
Program Analysis as Constraint Solving

Sumit Gulwani
Microsoft Research, Redmond

sumitg@microsoft.com

Saurabh Srivastava∗

University of Maryland, College Park
saurabhs@cs.umd.edu

Ramarathnam Venkatesan
Microsoft Research, Redmond

venkie@microsoft.com

Abstract
A constraint-based approach to invariant generation in programs
translates a program into constraints that are solved using off-the-
shelf constraint solvers to yield desired program invariants.

In this paper we show how the constraint-based approach can
be used to model a wide spectrum of program analyses in an ex-
pressive domain containing disjunctions and conjunctions of lin-
ear inequalities. In particular, we show how to model the problem
of context-sensitive interprocedural program verification. We also
present the first constraint-based approach to weakest precondition
and strongest postcondition inference. The constraints we gener-
ate are boolean combinations of quadratic inequalities over integer
variables. We reduce these constraints to SAT formulae using bit-
vector modeling and use off-the-shelf SAT solvers to solve them.

Furthermore, we present interesting applications of the above
analyses, namely bounds analysis and generation of most-general
counter-examples for both safety and termination properties. We
also present encouraging preliminary experimental results demon-
strating the feasibility of our technique on a variety of challenging
examples.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms Algorithms, Theory, Verification

Keywords Program Verification, Weakest Precondition, Strongest
Postcondition, Most-general Counterexamples, Bounds Analysis,
Non-termination Analysis, Constraint Solving

1. Introduction
Discovering inductive program invariants is critical for both prov-
ing program correctness and finding bugs. Traditionally, iterative
fixed-point computation based techniques like data-flow analy-
ses [25], abstract interpretation [11] or model checking [13] have
been used for discovering these invariants. An alternative is to use
aconstraint-based invariant generation[8, 10, 7, 32] approach that
translates (the second-order constraints represented by) a program

∗ This author performed the work reported here during a summer internship
at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00.

into (first-order quantifier-free) satisfiability constraints that can be
solved using off-the-shelf solvers. The last decade has witnessed a
revolution in SAT/SMT based methods enabling solving of indus-
trial sized satisfiability instances. This presents a real opportunity
to leverage these advances for solving hard program analysis prob-
lems.

Constraint-based techniques offer two other advantages over
fixed-point computation based techniques. First, they are goal-
directed and hence have the potential to be more efficient. Sec-
ondly, they do not require the use of widening heuristics that are
used by fixed-point based techniques leading to loss of precision
that is often hard to control.

In this paper, we present constraint-based techniques for three
classical program analysis problems, namelyprogram verification,
weakest preconditiongeneration andstrongest postconditiongen-
eration over the abstraction of linear arithmetic. Using this core
framework of analyses we further show interesting applications
to bounds analysis and finding most-general counterexamples to
safety and termination properties. A distinguishing feature of our
preliminary tool is that it can uniformly handle a large variety of
challenging examples that otherwise require many different spe-
cialized techniques for analysis. The key contributions of this pa-
per lie in the uniform constraint-based approach to core program
analyses (Sections2–5) and their novel applications (Section6).

The goal ofprogram verificationis to discover invariants that
are strong enough to verify given assertions in a program. Current
constraint-based techniques are limited to discovering conjunctive
invariants in an intraprocedural setting. We present a constraint-
based technique that can generate linear arithmetic invariants with
boundedboolean structure(Section2), which also allows us to
extend our approach to acontext-sensitive interprocedural setting
(Section3). A key idea of our approach is a scheme for reduc-
ing second-order constraints to SAT constraints and this can be re-
garded as an independent contribution to solving a special class of
second-order formulas. Another key idea concerns an appropriate
choice of cut-set, which has until now been overlooked in other
constraint-based techniques. Our tool can verify assertions (safety
properties) in benchmark programs (used by alternative state-of-
the-art techniques) that require disjunctive invariants and sophis-
ticated procedure summaries. We also show how constraint-based
invariant generation can be applied to verifying termination proper-
ties as well as the harder problem ofbounds analysis(Section6.1).

The goal ofstrongest postcondition generationis to infer pre-
cise invariants in a given program so as to precisely characterize
the set of reachable states of the program. Current constraint-based
invariant generation techniques work well only in a program veri-
fication setting, when the problem enforces the constraint that the
invariant should be strong enough to verify the assertions. How-
ever, in absence of assertions in programs, there is no guarantee
about the precision of invariants. We describe a constraint-based
technique that can be used to discover some form of strongest in-
variants (Section5). In the area of fixed-point computation based

techniques, the problem of generating precise invariants has led to
development of several widening heuristics that are tailored to spe-
cific classes of programs [40, 18, 16, 17]. Our tool can uniformly
discover precise invariants for all such programs.

The goal ofweakest precondition generationis to infer the
weakest precondition that ensures validity of all assertions in a
given program. We present a constraint-based technique for dis-
covering some form of weakest preconditions (Section4). Our tool
can generate weakest preconditions of safety as well as termination
properties for a wide variety of programs that cannot be analyzed
uniformly by any other technique.

We also describe an interesting application of weakest precondi-
tion generation, namely generatingmost-general counterexamples
for both safety (Section6.2) and termination (Section6.3) prop-
erties. The appeal of generating most-general counterexamples (as
opposed to generating any counterexample) lies in characterizing
all counterexamples in a succinct specification that provides better
intuition to the programmer. For example, if a program has a bug
when (n ≥ 200 + y) ∧ (9 > y > 0), then this information is
more useful than simply generating any particular counterexample,
sayn = 356 ∧ y = 7 (Figure10). We have also successfully ap-
plied our tool to generate weakest counterexamples for termination
of some programs (taken from recent work [22]).

2. Program Verification
Given a program with some assertions, the program verification
problem is to verify whether or not the assertions are valid. The
challenge in program verification is to discover the appropriate in-
variants at different program points, especially inductive loop in-
variants that can be used to prove the validity of the given asser-
tions. (The issue of discovering counterexamples, in case the asser-
tions are not valid, is addressed in Section6.2.)

Program model In this paper, we consider programs that have
linear assignments, i.e., assignments of the formx := e, or non-
deterministic assignmentsx :=?. We also allow for assume and
assert statements of the formassume(p) andassert(p), wherep
is some boolean combination of linear inequalitiese ≥ 0. Here
x denotes some program variable that takes integral values, and
e denotes some linear arithmetic expression. Since we allow for
assume statements, without loss of generality, we assume that all
conditionals in the program are non-deterministic.

2.1 Background: Conversion of programs to constraints

The problem of program verification can be reduced to the problem
of finding solutions to a second-order constraint. The second-order
unknowns in this constraint are the unknown program invariants
that are inductive and strong enough to prove the desired asser-
tions. In this section we describe the conversion of programs to
constraints.

We first illustrate the process of constraint generation for an
example program. Consider the program in Figure1(a) with its
control flow graph in Figure1(b). The program’s precondition is
true and postcondition isy > 0. To prove the postcondition, we
need to find a loop invariantI at the loop header. There are three
paths in the program that constrainI. The first corresponds to the
entry case; the path fromtrue to I. The second corresponds to the
inductive case; the path that starts and ends atI and goes around
the loop. The third corresponds to the exit case; the path fromI to
y > 0. Figure1(c) shows the corresponding formal constraints.

