavior on
some other inputs. If the user does not provide a large set of representative examples,
the PBE system may synthesize unintended programs. In 2009, Tessa Lau presented
a critical discussion of PBE systems noting that adoption of PBE systems is not yet
widespread, and proposing that this is mainly due to lack of usability and confidence in
such systems [13].

We present two complementary techniques that alleviate usability and confidence
issues that hamper adoption of PBE systems. First, we discuss use of ranking techniques
to predict an intended program from an under-representative specification (§8)—this in-
creases usability of the PBE system. Second, we discuss user interaction models for
PBE that provide transparency in the working of the underlying system and help resolve
ambiguities in the specification (§9)—this increases user confidence in the underlying
system.

4. Inductive Specification

Inductive synthesis or PBE traditionally refers to the process of synthesizing a program
from input-output examples. More formally, the specification consists of conjunction of
pure example-based constraints, where each constraint is specified by a pair of concrete
input state σ and concrete output value, and constrains the synthesized program to gen-
erate the specified output value on input σ . We generalize this formalism in two ways:
(a) Instead of requiring the concrete value of the output, we allow an arbitrary predicate
over the output. (b) Furthermore, we allow Boolean connectives over those predicates.
We refer to the resulting specification kind as Ispec, denoted by the symbol ψ , which is
a conjunction of pairs 〈σ ,φ〉, where σ is an input state and φ is a unary Boolean formula
over a program’s output o.

Generalization (a) is useful when describing the complete output on a given input
is too cumbersome or not useful, but the user can easily express part of the output or
more generally some properties of the output. For instance, consider the repetitive task
of extracting a list L of strings from a given document D. The input in this case is the



document D and the output is the desired list of strings. If the user were to provide the
complete output list, there might be nothing left to automate (unless the user wants to
run the synthesized script on another document of the same kind—even in that case,
providing the complete output would be time consuming and error prone). An alternative
of constructing a mock input [33] document that is small and representative would be
rather cumbersome. However, the user can easily provide a few examples of strings that
should belong to the output list L. The user can also easily provide examples of strings
that should not belong to the output list; this is useful when the underlying synthesizer
learns a program that extracts some unintended strings. The user may also provide a
contiguous subsequence of strings in L (as opposed to providing an arbitrary sample) or
for that matter, specify a prefix of the output list; in either of these cases, the user has
implicitly also asserted what does not belong to the output list. Such intent can be easily
communicated by the user and also provides valuable information to the synthesizer.

The generalization to allowing Boolean connectives (including disjunctions), arises
as part of the specification refinement process that happens internally in the synthesizer
algorithms. Specifications on DSL operators get refined into specifications on operator
parameters, and the latter specifications are often shaped as arbitrary Boolean formulas.
For instance, in FlashFill, the problem of synthesizing a substring operator that extracts
a given substring s from a given input string v is reduced to the problem of synthesizing
position extraction logics that return any occurrence of s in v (which is a disjunctive
specification).

An Ispec is not only much easier to provide for a user (compared to declarative
specifications), but also allows efficient synthesis algorithms. The presence of input states
in the specification allow us to only consider the program behavior on those specific input
states as opposed to analyzing the program behavior over all possible inputs. Thus, even
a simple enumerative search strategy can cluster program expressions that produce the
same result on those input states. Most significantly, a top-down search strategy becomes
feasible, wherein Ispec for a program expression can be reduced to Ispec for its sub-
expressions.

5. Domain Specific Language

We use functional domain-specific languages to restrict the search space for a program
synthesizer. These languages are characterized by a set of operators, and a syntactic re-
striction on how those operators can be composed with each other (as opposed to allow-
ing all possible type-safe composition of those operators).

The choice of a domain-specific language should be guided by various factors.

• Balanced Expressivity: On one hand, the DSL should be expressive enough to
represent a wide variety of tasks in the underlying task domain. But, on the other
hand, it should be restricted enough to allow efficient search.

• Choice of Operators: The DSL should be made up of operators that have efficient
witness functions (§7) in order to allow an efficient top-down deductive search
strategy.

• Naturalness: The programs in the DSL should involve natural computational pat-
terns that can be easily understood by the users. This can increase user’s confi-
dence in the system. In fact, these computational patterns should be similar to how



programmers might have written the code themselves. These programs might be
read by users, who might then select between these programs, edit them, and even
use them as part of larger workflows.

The FlashFill DSL represents programs that transform an n-ary tuple of strings into
another string. These programs involve computing substrings of the strings in the in-
put tuple, and then concatenating them appropriately. There is also support for restricted
forms of loops that concatenate a sequence of substrings from the input string to facil-
itate more sophisticated string transformations as in abbreviation computation or string
reversal. There is support for conditional computation at the very top level to account for
multiple data formats in the input.

The FlashExtract DSL represents programs that transform a large string (represent-
ing a semi-structured text/log file) into a list of strings. These programs involve splitting
the file into a list of lines, filtering this list, and then mapping it to another list using a
substring operator.

The FlashRelate DSL represents programs that transform a two-dimensional array
(representing a semi-structured spreadsheet) into a list of n-tuples (representing a rela-
tional table). These programs involve computing one of the columns in the output rela-
tional table using a filter operation over the two-dimensional array, followed by deriv-
ing other columns as map operations over an existing column using spatial offsets in the
input spreadsheet.

A DSL can be specified using a context-free grammar. The use of “let” construct
allows imposing useful restrictions on the allowed set of programs. We also allow (ex-
plicitly) paramterizing a non-terminal by the set of all free variables that occur in the
program expressions that the non-terminal expands to. Such a parameterization not only
makes it easy to understand the various variable bindings but also makes it easy to share
sub-languages across various DSLs.

5.1. Case study: Language for substring computation

We discuss below an iterative design of a language for substring computation that is used
as a sub-language inside both FlashFill and FlashExtract DSLs. This discussion reflects
the various design principles behind designing languages for synthesis.

Consider the following natural choice for the substring operator, whose semantics is
to extract the first match of regular expression R in string X .

Substring(X ,R)

If R is a simple or basic regular expression, this operator is not very expressive since
it does not take into account the context around the data to be extracted. For instance,
it cannot describe extraction of “second word”, or “content within parentheses”. On the
other hand, if we allow R to be an extended regular expression that allows binding vari-
ables to parts of the match, we get too expressive of a construct that hinders both learn-
ability and readability. So, we seek a construct that involves simple regular expressions
but also takes context into account.

We thus use the following choice for the substring operator, which takes as input a
string X , and two position expressions P and P′ that evaluate to positions/indices within
the string X , and returns the substring between those positions.



Substring(X ,P,P′)

Position expr P := Pos(X ,R1,R2,K)

The choice for position expression P includes the Pos(X ,R1,R2,K) operator, which
returns the Kth position within the string X such that (some suffix of) the left side
of that position matches with regular expression R1 and (some prefix of) the right
side of that position matches with regular expression R2. Consider the expression
e = Substring(x, p1, p2), where p1 = Pos(x,r1,r2,k) and p2 = Pos(x,r′1,r

′
2,k
′). When

r1 = r′2 = ε , e describes the substring. When r2 = r′1 = ε , e describes the context around
the substring. The general case is thus very expressive, allowing properties of both the
substring to be extracted and its context. Furthermore, each of the involved regular ex-
pressions is simple. Following are some substring tasks that can now be expressed:

• Second word: Substring(x,Pos(x,ε,Word,2),Pos(x,Word,ε,2))
• Content within brackets: Substring(x,Pos(s, ‘[’,ε,1),Pos(x,ε, ‘]’,1))
• Last 7 characters: Substring(x,Pos(x,ε,ε, -7))

The Substring language as defined above does not restrict the occurrences of non-
terminal X to evaluate to the same string expression and is thus unnecessarily too general.
We can fix this by using a “let” construct.

let x = X in

Substring(x,P,P′)

Position expr P := Pos(x,R1,R2,K)

When we look at the definition of the non-terminal P, it is not immediately clear
what the free variable x is bound to. We fix this by explicitly parameterizing the free
variable in the definition of P.

let x = X in

let p1 = P[x] in

let p2 = P[x] in

Substring(x, p1, p2)

Position expr P[y] := Pos(y,R1,R2,K)

While the Substring language above can express “the second word” or “the first
7 characters”, it cannot express “the first 7 characters of the second word”. We enable
such expressiveness by allowing the ending position of the substring to also be expressed
relative to that of the starting position of the substring. Below, Suffix (x,p) denotes the
suffix of string x starting after position p.

let x = X in

let p1 = P[x] in

let p2 = P[x] | p1 +P[Suffix(x, p1)] in

Substring(x, p1, p2)

Position expr P[y] := Pos(y,R1,R2,K)



Now, we can express “first 7 characters in second word” as: Substring(x, p1, p1 + 7),
where p1 = Pos(x,ε,Word,2).

The following is another extension that enables computing the starting position of
the substring relative to that of another position in the substring.

let x = X in

let p1 = P[x] | (let p0 = P[x] in (p0 +P[Suffix(s, p0)])) in

let p2 = P[x] | p1 +P[Suffix(x, p1)] in

Substring(x, p1, p2)

Position expr P[y] := Pos(y,R1,R2,K)

This allows expressing “second word within brackets” as: Substring(x, p1, p1 +
Pos(Suffix(x, p1),Word,ε,1)), where p1 = p0 + Pos(Suffix(x, p0),ε,Word,2) and
p0 = Pos(x, ‘[’,ε,1).