We now show how to generate such constraints in a more gen-
eral setting of any arbitrary procedure. The first step is to choose a
cut-set. Acut-setis a set of program locations (calledcut-points)
such that each cycle in the control flow graph passes through some
program location in the cut-set. One simple way to choose a cut-set

PV1 (int y) {
x := −50;
while (x < 0) {

x := x + y;
y++;

}
assert(y > 0)

}

y > 0

true

x < 0

x := x + y
y++

Y
N

I

x := −50

(a) (b)

∀x,yφ(I):
true ⇒ I[−50/x]

I ∧ x < 0 ⇒ I[(y+1)/y, (x+y)/x]
I ∧ x ≥ 0 ⇒ y > 0

(c)

Figure 1. (a) A program verification example (b) The correspond-
ing control flow graph (c) Constraint generated from the program
over the unknown loop invariantI at loop header. Our tool gener-
ates a disjunctive solution(x < 0 ∨ y > 0) for the invariantI.

is to include all targets of back-edges in any depth first traversal
of the control-flow graph. (In case of structured programs, where
all loops are natural loops, this corresponds to choosing the header
node of each loop.) However, as we will discuss in Section2.3,
some other choices of cut-set may be more desirable from an effi-
ciency/precision viewpoint. For notational convenience, we assume
that the cut-set always includes the program entry locationπentry

and exit locationπexit.
We then associate each cut-pointπ with a relation Iπ over

program variables that are live atπ. The relationsIπentry andIπexit

at program’s entry and exit locations respectively are set totrue,
while the relations at all other cut-points are unknown relations
that we seek to discover. Two cut-points areadjacent if there
is a path in the control flow graph from one to the other that
does not pass through any other cut-point. We establish constraints
between the relations at adjacent cut-pointsπ1 andπ2 as follows.
Let Paths(π1, π2) denote the set of paths betweenπ1 and π2

that do not pass through any other cut-point. We use the notation
VC(π1, π2) to denote the constraint that the relationsIπ1 andIπ2

at adjacent cut-pointsπ1 andπ2 respectively are consistent with
respect to each other:

VC(π1, π2) = ∀X

0@ ^
τ∈Paths(π1,π2)

(Iπ1 ⇒ ω(τ, Iπ2))

1A
Above,X denotes the set of program and fresh variables that occur
in Iπ1 andω(τ, Iπ2). The notationω(τ, I) denotes the weakest pre-
condition of pathτ (which is a sequence of program instructions)
with respect toI and is as defined below:

ω(skip, I) = I
ω(x := e, I) = I[e/x]
ω(x :=?, I) = I[r/x]

ω(assume p, I) = p⇒ I
ω(assert p, I) = p ∧ I

ω(S1; S2, I) = ω(S1, ω(S2, I))

where r is some fresh variable and the notation[e/x] denotes
substitution ofx by e and may not be eagerly carried out across
unknown relations.

Let π1, π2 range over pairs of adjacent cut-points. Then any
solution to the unknown relationsIπ in the following (verification)
constraint (which may also have substitutions), yields a valid proof
of correctness.

^
π1,π2

VC(π1, π2) (1)

Observe that this constraint is universally quantified over the pro-
gram variables and is a function of~I, the vector of relationsIπ at all
cut-points (includingIπentry , Iπexit). We therefore write it as the
verification constraint∀X.φ(~I). For program verificationIπentry

andIπexit are set totrue. Going back to the example, the second-
order constraints corresponding to the program in Figure1(a) are
shown in Figure1(c) and correspond to the entry, inductive and exit
constraints for the loop.

2.2 Constraint solving

In this section we show how to solve the second-order constraint
from Eq. 1 that represents the verification condition of unknown
relations at cut-points. One way to solve these constraints for dis-
covering the unknown invariantsIπ is to use fixed-point based tech-
niques like abstract interpretation. Another (significantly manual)
approach is to require the programmer to provide the invariants at
the cut-points, which can then be verified using a theorem prover.
Instead, we take the approach of reducing the second-order con-
straint into a boolean formula such that a satisfying assignment to
the formula maps to a satisfying assignment for the second-order
constraint. Throughout this section, we will illustrate our reduction
over the constraints from Figure1(c).

Our constraint-solving approach involves three main steps.
First, we assume some invariant templates (possibly disjunctive)
and reduce the second-order constraints to first-order constraints
over the unknown parameters of the templates. We then make use of
Farkas’ lemma [38] to translate the first-order constraints (with uni-
versal quantification) into an existentially quantified multi-linear
quadratic constraint. These constraints are then translated into a
SAT formula using bit-vector modeling (instead of solving them
using specialized mathematical solvers [8, 10]). These three steps
are detailed below.

Step 1 First, we convert second-order unknowns to first-order un-
knowns. Instead of searching for a solution to unknown relations
(which are second-order entities) from an arbitrary domain, we re-
strict the search to a template that is some boolean combination of
linear inequalities among program variables. For example, an un-
known relation can have the template(

P
i

aixi ≥ 0 ∧
P
i

bixi ≥

0) ∨ (
P
i

cixi ≥ 0 ∧
P
i

dixi ≥ 0), whereai, bi, ci, di are all un-

known integer constants andxi are the program variables. The tem-
plate can either be provided by the user (for example, by specifying
the maximum number of conjuncts and disjuncts in DNF represen-
tation of any unknown relation), or we can have an iterative scheme
in which we progressively increase the size of the template until a
solution is found. Given such templates, we replace the unknown
relations in the constraint in Eq.1 by the templates and then apply
any pending substitutions to obtain a first-order logic formula with
unknowns that range over integers.

For the example in Figure1(a), a relevant invariant template
is a1x + a2y + a3 ≥ 0 ∨ a4x + a5y + a6 ≥ 0, where the
ai’s are (integer) unknowns to be discovered. If the chosen domain
for the template is not expressive enough then the constraints will
be unsatisfiable. On the other hand if there is redundancy then
redundant templates can always be instantiated withtrue orfalse
as required. This step of the reduction translates the verification
constraint in Figure1(c) with second-order unknownsI to first-
order unknownsai’s. For example, the first constraint in Figure1(c)
after Step 1 istrue ⇒ (−50a1 + a2y + a3 ≥ 0) ∨ (−50a4 +
a5y + a6 ≥ 0).

Step 2 Next, we translate first-order universal quantification to
first-order existential quantification using Farkas’ lemma (at the
cost of doing away with some integral reasoning). Farkas’ lemma
implies that a conjunction of linear inequalitiesei ≥ 0 (with
integral coefficients) is unsatisfiable over rationals iff some non-
negative (integral) linear combination ofei yields a negative quan-
tity, i.e.,

∀X

¬(
^
i

ei ≥ 0)

!
⇐⇒

∃λ > 0, λi ≥ 0

"
∀X

 X
i

λiei ≡ −λ

!#
The reverse direction of the above lemma is easy to see since it is
not possible for a non-negative linear combination of non-negative
expressionsei to yield a negative quantity. The forward direction
also holds since the only way to reason about linear inequalities
over rationals is to add them, multiply them by a non-negative
quantity or add a non-negative quantity.

The universal quantification on the right hand side of the above
equivalence is over a polynomial equality, and hence can be gotten
rid of by equating the coefficients of the program variablesX on
both sides of the polynomial equality.

We can convert any universally quantified linear arithmetic for-
mula∀X(φ) into an existentially quantified formula using Farkas’
lemma as follows. We convertφ in conjunctive normal form

V
i

φi,

where each conjunctφi is a disjunctions of inequalities
W
j

ej
i ≥ 0.

Observe that∀X(φ) =
V
i

∀X(φi) and thatφi can be rewritten as

¬
V
j

(−ej
i −1 ≥ 0). Hence, Farkas’ lemma, as stated above, can be

applied to each∀X(φi).
We illustrate the application of this step over the first constraint

from Figure1(c) that we obtained after Step 1. After Step 1 we have
true⇒ e1 ≥ 0∨e2 ≥ 0 (wheree1 ≡ −50a1+a2y+a3 ≥ 0 and
e2 ≡ −50a4 +a5y +a6 ≥ 0 as obtained earlier). After expanding
the implication we get a constraint that is already in CNF form and
therefore the corresponding unsatisfiability constraint is¬((−e1−
1 ≥ 0) ∧ (−e2 − 1 ≥ 0)). Farkas’ lemma can now be applied to
yield∃λ1, λ2 ≥ 0, λ > 0(∀x,yλ1(−e1−1)+λ2(−e2−1) ≡ −λ).
Now we can collect the coefficients forx, y to get a first-order
existential constraint. Notice thatλ1 (respectivelyλ2) is multiplied
with the coefficients insidee1 (respectivelye2) and therefore this is
a multi-linear quadratic constraint over integer variables. Equating
the coefficients ofy and the constant term we get the constraints:
(50a1λ1 − a3λ1 − λ1) + (50a4λ2 − a6λ2 − λ2) = −λ and
a2λ1 + a5λ2 = 0.

Application of Farkas’ lemma leads to a loss of completeness
since we do away with some integral reasoning. For example,
Farkas’ lemma cannot help us prove unsatisfiability of3x ≥ 1 ∧
2x ≤ 1, wherex ranges over integers. However, we have not found
this loss of completeness to be a hindrance in any of our benchmark
examples.

Step 3 Next, we convert the first-order existentially quantified (or
quantifier-free) formula obtained from Step 2 to a SAT formula.
The formula that we obtain from Step 2 is a conjunction of (multi-
linear quadratic polynomials) over integer variables. We convert
such a formula into a SAT formula by modeling integer variables
as bit-vectors and encoding integer operations like arithmetic, mul-
tiplication, and comparison as boolean operations over bit-vectors.