6. Version Space Algebras

Our PBE methodology manipulates sets of programs, for two reasons: First, since exam-
ples are an ambiguous form of specification, there are many programs that are consis-
tent with the example-based specification. We might want to compute many/all of them
in order to drive various user interaction models (§9). Second, the divide-and-conquer
based deductive search strategy (§7) often requires computing the set of all solutions
to the sub-problems in order to construct a solution to the top-level problem. In other
words, the top-down deductive search strategy often requires computing the set of all
(sub-)expressions that satisfy appropriate (sub-)specifications to synthesize expression(s)
that satisfy a given specification.

The sets of programs that thus arise are often huge, several powers of 10. Even
representing them explicitly would not be feasible, let along operating over such ex-
plicit set representations. However, it turns out that the programs in these sets share sub-
expressions, and as a result these programs can be represented succinctly using appro-
priate data structures, referred to as Version-space algebras (VSAs). VSAs were initially
defined by Mitchell [22] in the context of machine learning and were later used by Lau
et.al. for programming by demonstration [14], but were restricted to tree-based repre-
sentations. We have generalized the notion of VSAs to graph-based representations and
have also defined various useful operations over it [24].

A VSA data structure is a directed (and often acyclic) graph, where each node rep-
resents a set of program expressions. A leaf node is annotated with a set of program ex-
pressions and it represents the set containing those expressions. There are two kinds of
parent nodes. A (parent) union node simply has the semantics that it represents the union
of the sets of programs that are represented by its children nodes. A (parent) join node
with n children is annotated with an n-ary operator F with the semantics that it represents
the set of all program expressions of the kind F(e1, . . . ,en), where ei belongs to the set
of program expressions represented by the ith child of the node.

Note that a VSA data structure provides two kinds of sharing among program ex-
pressions. One is provided by the join node that represents the set of programs obtained



by taking the cross-product of the sets of programs represented by its children. The other
sharing is provided by virtue of having multiple incoming edges into a node, which rep-
resents the fact that we do not create two different copies of the same set of program
expressions.

There are several useful operations that can be defined over VSAs in a domain-
independent manner.

• Union: VSA×VSA→ VSA
The Union operation is implemented by simply creating a union VSA node whose
children are the input VSAs.

• Intersect: VSA×VSA→ VSA
The Intersect operation is performed by computing a cross-product of the two
input VSAs using an algorithm similar to that of automata intersection.

• TopRank: VSA×Ranking function× k→ Set of k top-ranked programs
The TopRank operation is implemented recursively by taking the top-ranked k
programs from the children VSAs associated with the top-level operator and then
identifying the top-ranked k programs at the top-level. This requires the ranking
function to be monotonic over an expression structure (higher-ranked subexpres-
sions produce higher-ranked expressions).

• Cluster: VSA× Set of input states →{VSAi}i
The Cluster operation takes as input a VSA and a set of input states σ̃ , and parti-
tions the input VSA into the smallest output set of VSAs {VSAi}i such that the
union of the sets of the programs represented by VSA1, . . .VSAn equals the set of
programs represented by the input VSA, and all programs in any VSAi produce
the same output on any input in σ̃ . The Cluster operation is implemented recur-
sively by clustering the children VSAs and then appropriately building top-level
clusters and merging some.

• Filter: VSA×ψ → VSA
The Filter operation takes as input a VSA and an inductive specification ψ and
produces the (largest) subset of the input VSA that satisfies ψ . The Filter op-
eration can be implemented by performing clustering based on all inputs states
present in ψ , deleting those top-level nodes that do not satisfy ψ , and then merg-
ing nodes to regain any sharing.

7. Search Algorithm

A simple search strategy would be to enumerate all programs in the underlying DSL, say
in order of increasing size [32]. However, this approach alone will not scale for expres-
sive DSLs of the kind used inside PBE tools described in §2. Another alternative strategy
would be to reduce the (second-order) search problem to (first-order) constraint solv-
ing using various recent techniques from literature [30,31,10], and leverage off-the-shelf
SAT/SMT constraint solvers like Z3 [3]. This allows leveraging the huge engineering ad-
vances that have been made in SAT/SMT constraint solving in an easy manner. Unfortu-
nately, our experience with this strategy has been that it is not very robust and real-time.
Furthermore, there is no easy way to incorporate ranking or to enumerate all/many so-
lutions (useful for ambiguity resolution). Similar challenges exist with stochastic search
techniques [26].