Our approach to constraint solving is sound in the sense that any
satisfying solution to the SAT formula yields a valid proof of cor-
rectness. However, it is not complete, i.e., there might exist a valid

proof of correctness but the SAT formula might not be satisfiable.
This is not unexpected since program verification in general is an
undecidable problem, and no algorithm can be expected to be both
sound and complete. However, our constraint solving approach is
complete under two assumptions (i) the unknown invariants are in-
stances of given templates, (ii) checking consistency of invariants
at adjacent cut-points does not require integral reasoning. We have
found that both these assumptions are easily met for our benchmark
examples. The real challenge instead lies in finding the satisfiability
assignment for the SAT formula, for which the recent engineering
advances in SAT solvers seem to stand up to the task.

2.3 Choice of cut-set

The choice of a cut-set affects the precision and efficiency of our
algorithm (or, in fact, of any other constraint-based technique).
The choice of a cut-set has been overlooked in constraint-based
approaches. [4] recently proposed a technique for performing fixed-
point computation on top of constraint-based technique to regain
some precision, which we claim was inherently lost in the first
place because of a non-optimal choice of cut-set. In this section,
we describe a novel strategy for choosing a cut-set that strikes a
good balance between precision and efficiency.

From definition of a cut-set, it follows that we need to include
some program locations from each loop into the cut-set. One simple
strategy is to include all header nodes (or targets of back-edges) as
cut-points. Such a choice of cut-set necessitates searching/solving
for unknown relations over disjunctive relations when the proof of
correctness involves a disjunctive loop invariant. It is interesting to
note that for several programs that require disjunctive loop invari-
ants, there is another choice for cut-set that requires searching for
unknown relations over only conjunctive domains. Furthermore,
even the number of conjuncts required are less compared to those
required when the header nodes are chosen to be cut-points. This
choice for cut-set corresponds to choosing one cut-point on each
path inside the loop. In presence of multiple sequential condition-
als inside a loop, this requires expanding the control-flow inside the
loop into disjoint paths and choosing a cut-point anywhere on each
disjoint path. In fact, this choice for cut-set leads to the greatest
precision in the following sense.

THEOREM 1. Let C be a cut-set that includes a program location
on each acyclic path inside a loop (after expansion of control
flow inside the loop into disjoint paths). Suppose that the search
space for unknown relations is restricted to templates that have a
specified boolean structure. If there exists a solution for unknown
relations corresponding to any cut-set, then there also exists a
solution for unknown relations corresponding to cut-setC.

The proof of Theorem1 is given in the full version of this pa-
per [21]. Furthermore, there are several examples that show that
the reverse direction in Theorem1 is not true (i.e., there exists a
solution to the unknown relations corresponding to cut-setC, but
there is no solution to unknown relations corresponding to some
other choice of cut-set). This is illustrated by the example in Fig-
ure2 (discussed below).

Examples Consider the example shown in Figure2. Letπi denote
the program point thatimmediately precedesthe statement at line
i in the program. The simplest choice of cut-set corresponds to
choosing the loop header (program locationπ2). The inductive
invariant that is required at the loop header, and is discovered by
our tool, is the disjunction(0 ≤ x ≤ 51 ∧ x = y) ∨ (x ≥
51 ∧ y ≥ 0 ∧ x + y = 102). If we instead choose the cut-set to be
{π4, π6} (based on the strategy described in Theorem1), then the
inductive invariant map is conjunctive. This is significant because
conjunctive invariants are easier to discover. Our tool discovers the

PV2() {
1 x := 0; y := 0;
2 while (true) {
3 if (x ≤ 50)
4 y++;
5 else
6 y--;
7 if (y < 0)
8 break;
9 x++;

10 }
11 assert(x = 102)
}

Figure 2. Another program verification example (taken from [16])
that requires a disjunctive invariant at the loop header. However, a
non-standard choice of cutset (as suggested in Theorem1) leads to
conjunctive invariants.

inductive invariant map{π4 7→ (y ≥ 0 ∧ x ≤ 50 ∧ x = y), π6 7→
(y ≥ 0 ∧ x ≥ 50 ∧ x + y = 102)} in such a case.

However, the choice of cut-set mentioned in Theorem1 does not
always obviate the need for disjunctive invariants. The example in
Figure1(a) has no conditionals inside the loop, and yet any (linear)
inductive invariant required to prove the assertion is disjunctive
(e.g., (x < 0) ∨ (y > 0), which is what our tool discovers).
Heuristic proposals [34, 4] for handling disjunction will fail to
discover invariants for such programs.

3. Interprocedural Analysis
Theω computation described in previous section is applicable only
in an intraprocedural setting. In this section, we show how to extend
our constraint-based method to perform a precise (i.e., context-
sensitive) interprocedural analysis.

Precise interprocedural analysis is challenging because the be-
havior of the procedures needs to be analyzed in a potentially un-
bounded number of calling contexts. Procedure inlining is one way
to do precise interprocedural analysis. However, there are two prob-
lems with this approach. First, procedure inlining may not be possi-
ble at all in presence of recursive procedures. Second, even if there
are no recursive procedures, procedure inlining may result in an
exponential blowup of the program.

A more standard way to do precise interprocedural analysis is to
compute procedure summaries, which are relations between proce-
dure inputs and outputs. These summaries are usually structured as
sets of pre/postcondition pairs(Ai, Bi), whereAi is some relation
over procedure inputs andBi is some relation over procedure in-
puts and outputs. The pre/postcondition pair(Ai, Bi) denotes that
whenever the procedure is invoked in a calling context that satisfies
constraintAi, the procedure ensures that the outputs will satisfy the
constraintBi. However, there is no automatic recipe to efficiently
construct or even represent these procedure summaries, and ab-
straction specific techniques may be required. Data structures and
algorithms for representing and computing procedure summaries
have been described over the abstraction of linear constants [33],
and linear equalities [29]. Recently, some heuristics have been de-
scribed for the abstraction of linear inequalities [39].

In this section, we show that a constraint-based approach is
particularly suited to discovering such useful pre/postcondition
(Ai, Bi) pairs. The key idea is to observe that the desired behavior
of most procedures can be captured by a small number of such
(unknown) pre/postcondition pairs. We then replace the procedure
calls by these unknown behaviors and assert that the procedure,
in fact, has such behaviors as in assume-guarantee style reason-
ing [23]. For ease of presentation and without loss of generality, let

IP1() {
x := 5; y := 3;
result := Add(x, y);
assert(result = 8);

}
Add(int i, j) {

if i ≤ 0
ret := j;

else
b := i− 1;
c := j + 1;
ret := Add(b, c);

return ret;
}

IP2() {
result :=M(19)+M(119);
assert(result = 200);

}
M(int n) {

if(n > 100)
return n− 10;

else
return M(M(n + 11));

}

(a) (b)

Figure 3. Interprocedural analysis examples. (a) is taken from [39,
30]. (b) is the famous McCarthy 91 function [28, 27, 26], which
requires multiple pre/postcondition pairs.

us assume that a procedure does not read/modify any global vari-
ables; instead all global variables that are read by the procedure are
passed in as inputs, and all global variables that are modified by the
procedure are returned as outputs.

Suppose we conjecture that there areq interesting pre/post-
condition pairs for procedureP (x){S; return y; }with the vector
of formal argumentsx and vector of return valuesy. In practice, the
value ofq can be iteratively increased until invariants are found that
make the constraint system satisfiable. Then, we can summarize the
behavior of procedureP usingq tuples(Ai, Bi) for 1 ≤ i ≤ q,
whereAi is some relation over procedure inputsx, while Bi is
some relation over procedure inputs and outputsx andy. We assert
that this is indeed the case by generating constraints for eachi as
below and asserting their conjunction:

assume(Ai); S; assert(Bi); (2)

We compile away procedure callsv := P (u) on any simple path
by replacing them with the following code fragment:

v :=?; assume

 ^
i

(Ai[u/x]⇒ Bi[u/x, v/y])

!
; (3)

Observe that in our approach, there is no need, in theory, to
haveq different pre/postcondition pairs. In fact, the summary of a
procedure can also be represented as some formulaφ(x, y) (with
arbitrary Boolean structure) that represents relation between pro-
cedure inputsx and outputsy. In such a case, we assert thatφ
indeed is the summary of procedureP by generating constraint
for {S; assert(φ(x, y)); }, and we compile away a procedure
call v := P (u) by replacing it by the code fragmentv :=
?; assume(φ[u/x, v/y]). However, our approach of maintaining
multiple symbolic pre/postcondition pairs (which is also inspired
by the data structures used by the traditional fixed-point computa-
tion algorithms) is more efficient since it enforces more structure on
the assume-guarantee proof and leads to lesser unknown quantities
and simpler constraints.

Examples Consider the example shown in Figure3(a). Our tool
verifies the assertion by generating the pre/post pair(i ≥ 0, ret =
i+j) for procedureAdd. This example illustrates that only relevant
pairs are computed for each procedure. In addition to serving as
the base case of the recursion the true branch of the condition
insideAdd has the concrete effect formalized by the pre/post pair
(i < 0, ret = j). However, this behavior is not needed to prove
any assertion in the program and is therefore suppressed.

The procedureM(int n) in Figure 3(b) is the widely known
McCarthy91 function whose most accurate description is given

by the pre/post pairs(n > 100, ret = n − 10) and (n ≤
100, ret = 91). The function has often been used as a benchmark
test for automated program verification. The goal directed nature
of the verification problem allows our tool to derive(101 ≤ n ≤
119, ret = n − 10) and(n ≤ 100, ret = 91) as the pairs that
prove the program assertion. As such, it discovers only as much as
is required for the proof.

4. Weakest Precondition
Given a program with some assertions, the problem of weakest
precondition generation is to infer the weakest preconditionIπentry

that ensures that whenever the program is run in a state that satisfies
Iπentry , the assertions in the program hold. In Section6 we show
that a solution to this problem can be a useful tool for a wide range
of applications.

In this section, we present a constraint-based approach to infer-
ring weakest preconditions under a given template. Since a precise
solution to this problem is undecidable, we work with a relaxed
notion of weakest precondition. For a given template structure (as
defined in step 2.1 in Section2), we say thatA is a weakest pre-
condition if A is a precondition that fits the template and involves
constants whose absolute value is at mostc (wherec is some given
constant such that the solutions of interest are those that involve
constants whose absolute value is at mostc) and there does not
exist a weaker precondition thanA with similar properties.

The first step in a constraint-based approach to weakest precon-
dition generation is to treat the preconditionIπentry as an unknown
relation in Eq.1, unlike in program verification where we setIπentry

to betrue. However, this small change merely encodes that any
consistent assignment toIπentry is a valid precondition, not neces-
sarily the weakest one. In fact, when we run our tool with this small
change for any example, it returnsfalse as a solution forIπentry .
Note thatfalse is always a valid precondition, but not necessarily
the weakest one.

One simple approach to finding the weakest precondition may
be to search for a precondition that is weaker then the current
solution (which can be easily enforced by adding another constraint
to Eq.1), and to iterate until none exists. However, this approach
can have a very slow progress. When we analyzed Figure4(a)
(discussed below) using this approach, our tool iteratively produced
i ≥ j+127, i ≥ j+126, . . . ,i ≥ j under a modeling that used 8-bit
two’s-complement integers. In general this naı̈ve iterative technique
will be infeasible. We need to augment the constraint system to
encode the notion of a weakest relation.

We can encode thatIπentry is a weakest precondition as follows.
The verification constraint in Eq.1 can be regarded as function of
two argumentsIπentry andIr, whereIr denote the relations at all
cut-points except at the program entry location, and can thus be
written as∀X.φ(Iπentry , Ir). Now, for any other relationI ′ that is
strictly weaker thanIπentry , it should not be the case thatI ′ is a
valid precondition. This can be stated as the following constraint.

∀X.φ(Iπentry , Ir) ∧
∀I ′, I ′r

`
weaker(I ′, Iπentry)⇒ ¬∀X.φ(I ′, I ′r)

´
whereweaker(I ′, Iπentry)

def
= (∀X.(Iπentry ⇒ I ′) ∧ ∃X.(I ′ ∧

¬Iπentry)).
The trick of using Farkas’ lemma to get rid of universal quantifi-

cation (Step 2.2 in Section2) cannot be applied here because there
is existential quantification nested inside universal quantification.
In this section we describe some iterative techniques for generating
weakest preconditions. We present two different novel approaches
in Sections4.1and4.2.

WP1(int i, j) {
x := y := 0;
while (x ≤ 100) {

x := x + i;
y := y + j;

}
assert(x ≥ y)

}

Merge(int m1, m2, m3) {
assert(m1 ≥ 0 ∧m2 ≥ 0)
k := i := 0;
while (i < m1) {

assert(0 ≤ k < m3)
A[k++] = B[i++];

}
i := 0;
while (i < m2) {

assert(0 ≤ k < m3)
A[k++] = C[i++];

}
}

(a) (b)

Figure 4. Weakest Precondition Examples.

Examples For the procedure in Figure4(a), our tool generates
two different conjunctive preconditions (which individually ensure
the validity of the given assertion): (i)(i ≥ j), which ensures that
when the loop terminates thenx ≥ y, (ii) (i ≤ 0), which ensures
that the loop never terminates making the assertion unreachable and
therefore trivially true.

Figure 4(b) shows an array merge procedure that is called to
merge two arraysB, C of sizesm1, m2 respectively into a third
oneA of sizem3. The procedure is correct if no invalid array access
are made (stated as the assertions inside the loops) when it is run
in an environment where the input arraysB andC are proper (i.e.
m1, m2 ≥ 0, which is specified as an assertion at the procedure
entry). For theMerge procedure in Figure4(b), our tool generates
two different conjunctive preconditionsm3 ≥ m1 + m2 ∧m1 ≥
0 ∧m2 ≥ 0 andm1 = 0 ∧m2 = 0.

4.1 Binary search strategy

First, note that without loss of generality we can assume that the
weakest precondition to be discovered is a conjunctive invariant.
This is because we can obtain the disjunctive weakest precondition
as disjunctions of disjoint weakest conjunctive solutions.1

THEOREM 2. Let I ≡
nV

i=1

ei ≥ 0 be some non-false precondition.

For anyn× (n + 1) matrixD of non-negative constants, letI(D)

denote the formula
nV

i=1

Di,n+1 +

nP
j=1

Di,jei ≥ 0

!
. Let I ′ be

some weakest precondition (in our template structure) s.t.I ⇒ I ′.
Then,

A1. There exists a non-negative matrixD′ such thatI ′ = I(D′).
A2. For any matrixD′′ that is strictly larger thanD′ (i.e.,D′′

i,j ≥
D′

i,j for all i, j andD′′
i,j > D′

i,j for somei, j), I(D′′) is not a
precondition (in our template structure).

A3. For any (non-negative) matrixD′′′ that is smaller thanD′ (i.e.,
D′′′

i,j ≥ D′
i,j for all i, j), I(D′′′) is a precondition.

PROOF: A1 follows from Farkas’ lemma.A2 follows from the
fact thatI(D′′) is strictly weaker thanI(D′) andI(D′) is a
weakest precondition.A3 follows from the fact thatI(D′′′) is
stronger thanI(D′).

�

1 The significance of generating a weakest conjunctive solution that is
disjoint with other weakest conjunctive solutions already generated lies in
the fact that the number of weakest conjunctive solutions may potentially be
unbounded. However, the number of weakest disjoint conjunctive solutions
is finite.

WPreFromPre(Input: Precondition I)
1 Di,j := 0;
2 foreach 1 ≤ i, j ≤ n:
3 low := 0; high := MaxN;

4 while (high− low > 1
MaxD

)
5 mid := (high + low)/2;
6 Di,j := mid;
7 if ∃ a precondition I ′ s.t. I(D)⇒ I ′

8 then low := mid;
9 else high := mid;

10 Di,j := low;
11 Output a precondition I ′ s.t. I(D)⇒ I ′.

Figure 5. A binary-search based iterative algorithm for computing
a weakest precondition starting from any non-false precondition.

Theorem2 suggests a binary search based algorithm (described
in Figure 5) for finding a weakest precondition. The parameters
MaxN andMaxD denote an upper bound on the values of the numer-
ator and denominator of any rational entry of the matrixD′ referred
to in Theorem2(A1). Since the absolute values of all coefficients
in I andI ′ are bounded above byc, MaxD andMaxN are bounded
above byNN/2 × cN , whereN = n2. 2

Observe that the preconditions in line7 and line 11 can be
generated by simply adding the additional constraintI(D) ⇒
Iπentry to the verification condition for the procedure, and then
solving for the resulting constraint using the technique discussed
in Section2. Also note that the matrixD computed at the end is
not exactly the matrixD′ referred to in Theorem2(A1) but is close
enough in the sense that any precondition weaker thanI(D) is a
weakest one.