Our novel deductive search methodology [24] is based on standard algorithmic
paradigm of divide-and-conquer. It recursively reduces the problem of synthesizing a
program expression e of a certain kind and that satisfies a certain inductive specification
ψ to simpler sub-problems (where the search is either over sub-expressions of e or over
sub-specifications of ψ), followed by appropriately combining those results. The reduc-
tion logic for reducing a synthesis problem to simpler synthesis problems depends on the
nature of the involved expression e and the inductive specification ψ . Observe that, in
contrast to enumerative search, this search methodology is top-down, where it fixes the
top-part of an expression and then searches for its sub-expressions. Enumerative search
is typically bottom-up, where it enumerates smaller sub-expressions before enumerating
larger expressions.

We start out by discussing the notion of witness functions, which is used in defining
reduction logics for function applications (§7.2).

7.1. Witness Functions

A witness function for an operator is a backward transformer (i.e., a transformer for
computing preconditions) that translates the specification on the output of that operator
to a specification on the parameters of that operator. We require the resultant specification
to be in DNF (disjunctive normal form), where each disjunct consists of conjunctions of
constraints, each of which involves only one of the parameters. A witness function is said
to be sound if it generates an under-approximation to the weakest precondition (i.e., a
sufficient characterization). A sound witness function is said to be precise if it generates
the weakest precondition (i.e., a necessary and sufficient characterization). Often one can
design good heuristics to make a witness function efficient, albeit at the cost of making
it theoretically imprecise by not considering unlikely cases.

We give below several instances of witness functions. We use the notation e |= ψ

to denote the predicate ψ[e/o], i.e., the predicate obtained from ψ by replacing o by e.

Witness Function for Concatenate operator

Consider the operator Concatenate : String × String → String, which takes
as input two strings and concatenates them. Consider the witness function for the
Concatenate operator that transforms an equality specification by non-deterministically
splitting the output string into two parts and asserting that the prefix is generated by
the first parameter and the suffix is generated by the second parameter. Following is an
application instance of this precise witness function.

Concatenate(e1,e2) |= 〈σ ,o = “Abc”〉 ⇐⇒
3∨

i=0

(e1 |= 〈σ ,o = “Abc”[0, i]〉 ∧ e2 |= 〈σ ,o = “Abc”[i,3]〉) (1)

where s[i, j] denotes the substring of string s between the ith and the jth positions.
Suppose the Concatenate operator has a strong type signature in the underlying

DSL where it takes as input two non-empty strings.

Concatenate : Non-emptyString×Non-emptyString→ Non-emptyString



Then, its above-mentioned witness function can be strengthened to not consider splits
where the prefix or suffix is empty. The application in Eq. 1 can then be strengthened as
follows:

Concatenate(e1,e2) |= 〈σ ,o = “Abc”〉 ⇐⇒
2∨

i=1

(e1 |= 〈σ ,o = “Abc”[0, i]〉 ∧ e2 |= 〈σ ,o = “Abc”[i,3]〉) (2)

A good heuristic to make the above-mentioned witness function more efficient is
to avoid those cases that split the output string across standard character class bound-
aries such as [a-z], [A-Z], [0-9]. The application in Eq. 2 can be further strengthened as
follows:

Concatenate(e1,e2) |= 〈σ ,o = “Abc”〉 ⇐

e1 |= 〈σ ,o = “A”〉 ∧ e2 |= 〈σ ,o = “bc”〉

More sophisticated heuristics can inspect the input strings to determine the likely
case splits of the output string.

Witness function for Substring operator

Consider the operator Substring : String×Position×Position→ String, which
takes as input a string, and two positions within that string, and returns the substring
between those two positions. Consider the witness function for the Substring oper-
ator that reduces an equality specification by identifying all occurrences of the output
string within the input string, and asserting that the position expression parameters of the
Substring operator should evaluate to respective positions. Following is an application
instance of this precise witness function.