The algorithm in Figure5 involves making a maximum of
n2×log (MaxN× MaxD) queries to the constraint solver. Hence, it is
useful to start with a non-false precondition with the least value ofn
(wheren denotes the number of conjunctions of linear inequalities
in the input preconditionI). Such a precondition can be found by
iteratively increasing the number of conjuncts in the template for
the precondition until one is found.

In the next Section, we describe another algorithm for generat-
ing a weakest precondition, which we found to be more efficient
for our benchmark examples.

4.2 Locally pointwise-weakest strategy

For simplicity of presentation, we assume that each non-trivial
maximally strongly connected component in the control flow graph
has exactly one cut-point (an assumption that can also be ensured
by simple transformations [21]). However, the results in this section
can be extended to the general setting without this assumption.

The algorithm for generating a weakest precondition is de-
scribed in Figure6. Line 8 initializes Iπ to a pointwise-weakest
relation (defined below) for each cut-pointπ in reverse topologi-
cal order of the control dependences between different cut-points.
(Note that since we assume that each maximal SCC does not have
more than one cut-point, there are no cyclic control dependences

2 This is because the entries in matrix D are solutions to a system of
linear equations each of whose coefficients are bounded in absolute value
by c. These linear equations are obtained by equating the coefficients of
corresponding variables in then equivalences represented byI′ = I(D′).
The solution to each unknown in a system of linear equations can be
described by ratio of two determinants whose entries are coefficients of
the linear equations. Since there can be at mostn2 linearly independent
equations amongn2 unknowns, each entry in matrixD can be expressed
as ratio of two determinants, each of size at mostN ×N whereN = n2,
and all of whose entries are bounded in absolute value byc.

WPre(Input: Neighborhood structure N)
1 foreach cutpoint π in reverse topological order:
2 I := false;
3 while ∃ a relation I ′ at π s.t.
4 (a)

V
π′∈Successors(π)

VC(π, π′)[Iπ ← I ′]

5 (b) I ⇒ I ′ but I ′ 6⇒ I

6 (c)
V

I′′∈N(I′)

 W
π′∈Successors(π)

¬VC(π, π′)

!
[Iπ ← I ′′]

7 do {I := I ′};
8 Iπ := I;
9 Output Iπentry;

Figure 6. Another iterative algorithm for computing a weakest
precondition based on an input neighborhood structureN.

between different cut-points.) We define a relationI at a cut-point
to be pointwise-weakest if it is a weakest relation that is consis-
tent with respect to the relations at its neighboring (successor) cut-
points. It is easy to see that the pointwise-weakest relation thus
generated at the program entry location will be a weakest precon-
dition.

The while loop in Line3 generates a pointwise-weakest relation
at a cut-pointπ by generating alocally pointwise-weakestrelation
(as defined below) with respect to the input neighborhood struc-
tureN in each iteration and repeating the process to obtain a weaker
locally pointwise-weakest relation until one exists. (This process
is conceptually similar to iterating over local minimas to obtain a
global minima.) We say that a relationI is a locally pointwise-
weakest with respect to a neighborhoodN if it is a weakest rela-
tion among its neighbors that is consistent with respect to the rela-
tion at its neighboring (successor) cut-points. A locally pointwise-
weakest relation can be generated by simply solving the constraints
on Lines5-6 using the technique discussed in Section2. Observe
that the constraintsI ′ 6⇒ I and ¬VC(π, π′) are already exis-
tentially quantified, and hence do not require the application of
Farkas’ lemma to remove universal quantification. The only dif-
ference is that we now obtain quadratic inequalities as opposed to
quadratic equalities obtained at the end of Step 2 (on Page3) of our
constraint-solving methodology. However, the bit-vector modeling
in Step 3 works equally well for quadratic equalities as well as in-
equalities. Also note that the neighborhood structureN should be
such that it should be possible to enumerate all elements ofN(I ′)
for any invariant templateI ′.

The performance of our algorithm crucially depends on the
choice of the input neighborhood structure, which affects the num-
ber of iterations of the loop in Line3. A denser neighborhood struc-
ture may result in lesser number of iterations of the while loop (i.e.,
a lesser number of queries to the constraint solver), but a larger
sized query as a result of the condition in Line7. We describe be-
low a neighborhood structure that we found to be quite efficient for
our purposes; in fact, it required upto 3 iterations for most of our
benchmark examples. However, (unlike the binary search strategy
described in previous section), we have not been able to prove a
formal bound on the worst-case number of queries to the constraint
solver that our choice of neighborhood structure can yield because
of repeated iterations of the while loop.

4.2.1 Neighborhood Structure

In this section, we describe the neighborhood structureN that we
used in our experiments. The set of relations that are in the neigh-
borhoodN of a conjunctive relation (in which, without loss of gen-
erality, we assume that all inequalities are independent of each

Swap(int x) {
while (∗)

if (x = 1)
x := 2;

else if (x = 2)
x := 1;

assert(x ≤ 8);
}

SP2() {
d := t := s := 0;
while(1)

if (*)
t++; s := 0;

else if (*)
if (s < 5)

d++; s++;
}

(a) (b)

Figure 7. (a) Weakest precondition example that has two locally
pointwise-weakest relations at program entry. (b) Strongest Post-
condition example taken from [16, 17].

other) are as described below.

N(

n̂

i=1

ei ≥ 0) = {ej + 1 ≥ 0 ∧
^
i6=j

ei ≥ 0 | 1 ≤ j ≤ n} ∪

{ej + e` ≥ 0 ∧
^
i6=j

ei ≥ 0 | j 6= ` ∧ 1 ≤ j, ` ≤ n} (4)

Geometric Interpretation: The neighborhood structure described
above has a nice geometric interpretation. The neighbors of a con-
vex region

V
i

ei ≥ 0 are obtained by slightly moving any of the

hyper-planesej ≥ 0 parallel to itself, or by slightly rotating any
of the hyper-planesej ≥ 0 along its intersection with any other
hyper-planee` ≥ 0.

We extend the neighborhood structure defined above to relations
in DNF form (in which, without loss of generality, we assume that
all disjuncts are disjoint from each other) as:

N(

m_
i=1

Ii) = {I ′j ∨
_
i6=j

Ii | 1 ≤ j ≤ m; I ′j ∈ N(Ij)}

Notice how the above choice of the neighborhood structure
helps avoid the repeated iteration over the preconditionsi ≥ j +
127, i ≥ j + 126, . . . , i ≥ j (as alluded in Section4 on Page4)
to obtain the weakest preconditioni ≥ j for the example in Fig-
ure 4(a). None of these preconditions excepti ≥ j is locally
pointwise-weakest with respect to the above neighborhood struc-
ture. Hence, the use of the above neighborhood structure requires
only one iteration of the while loop in the algorithm in Figure6 for
obtaining weakest precondition for the example in Figure4(a).

However, a locally pointwise-weakest relation with respect to
the neighborhood structure defined above may not be a pointwise-
weakest relation. For example, consider the program in Figure7(a).
The relationsx ≤ 0 andx ≤ 8 are both locally pointwise-weakest
relations (with respect to the above neighborhood structure) at pro-
gram entry. However, only the relationx ≤ 8 is a pointwise-
weakest relation at program entry (and hence a weakest precon-
dition). Hence, use of the above neighborhood structure requires
two iterations of the while loop in the algorithm in Figure6 for
obtaining weakest precondition for the example in Figure7(a).

5. Strongest Postcondition
The problem of strongest postcondition is to generate the most pre-
cise invariants at a given cut-point. Just as in the weakest precon-
dition case, we work with a relaxed notion of strongest postcon-
dition, wherein we are interested in finding a strongest postcondi-
tion, whose proof of correctness is expressible in the given template
structure.

Our technique for generating strongest postcondition is very
similar to the weakest precondition inference technique described
in the previous section. We use the algorithm described in Figure8

SPost(Input: Neighborhood structure N)
1 foreach cutpoint π in topological order:
2 I := true;
3 while exists a relation I ′ at π s.t.
4 (a)

V
π′∈Predecessors(π)

VC(π′, π)[Iπ ← I ′]

5 (b) I ′ ⇒ I but I 6⇒ I ′

6 (c)
V

I′′∈N(I′)

 W
π′∈Predecessors(π)

¬VC(π′, π)

!
[Iπ ← I ′′]

7 do {I := I ′};
8 Iπ := I;
9 Output Iπexit;

Figure 8. An iterative algorithm for computing a strongest post-
condition based on an input neighborhood structureN.

(in place of the algorithm described in Figure6) with the following
neighborhood structure (in place of the one mentioned in Eq.4).

N(

n̂

i=1

ei ≥ 0) = {ej − 1 ≥ 0 ∧
^
i6=j

ei ≥ 0 | 1 ≤ j ≤ n} ∪

{ej − e` ≥ 0 ∧
^
i6=j

ei ≥ 0 | j 6= ` ∧ 1 ≤ j, ` ≤ n}

Examples For a more general version of the procedure in Fig-
ure2, wherein we replace the constant50 by a symbolic constant
m that is asserted to be non-negative, our tool generates the post-
conditionx = 2m + 2.

For the procedure in Figure7(b), our tool generates the strongest
postconditions + d + t ≥ 0 ∧ d ≤ s + 5t.

6. Applications
In earlier sections, we have described constraint-based techniques
for verification of safety properties. In this section, we show how to
apply those techniques for finding counterexamples to safety prop-
erties, verification of termination (which is a liveness property), and
finding counterexamples to termination.

6.1 Termination and Bounds Analysis

The termination problem involves checking whether the given pro-
cedure terminates under all inputs. In this section, we show how
to use the constraint-based approach to solve a harder problem,
namely bounds analysis. The problem of bounds analysis is to find
a worst-case bound on the running time of a procedure (say in terms
of the number of instructions executed) expressed in terms of its in-
puts.

We build on the techniques that reduce the bounds analysis
problem to discovering invariants of a specific kind [20]. The key
idea is to compute bounds on loop iterations and number of re-
cursive procedure call invocations. Each of these can be bounded
by appropriately instrumenting counter variables and estimating
bounds on counter variables. In particular, the number of loop it-
erations of a while loop “whilec do S” can be bounded by com-
puting upper bound on the instrumented variablei inside the loop
in the following code fragment: “i := 0; while c do { i++; S; }”.
The number of recursive procedure call invocations of a procedure
“P (x) { S }” can be bounded similarly by computing an upper
bound on global variablei inside procedureP in the following code
fragment: “P (x) { i := 0; P ′(x); }; P ′(x′) { i++; S[x′/x]; }”.

CLAIM 1. Let P be a given program. LetP ′ be the transformed
program obtained after instrumenting counters that keep track of
loop iterations and recursive call invocations and introducing par-
tial assertions at appropriate locations that assert that the counters

Loop(int n,m,x0,y0) {
assert(x0 < y0);
x := x0; y := y0;
while (x < y)

x := x + n;
y := y + m;

}

Loop(int n,m,x0,y0) {
assert(x0 < y0);
x := x0; y := y0; i := 0;
while (x < y)

i++;
assert(i ≤ f(n, m, x0, y0));
x := x + n;
y := y + m;

}
Original Program Instrumented Program

Figure 9. Discovering weakest preconditions for termination.

are bounded above by some function of the inputs. The programP
terminates iff the assert statements inP ′ are satisfied.

Invariant generation tools such as abstract interpretation can
be used to compute bounds on the counter variables (as proposed
in [20]). We show instead that a constraint-based approach is par-
ticularly suited for discovering these invariants since they have a
specified form and involve linear arithmetic. We introduce assert
statements with templatesi < a0 +

P
i

aixi (at the counter incre-

ment i++ site in case of loops and at the end of the procedure in
case of recursive procedures) for bounding the counter variable.

Besides the counter instrumentation strategy mentioned above,
[20] also describes some other counter instrumentation strategies
that can be used to compute non-linear bounds as a composition
of linear bounds on multiple instrumentation counters. Such tech-
niques can also be used in our framework to compute non-linear
bounds using linear templates.

Additionally, the constraint-based approach solves an even
harder problem, namely inferring preconditions under which the
procedure terminates and inferring a bound under that precondition.
For this purpose, we simply run the tool in weakest precondition
inference mode. This is particularly significant when procedures
are expected to be called under certain preconditions and would
not otherwise terminate under all inputs. We are not aware of any
technique that can compute such conditional bounds.

Example For the example in Figure9, our tool computes the
weakest preconditionn ≥ m + 1 ∧ x0 ≤ y0 − 1 and the bound
y0−x0. The latter requires discovering the inductive loop invariant
i ≤ (x− x0)− (y − y0).

6.2 Counterexamples for Safety Properties

Since program analysis is an undecidable problem, we cannot have
tools that can prove correctness of all correct programs or find bugs
in all incorrect programs. Hence, to maximize the practical success
rate of verification tools, it is desirable to search for both proofs
of correctness as well as counterexamples in parallel. Earlier, we
showed how to find proofs of correctness of safety and termina-
tion properties. In this section, we show how to findmost-general
counterexamples to safety properties.

The problem of generating a most-general counterexample for
a given set of (safety) assertions involves finding the most general
characterization of inputs that leads to the violation of some reach-
able safety assertion. We show how to find such a characterization
using the techniques discussed in Section4 and Section6.1.

The basic idea is to reduce the problem to that of finding the
weakest precondition for an assertion. This reduction involves con-
structing another program from the given programP using the fol-
lowing transformations:

B1 Instrumentation of program with an error variable: We intro-
duce a new error variable that is set to0 at the beginning of the
program. Whenever violation of any assertion occurs (i.e., the
negation of that assertion holds), we set the error variable to1

Bug1(int y, n) {
1 x := 0;
2 if (y < 9)
3 while (x < n)
4 assert(x < 200);
5 x := x + y;
6 else
7 while (x ≥ 0)
8 x++;
}

Bug1(int y, n) {
1 x := err := i1 := i2 := 0;
2 if (y < 9)
3 while (x < n)
4 i1++;
5 assert(i1 ≤ f1(n, y));
6 if (x ≥ 200)
7 err := 1; goto L;
8 x := x + y;
9 else

10 while (x ≥ 0)
11 i2++;
12 assert(i2 ≤ f2(n, y));
13 x++;
14 L: assert(err = 1);
}

(a) Original Program (b) Instrumented Program

Figure 10. A most-general counterexample that leads to violation
of the safety assertion in the original program is(n ≥ 200 +
y) ∧ (0 < y < 9). Our tool discovers this by instrumenting the
program appropriately and then running our weakest precondition
algorithm.

and jump to the end of the program, where we assert that the
error variable is equal to1. We remove the original assertions
from the program.

B2 Instrumentation to ensure termination of all loops: For this we
use the strategy described in Section6.1, wherein we instrument
the program with counter variables and introduce assertion tem-
plates that assert that the counter variable is upper bounded by
some function of loop inputs or procedure inputs.

CLAIM 2. LetP be a program with some safety assertions. LetP ′

be the program obtained from programP by using the transfor-
mation described above. Then,P has an assertion violation iff the
assertions in programP ′ hold.

Claim 2 holds and its significance lies in the fact that now we
can use weakest precondition inference (Section4) on the trans-
formed program to discover most-general characterization of inputs
under which there is a safety violation in the original program.

Example The program shown in Figure10(a) is instrumented
using transformations B1 and B2 and the resulting program is
shown in Figure10(b). Our tool discovers the precondition(n ≥
200 + y) ∧ (9 > y > 0). The loop invariant (at line3) that
establishes all assertions in the instrumented program is(n ≥
200 + y) ∧ (i ≤ x) ∧ (9 > y > 0) ∧ (x < n). Note that this
invariant implies the instantiationn for the loop bound function
f1(n, y). On the other hand the preconditiony < 9 implies that the
loop on line10 is unreachable, and hence any arbitraryf2 suffices.

Observe the importance of transformation B1. An alternative to
transformation B1 that one might consider is to simply negate the
original safety assertion instead of introducing an error variable.
This is incorrect for two reasons: (a) It is too stringent a criterion
because it insists that in each iteration of the loop the original as-
sertion does not hold, (b) It does not ensure reachability and allows
for those preconditions under which the assert statement is never
executed. In fact, when we run our tool with such an alternative
transformation on the example in Figure10(a), we obtainn ≤ 0 as
the weakest precondition.