Substring(x, p1, p2) |= 〈x : “Ab cd Ab”,o = “Ab”〉 ⇐⇒

(p1 |= 〈x : “Ab cd Ab”,o = 0〉 ∧ p2 |= 〈x : “Ab cd Ab”,o = 2〉) ∨

(p1 |= 〈x : “Ab cd Ab”,o = 6〉 ∧ p2 |= 〈x : “Ab cd Ab”,o = 8〉)

Witness function for Map operator

Consider the standard map operator Map : (Function f : (T1 → T2))× List(T1) →
List(T2), which takes as input a list and a function f that operates over elements of that
list, and returns another list by applying the input function to each element of the input
list. There is no useful witness function for a generic map operator. However, for strongly
typed Map operators, where we know something about the behavior of the two parame-
ters to Map, it might be possible to define a witness function. One such general condition
is the existence of an inverse g to the function f under the constraints established by the
rich types associated with the parameters of the Map operator. In such a case, a precise
witness function can be defined for prefix/suffix/subsequence specifications, which as-
sert that certain specific elements c should belong to the output list (in an input state σ ).
The key idea is to replace any output list element c by g(c) and assert that the resultant
specification should be satisfied by the second parameter of the Map operator. For the



first parameter f of the Map operator, assert that it should satisfy
∧
c
〈σ [x 7→ g(c)],o = c〉,

i.e., for each element c, it should transform the input state, extended with the function
argument x bound to g(c), to c.

For instance, consider the strongly typed Map operator in the FlashExtract language
whose second parameter resolves to a list of line regions from the input text file and
whose first parameter is a function f that produces a substring region of its input region.
Then, the function g simply maps a region si (nested within a line) to its enclosing line
region `i. Following is an application instance of the above-mentioned witness function
for this strongly typed Map operator.

Map(λx : e1,e2) |= 〈σ ,Prefix([s1,s2],o)〉 =

e2 |= 〈σ ,Prefix([`1, `2],o)〉 ∧ e1 |=
∧

i=1,2

〈σ [x 7→ `i],o = si〉

Witness function for If-then-else operator

Consider the if-then-else operator ITE : Boolean Expr×T ×T → T with the standard
semantics. Consider the witness function for the ITE operator that non-deterministically
partitions the input states in the specification into two sets and asserts that the Boolean
expression is such that it evaluates to true on all states in one partition and to false on
all states in the other partition, and that the respective branches handle the specifications
associated with those states. Following is an application instance of this precise witness
function.

ITE(B,S1,S2) |= 〈σ1,φ1〉 ∧ 〈σ2,φ2〉 ⇐⇒ γ1∨ γ2∨ γ3∨ γ4, where

γ1 = B |= 〈σ1,o = true〉∧ 〈σ2,o = f alse〉 ∧ S1 |= 〈σ1,φ1〉 ∧ S2 |= 〈σ2,φ2〉

γ2 = B |= 〈σ1,o = true〉∧ 〈σ2,o = true〉 ∧ S1 |= 〈σ1,φ1〉∧ 〈σ2,φ2〉

γ3 = B |= 〈σ1,o = f alse〉∧ 〈σ2,o = true〉 ∧ S1 |= 〈σ2,φ2〉 ∧ S2 |= 〈σ1,φ1〉

γ4 = B |= 〈σ1,o = f alse〉∧ 〈σ2,o = f alse〉 ∧ S2 |= 〈σ1,φ1〉∧ 〈σ2,φ2〉

If the choice for B is closed under negation, and that S1 and S2 are the same non-
terminals, then it suffices to only consider cases γ1 and γ2. If we further make the as-
sumption that the user has provided representative scenarios, we can rule out γ2.

7.2. Reduction Logics

There are several reduction logics that apply to general expressions and specifications,
regardless of any domain. Let e be any non-terminal or right-hand side of any production
rule in the underlying DSL. We use the notation {e |= ψ} to denote the set of program
expressions of kind e that satisfy the inductive specification ψ .

The following reduction logics handle Boolean connectives in the specification.

{e |= 〈σ ,φ1∨φ2〉} = Union({e |= 〈σ ,φ1〉},{e |= 〈σ ,φ2〉})

{e |= 〈σ ,φ1∧φ2〉} = Intersect({e |= 〈σ ,φ1〉},{e |= 〈σ ,φ2〉})

{e |= ψ1∧ψ2} = Intersect({e |= ψ1},{e |= ψ2})



The Intersect and Union operations are the ones that are supported by the VSA data-
structure (§6).

The use of Intersect operation in the above reduction logics might be expensive be-
cause of the quadratic blowup in the implementation of the Intersect operation. Another
alternative strategy to handle conjunctive specifications is as follows, where Filter oper-
ation is another one of those operations supported by the VSA data-structure.

{e |= ψ1∧ψ2} = Filter({e |= ψ1},ψ2)

The following reduction logic applies when e is a non-terminal. Suppose e is defined
to be either e1 or e2 in the underlying DSL. Then,

{e |= ψ} = Union({e1 |= ψ},{e2 |= ψ})

We now discuss the case when e is a function application, say F(e1,e2). Suppose
the witness function for F translates the specification over function application, namely
F(e1,e2) |= ψ , into

∨
i

e1 |= ψi ∧ e2 |= ψ ′i (e2) (specification over function parameters).