Also, observe the importance of transformation B2. If we do not
perform transformation B2 on the example in Figure10(a), then
the tool comes up with the following weakest precondition:y ≤ 0.
Note that under this precondition, the assertion at the end of the
program always holds since that location is unreachable.

NT1(int x, y) {
while (x ≥ 0)

x := x + y;
y++;

}

NT2(int i) {
even := 0;
while (i ≥ 0)

if (even = 0)
i--;

else
i++;

even := 1− even;
}

(a) (b)

Figure 11. Non-termination examples taken from [22].

Note that the transformation B2 does not ensure termination of
all loops in the original program. The transformation B2 ensures
termination of only those loops that are reachable under the to-
be-discovered weakest precondition and that too in the program
obtained after transformation B1, which introduces extra control-
flow that causes loops to terminate as soon as the violation of
any safety property occurs. For example, the loop on line10 in
Figure10(b) is unreachable under the discovered preconditions and
therefore any arbitrary functionf2 suffices.

6.3 Counterexamples for Termination

The problem of generating a most-general counterexample for pro-
gram termination involves finding the most-general characteriza-
tion of inputs that leads to non-termination of the program. Without
loss of generality we assume that the program has at most one exit
point.

CLAIM 3. Let P be a given program with a single exit point. Let
P ′ be the program obtained fromP by adding the assert statement
“ assert(false)” at the end of the program. Then,P is non-
terminating iff the assert statement inP ′ is satisfied.

The significance of Claim3 lies in the fact that now we can
use weakest precondition inference (Section4) on the transformed
program to discover most-general characterization of inputs under
which the original program is non-terminating.

Examples Consider the example shown in Figure11(a). If we
instrumentassert(false) at the end of the program, then our
tool generates the preconditionx ≥ 0 ∧ y ≥ 0, which is one
of the weakest affine conditions under which the program is non-
terminating.

Now consider the program shown in Figure11(b). If we instru-
ment assert(false) at the end of this program, then our tool
generates the preconditioni ≥ 1. Notice that the loop guardi ≥ 0
is not sufficient to guarantee non-termination.

7. Experiments
In previous sections, we have shown how to reduce various pro-
gram analysis problems to the problem of solving SAT constraints.
We now present encouraging experimental results illustrating that
SAT solvers can in fact solve the constraints generated from our
chosen set of examples in a reasonable amount of time. Our exam-
ples are drawn from benchmarks used by state-of-the-art alternative
techniques.

Our reduction technique is parameterized by several parameters
(such as the cut-set, the number of bits used in bit-vector modeling,
and the size of templates in terms of the number of conjuncts and
disjuncts) whose choice presents a completeness/efficiency trade-
off. An increase in size of these parameters increases the chance
that the required invariant/pre-condition would fit the template, but
at the cost of generating a bigger SAT formula.

Name Time Num.
(secs) Clauses

cegar1 [19] 0.08 5 K
cegar2 [19] 0.80 50 K
barbr [18] 0.41 76 K
berkeley [18] 3.00 441 K
bk-nat [18] 5.30 174 K
seesaw [18] 3.23 70 K
hsortprime [18] 0.51 54 K
lifnatprime [18] 1.27 51 K
swim [18] 1.63 45 K
cars [18] 2.93 86 K
ex1 [18] 0.10 10 K
ex2 [18] 0.75 92 K
fig1a [18] 0.14 20 K
fig2 [18] 0.56 239 K
fig3 [18] 16.60 547 K
w1 [5], pg12 0.14 25 K
w2 [5], pg12 1.80 165 K

(a)

Name Time Num.
(secs) Clauses

Fig 3(a), [39] 0.57 63 K
a1 [31], pg9 9.90 174 K
a2 [29], pg2 0.50 75 K
mergesort 0.19 43 K
quicksort 0.45 133 K
fibonacci 11.00 90 K
Fig 3(b) 72.00 558 K

(b)

Name Time Num.
(secs) Clauses

Fig 2 [16, 17] 1.40 107 K
Fig 7(b) 16.10 273 K
w1 [5], pg12 0.60 60 K
speed [17], pg10 18.20 41 K
merge [16], pg 11 3.90 128 K
burner [15], pg14 1.50 91 K

(d)

Name Time Num.
(secs) Clauses

[22], pg3 0.80 42 K
Fig 11(b) [22] 0.40 57 K
Fig 11(a) [22] 0.60 43 K
Fig 4(a) 14.40 119 K
Fig 4(b) 80.00 221 K
Fig 7(a) 0.50 50 K
Fig 9 11.60 118 K
Fig 10 68.00 135 K

(c)

Table 1. (a) Program verification examples (b) Interprocedural analysis examples (c) Weakest precondition inference (including non-
termination and bug-finding) examples. (d) Strongest postcondition inference examples

In our experiments, we used the cut-set suggested by Theo-
rem 1. For discovering the remaining parameters, we used an in-
cremental strategy. We progressively increased the number of bits
required for bit-vector modeling by 2 bits (starting from 3 bits for
unknown coefficients and 6 bits for unknown constants and 1 bit
for the multipliersλ’s used in Farkas’ lemma). The number of dis-
juncts and conjuncts were progressively increased by 1 (starting
with 1 disjunct and 2 conjuncts). The increment was performed un-
til the SAT solver stopped saying UNSAT. For most of our bench-
mark examples, our choice of parameters required upto 2 iteration
steps. The specific choice of these parameters was motivated by
the observation that for most of our examples, the required invari-
ants involved only one disjunct and one bit for the multiplierλ’s.
We also observed that working with a smaller number of disjuncts
and a smaller number of bits for the multiplierλ’s is important for
efficiency reasons because the size of the generated SAT formula
usually blows up with these two particular parameters.

Table1 describes the results of our analysis on our benchmark
examples. It shows the number of clauses in the generated CNF
formula (for the choice of parameters for which the SAT solver
was able to find a satisfying assignment) and the time taken by
the SAT solver (Z3 [12]) to find a satisfying assignment under the
discovered parameters.

Table 1(a) shows the time taken by our tool on several pro-
gram verification examples. Most of these examples are taken from
benchmarks used by some state-of-the-art abstraction refinement
based techniques [19, 18], which also provide exhaustive compar-
ison against similar techniques. The last two examplesw1 andw2
are taken from [5]. w1 is a simple loop iteration but withx ≤ n
replaced withx 6= n while w2 is a loop with the guard moved in-
side a non-deterministic conditional. Standard narrowing is unable
to capture the precision lost due to widening in these instances. Our
solution times compare favorably against previous techniques.

Table1(b) shows the time taken by our tool for generating re-
quired invariants for establishing validity of assertions in an inter-
procedural setting for different examples. The first three examples
are taken from alternate proposals [29, 31, 39] for discovering lin-
ear invariants in an interprocedural setting. We also analyze some
recursive procedures (Mergesort, Quicksort and Fibonacci) for dis-

covering invariants that establish upper bounds on the number of
recursive procedure call invocations after the respective procedures
have been instrumented with the counter instrumentation strategy
described in Section6.1. The invariants for all of these examples
required producing one pre/post pair for each procedure. Proving
correctness of the McCarthy91 function in Figure3(b), however,
required computing two pre/post pairs.

Table1(c) shows the time taken by our tool for generating weak-
est preconditions for respective examples. Our tool implements
the methodology described in Section4.2 for generation weak-
est precondition. The first three examples in Table1(c) are taken
from [22], and we infer the weakest preconditions that ensure non-
termination of these examples. Our most challenging example (Fig-
ure10) takes 68 seconds.

Table 1(d) shows the time taken by our tool for generating
strongest postconditions for respective examples taken from bench-
marks used by some sophisticated widening techniques [5, 15, 16,
17]. For each of these examples, we compute the strongest linear
invariants that hold at the end of the respective procedures. The
examplesspeed, merge, andburner model hybrid automaton for
some real systems.

8. Related Work
Constraint solving based techniquesTheoretical expositions of
program analysis techniques frequently formulate them as con-
straints (constraint-based CFA, type inference, reachable states in
abstract interpretation [11], model checking among others) and
typically solve them using fixed-point computation. We instead
concentrate on techniques that reduce the analysis problem to con-
straints that can be solved using SAT/SMT solvers. Constraint-
based techniques have been successfully applied for discovering
conjunctivelinear arithmetic invariants [8, 36, 35, 37] in an in-
traprocedural setting. In contrast, our approach discovers linear
arithmetic invariants with arbitrary (but pre-specified)boolean
structurein a context-sensitiveinterproceduralmanner.