Then, the following reduction logic applies:

{F(e1,e2) |= ψ} =
⋃

i

(F({e1 |= ψi},{e2 |= ψ
′
i}))

If the witness function for F is sound, the above reduction logic leads to computation of
correct solutions. Otherwise, it can be refined as follows:

{F(e1,e2) |= ψ} = Filter(
⋃

i

(F({e1 |= ψi},{e2 |= ψ
′
i})),ψ)

If the witness function for F is precise, the above reduction logics preserves all correct
solutions. If a precise witness function is not efficient, we can employ a multi-phase
approach, wherein synthesis is first performed using efficient (but imprecise) witness
functions, and if no satisfactory solution is returned, synthesis is then repeated using
precise witness functions.

8. Ranking

There are often many programs in an underlying DSL that are consistent with a given
set of training examples. If the user does not provide a representative set of input-output
examples, several of these programs might be unintended, i.e., they would produce an
undesired behavior on some other test input. Hence, the simple strategy of picking an ar-
bitrary program from this set might not yield an intended program. Insistence on a GIGO
(Garbage in, Garbage out) philosophy requiring users to always provide representative
inputs can hinder the usability of PBE technologies. We address the problem of learning
an intended program from a small number of examples by leveraging ranking functions
over programs.



8.1. Program features

A basic ranking scheme can be specified by defining a preference order over program ex-
pressions based on their features [8]. Two general principles that are useful across various
domains are: prefer smaller expressions (inspired by the classic notion of Kolmogorov
complexity) and prefer expressions with fewer constants (to force generalization).

Suppose the DSL underlying a PBE system includes constant expressions and con-
ditional expressions with equality predicates. Then, if the user provides a set of input-
output examples {(i1,o1),(i2,o2), . . . ,(in,on)}, then the PBE system might generate a
program that is simply a sequence of conditionals with constant branch expressions,
namely

if (i = i1) then o1

else if (i = i2) then o2

. . .

else if (i = in) then on

A useful generalization can be enforced by having the ranking scheme prefer smaller ex-
pressions over larger expressions (which in this case can be a program with no or smaller
number of conditionals that perform a more non-trivial computation than a simple case
split).

Suppose the DSL underlying a PBE system includes constant expressions. If the
user provides an input-output example (i,o), then the PBE system (if guided only by
the preference to pick smaller expressions) might generate a program that is simply the
constant expression o. A useful generalization can be enforced by having the ranking
scheme also prefer non-constant expressions above constant expressions.

For specific DSLs, more specific preferences can be defined based on the operators
that occur in their expressions. These preferences should be such that it should allow effi-
cient computation of top-ranked programs from a VSA representation. For instance, one
can define a partial order between different production rules for each non-terminal in
the DSL.

8.2. Data features

The likelihood of a program being the intended one not only depends on the structure
of that program, but also on features of the input data on which that program will be
executed and the output data produced by executing that program. Consider the task of
extracting years from input strings of the kind shown in the table below.

Input Output
Missing page numbers, 1993 1993
64-67, 1995 1995

The program P1: ”Extract 1st number from the end” can perform the intended task. How-
ever, if the user provides only the first example, another reasonable program that can be
synthesized is P2: ”Extract 1st number from the beginning”. There is no clear way to
rank P1 higher than P2 from just examining their structure. However, the output pro-



duced by P1 (on the various test inputs), namely {1993,1995, ....} is a more meaning-
ful set (of 4 digit numbers that are likely years) than the one produced by P2, namely
{1993,64} (which manifests greater variability). The meaningfulness or similarity of the
generated output can be captured via various features such as IsYear, numeric deviation,
IsPersonName, and number of characters.

8.3. Learning weights using Machine Learning

We have argued above the need for leveraging various features, related to both program
structure and test data, for ranking. The presence of multiple features for ranking leads to
the question: How much relative weightage do we give to the various features in order to
compute a final ranking score that can be used to compare the likelihood of various pro-
grams that are consistent with the user specification. The weights for various features can
be learned using machine learning techniques in an offline manner [28]. There are two
key aspects in learning these weights, namely generation of training data, and constraints
on what these weights should be.

The training data is defined by a collection of tasks. A task is associated with a set
of intended programs in the DSL that can correctly perform that task; note that there can
be multiple programs in a DSL that have the same intended behavior on the set of test
inputs that the user cares about. The set S1 of intended programs can be generated by
providing a representative enough specification to the underlying synthesizer. Now, for
each such task, we can also generate the set S2 of programs that match any weak form
of that representative specification (for instance, say the set of programs that are induced
by any one input-output example out of the 3 input-output examples in the representative
specification). Note that S2 is a superset of S1. Now, we want the weights to be such that
any of the (intended) programs in S1 should be ranked higher than each (unintended)
program in S2−S1. One way to learn these weights is to employ a gradient descent based
method to optimize an appropriate loss function that aims to rank any intended program
higher than all unintended programs [28].

9. User Interaction Models

While use of ranking in the synthesis methodology (as discussed in §8) attempts to avoid
selecting an unintended program, it cannot always succeed. Hence, it is important to
design appropriate user interaction models for the PBE paradigm that can provide the
equivalent of debugging experience in standard programming environments.

There are two important goals for a user interaction model that is associated with a
PBE technology [19]. First, it should provide transparency to the user about the synthe-
sized program(s). Second, it should guide the user in resolving ambiguities in the pro-
vided specification. (The ranking scheme, which tries to avoid unintended programs, can-
not always succeed.) §9.2 and §9.3 describe two complementary user interaction models
towards these goals.

9.1. Motivational Case Studies

FlashFill: The PBE engine behind FlashFill, which was released as an Excel 2013 fea-
ture, received many positive reviews from popular media. However, the user interface



for FlashFill left a lot to be desired. The FlashFill UI simply executes the highest ranked
program synthesized by FlashFill on new inputs without displaying the synthesized pro-
gram. While this has the advantage of simplicity, it does not inspire user confidence on
sensitive data. John Walkenbach, an author renowned for his Excel textbooks, labeled
FlashFill as a “controversial” feature. He wrote “It’s a great concept, but it can also
lead to lots of bad data. (...) Be very careful. (...) [M]ost of the extracted data will
be fine. But there might be exceptions that you don’t notice unless you examine the
results very carefully.”6

FlashExtract: The PBE engine behind FlashExtract, which powers the ConvertFrom-
String cmdlet in Powershell, was very well received by Microsoft MVPs (Most Val-
ued Professionals). However, the MVPs also complained that they had no visibility into
the process for debugging purposes. This prompted release of an improved version of
ConvertFrom-String cmdlet that provides a flag to enable display of the top-ranked pro-
gram synthesized by FlashExtract. While better than not having such a flag, an MVP still
complained: “If you can understand this, you’re a better person than I am.”

9.2. Program Navigation

A typical PBE interface might pick the top-ranked program and use it to automate the
user’s task (as in FlashFill), or even display that program to the user. The Program Nav-
igation user interaction model [19] builds over this typical UI experience in two ways:
First, it leverages a paraphrasing engine to paraphrase any DSL program into natural lan-
guage such as English. This enables non-programmers to have a better chance of under-
standing the synthesized programs. It also makes it easy for programmers to understand
the meaning of the synthesized programs, specially since they might not be familiar with
the underlying DSL.

Second, it allows users to navigate between all programs synthesized by the under-
lying search engine (as opposed to displaying only the top-ranked program) and to pick
one that is intended. The number of such programs can be huge (several powers of 10);
however, they share common sub-expressions and are described succinctly using VSAs.
The Program Navigation UI model leverages this sharing to create a navigational in-
terface that allows the user to select from different ranked choices for various parts of
top-ranked programs.

9.3. Conversational Clarification

Conversational Clarification is a novel complementary novel user interaction model [19]
based on active learning, wherein the system asks questions to the user to resolve am-
biguities in the user’s specification with respect to the available test data. These ques-
tions are generated after the PBE search engine has synthesized multiple programs that
are consistent with the user-provided specification. The system executes these multiple
programs on the test data to identify any discrepancies in the execution and uses that as
the basis for asking questions to the user. The user responses are used to refine the initial
specification and the process of program synthesis is repeated.

6http://spreadsheetpage.com/index.php/blog/C10/



Conversational Clarification is a proactive interface that asks clarifying questions of
the user for specification refinement. In contrast, Program Navigation is a reactive inter-
face that assists the user to explicitly correct any mistake made by the underlying PBE
engine while picking a DSL program that matches the user’s under-specified specifica-
tion.

10. Discussion

We now discuss some FAQs related to PBE.

Comparison with Machine Learning: It is interesting to compare PBE and Machine
learning (ML). While both involve example-based training and prediction on new unseen
data, they differ significantly in how they operate and hence they have complementary
strengths. For simple repetitive tasks that can be automated using small scripts, PBE is a
better technology for the following reasons:

• PBE generates human readable and editable programs (unlike black box models
produced by ML).

• PBE requires very few examples (unlike ML, which typically requires large
amount of training data).

• PBE generates scripts that are supposed to work with perfect precision on any
valid new input (unlike ML, which aims to generate models with high, but not
necessarily 100%, precision).

For fuzzy tasks, such as speech translation or image recognition, ML based technologies
are the only alternative (since no small script that can be generated by a PBE technology
can automate such sophisticated and fuzzy tasks).

However, machine learning can be used as an integral part of a PBE methodology in
various ways. First, it can be used to learn ranking functions for selecting among those
programs (generated by the search algorithm) that are consistent with the user specifi-
cation (§8.3). Second, it can even be used to drive the search process based on learned
biases about which production rules in a DSL are more likely to yield an intended pro-
gram given the user specification [21]. Third, it can be used in allowing DSLs with prob-
abilistic semantics, for handling noise in input data or for modeling semantic background
knowledge such as names or non-schematized datetimes [29].

Limitations of a given PBE tool: A user might wonder whether or not a given task
can be automated by a PBE tool for that task domain. If the underlying synthesizer is
complete (for instance, one that is based on witness functions that are precise), then
the following characterization can be used to answer this question: If the task that the
user intends to perform can be described by a program in the underlying DSL, then the
synthesizer will discover some program that can perform the intended task after the user
has provided a sufficient set of representative examples. (A good ranking scheme will
though ensure that most common tasks can be automated with very few examples.) On
the other hand, if the task that the user intends to perform cannot be described by a
program in the underlying DSL, then the system will eventually fail to find a program
after the user has provided sufficient set of examples (which cannot be described by any
program in the underlying DSL).



Deductive Synthesis vs. Inductive Synthesis: Deductive synthesis refers to the process
of synthesis using deductive techniques. Deductive synthesis has been traditionally used
for synthesis from formal logical specifications. Inductive synthesis refers to the pro-
cess of synthesis from inductive or example-based specifications. Inductive synthesis
has been traditionally performed using various techniques including enumerative search
and constraint-based techniques. Deductive synthesis and inductive synthesis are not two
ends of a spectrum, but rather they belong to two different dimensions [7], one that re-
lates to the synthesis technique, and the other that relates to the form of the user specifi-
cation. The methodology described in this article combines both deductive synthesis and
inductive synthesis in that it performs synthesis using deductive techniques from induc-
tive specifications. Recent work by Osera et.al. [23] and Feser et.al. [6] also belong to
this category.

11. Conclusion

The programming languages research community has traditionally catered to the needs
of professional programmers in the continuously evolving technical industry. However,
there is a new opportunity that knocks our doors. The recent IT revolution has resulted
in the masses having access to personal computing devices. More than 99% of these
computer users are non-programmers and are today limited to being passive consumers
of the software that is made available to them. The PBE paradigm can empower these
users to more effectively leverage computers for their daily tasks by allowing them to
create small scripts using examples.

A killer application, which has appropriately driven research in PBE forward in the
last few years, is that of data wrangling. Data is the new oil. While the digital revolution
resulted in massive digitization of human generated data, the past few years have seen an
explosive growth in machine generated data, thanks to cloud computing and IoT. Data
scientists are estimated to spend around 80% time wrangling data before it is brought into
a form where they can apply machine learning techniques to draw appropriate insights
from. PBE has enabled faster and easier data wrangling.

Building useful end-to-end PBE systems requires cross-disciplinary inspiration.
Logical reasoning techniques of the kind developed in the Formal methods community
can drive development of efficient search algorithms and heuristics (§7). Language de-
sign principles from the community of Programming Languages can inspire creation of
useful DSLs (§5). Machine learning techniques are useful in ranking (§8). The field of
Human-computer interaction plays a significant role in designing user interaction models
(§9).

There are two big opportunities going forward. One is to enable by-example inter-
action for any relevant feature in any software such as filtering by example, group-
ing by example, sorting by example, formatting by example, etc. Such a software can
then proudly model itself with the logo “PBE inside”. In order to enable this, we need to
empower expert developers (who can write DSLs, but are not necessarily expert in de-
veloping search techniques) to be able to build such functionalities without further help
from researchers. The search methodology described in this article, which packages var-
ious search strategies inside a modular framework and is parameterizable by DSLs, shall
facilitate such a future of industrialization of development of PBE technologies.



The other big opportunity is to define the next generation of programming expe-
rience that goes beyond composing syntactically correct sequence of instructions to re-
alize a particular task. This new paradigm shall facilitate interactive programming using
multi-modal natural input from the user. While this article has focused on techniques
for handling example-based specification, it turns out that natural language is a better fit
for certain class of tasks such as spreadsheet queries [11] and smartphone scripts [16].
More generally, the new paradigm shall allow expressing intent using combination of
various means [25] such as examples, demonstrations, natural language, keywords, and
sketching of a partial program [30]. Such a new paradigm shall also require designing
new forms of debugging support involving active learning.
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