Constraint-based techniques have also been applied for dis-
covering non-linear polynomial invariants [24] and invariants in
the combined theory of linear arithmetic and uninterpreted func-

tions [3], but again in a conjunctive and intraprocedural setting. It
is possible to combine these techniques with our formulation to lift
them to disjunctive and context-sensitive interprocedural settings.

Constraint-based techniques, being goal-directed, work natu-
rally in program verification mode where the task is to discover
inductive loop invariants for the verification of assertions. Oth-
erwise, there is no guarantee on the precision of invariants gen-
erated. [6] describes a simple iterative strategy of rerunning the
solver with the additional constraint that the new solution should be
stronger than the previous solution. Such a strategy can have a very
slow progress. Our approach for strongest postcondition provides
a more efficient solution. Additionally, we present a methodology
for generating weakest preconditions.

Constraint solvers have been used for finding bugs in loop-free
programs [41] (obtained by unrolling loops in programs heuristi-
cally). In contrast, our methodology can be used to find a most-
general counterexample and also find bugs in programs that require
an unbounded or a large number of loop iterations for the bug to
manifest.

Abstract interpretation based techniques for discovering linear
arithmetic invariants There is a large body of work on sophisti-
cated widening techniques [16, 17], abstraction refinement [40, 18]
and specialized extensions (using acceleration [15], trace partition-
ing and loop unrolling [5]) for discovering conjunctive linear in-
equality invariants in an intraprocedural setting. Powerset exten-
sions [14, 19] of linear inequalities domain and derived techniques
utilizing control flow structure [34, 4] have been proposed for dis-
junctive invariants. All these are specialized to work for specific
classes of programs. In contrast, our approach can uniformly dis-
cover precise invariants in all such classes of programs in strongest
postcondition setting, while also offering the added advantage of
being goal-directed in verification setting.

There has been work on interprocedurally discovering linear
equality relationships [33, 29]; however the problem of discover-
ing linear inequalities in an interprocedural setting has not been
effectively addressed. Recently, some heuristics have been pro-
posed [39] to discover linear inequality relationships in an inter-
procedural setting based on extension of an earlier work on tran-
sition matrices and postponing conditional evaluation. The preci-
sion of these techniques is unclear in the presence of conditionals.
Since our approach facilitates disjunctive reasoning, our approach
discovers linear inequalities interprocedurally as naturally (and as
precisely) as it does so in an intraprocedural setting.

Proofs and counterexamples to terminationThere is a large
body of work on proving termination properties by synthesizing
ranking functions [9, 32, 7, 1, 2, 10] using a variety of techniques
including those based on constraint solving. We show how to use
constraint solving to solve the harder problem of timing analysis.
Moreover, we also show how to do conditional termination analy-
sis, wherein we infer preconditions for termination.

Recently, finding counterexamples to termination was ad-
dressed in [22]. Their technique finds counterexamples to termi-
nation properties by means of identifyinglassos(linear program
paths that end in a non-terminating cycle) using a constraint-based
approach to find recurring sets of states. In contrast, our scheme
for proving non-termination is based on inferring weakest precon-
ditions, thereby inferring a most-general counterexample to termi-
nation.

9. Conclusion and Future Work
This paper describes how to model a wide spectrum of program
analysis problems as constraints that can be solved using off-the-
shelf constraint solvers. We show how to model the problem of dis-
covering invariants that involve (conjunctions and disjunctions of)

linear inequalities (both intraprocedurally and interprocedurally),
and apply it to the problem of checking safety properties and timing
analysis of programs. We also show how to model the problem of
discovering weakest preconditions (and strongest postconditions)
and apply it to inferring most-general counterexamples for both
safety and termination properties. The constraints that we gener-
ate are boolean combinations of quadratic inequalities over integer
variables, which we reduce to SAT formulas using bit-vector mod-
eling. We show experimentally that the SAT solver can efficiently
solve such constraints generated from hard benchmarks.

The work described here can be extended in two directions. The
first one is to extend these techniques to discover a richer class
of invariants involving arrays, pointers, and even quantifiers. Sec-
ondly, one can also consider new constraint solving techniques, in
particular QBF (Quantified Boolean Formula) solvers. This would
alleviate the need for applying Farkas’ lemma to compile away uni-
versal quantification, leading to smaller sized SAT formulas, but
those that are universally quantified.

References
[1] I. Balaban, A. Cohen, and A. Pnueli. Ranking abstraction of recursive

programs. InVMCAI, pages 267–281, 2006.

[2] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn.
Variance analyses from invariance analyses. InPOPL, pages 211–
224, 2007.

[3] D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant
synthesis for combined theories. InVMCAI’07, pages 378–394, 2007.

[4] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. InPLDI, pages 300–309, 2007.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and implementation of a
special-purpose static program analyzer for safety-critical real-time
embedded software. InThe Essence of Computation: Complexity,
Analysis, Transformation., LNCS 2566, pages 85–108. Oct. 2002.

[6] A. R. Bradley and Z. Manna. Verification constraint problems with
strengthening. InICTAC, pages 35–49, 2006.

[7] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with
reachability. InProc. 17th Intl. Conference on Computer Aided
Verification (CAV), volume 3576 ofLecture Notes in Computer
Science. Springer Verlag, July 2005.

[8] M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant
generation using non-linear constraint solving. InCAV, pages 420–
432, 2003.

[9] M. Colón and H. Sipma. Practical methods for proving program
termination. InCAV ’02: Proceedings of the 14th International
Conference on Computer Aided Verification, pages 442–454.
Springer-Verlag, 2002.

[10] P. Cousot. Proving program invariance and termination by parametric
abstraction, lagrangian relaxation and semidefinite programming. In
VMCAI, pages 1–24, 2005.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. InPOPL, pages 238–252, 1977.

[12] L. M. de Moura and N. Bjørner. Efficient e-matching for smt solvers.
In CADE, pages 183–198, 2007.

[13] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled.Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[14] R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive
abstract interpretation.Sci. of Comp. Prg., 32(1-3):177–210, 1998.

[15] L. Gonnord and N. Halbwachs. Combining widening and acceleration
in linear relation analysis. In13th International Static Analysis
Symposium, SAS’06, LNCS 4134, Aug. 2006.

[16] D. Gopan and T. W. Reps. Lookahead widening. InCAV, pages
452–466, 2006.

[17] D. Gopan and T. W. Reps. Guided static analysis. InSAS, pages
349–365, 2007.

[18] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani.
Automatically refining abstract interpretations. Technical Report
TR-07-23, IIT Bombay, 2007.

[19] B. S. Gulavani and S. K. Rajamani. Counterexample driven
refinement for abstract interpretation. InTACAS, pages 474–488,
2006.

[20] S. Gulwani, K. Mehra, and T. Chilimbi. Statically computing
complexity bounds for programs with recursive data-structures.
Technical Report MSR-TR-2008-16, Microsoft Research, Jan. 2008.

[21] S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as
constraint solving. Full version. Technical Report MSR-TR-2008-44,
Microsoft Research, Mar. 2008.

[22] A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. Proving non-termination. InPOPL, 2008.

[23] C. B. Jones. Specification and design of (parallel) programs. InIFIP
Congress, pages 321–332, 1983.

[24] D. Kapur. Automatically generating loop invariants using quantifier
elimination. InDeduction and Applications, 2005.

[25] G. A. Kildall. A unified approach to global program optimization. In
POPL, pages 194–206, 1973.

[26] Z. Manna.Mathematical Theory of Computation. McGraw-Hill, New
York, ’74.

[27] Z. Manna and J. McCarthy. Properties of programs and partial
function logic.Machine Intelligence, 5, 1970.

[28] Z. Manna and A. Pnueli. Formalization of properties of functional
programs.Journal of the ACM, 17(3):555–569, 1970.

[29] M. Müller-Olm and H. Seidl. Precise interprocedural analysis through
linear algebra. InPOPL, pages 330–341, 2004.

[30] M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural analysis
(almost) for free. InTechnical Report 790, Fachbereich Informatik,
Universitt Dortmund, 2004.

[31] M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural herbrand
equalities. InESOP, pages 31–45, 2005.

[32] A. Podelski and A. Rybalchenko. A complete method for the
synthesis of linear ranking functions. InVMCAI, pages 239–251,
2004.

[33] S. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation.Theor. Comput.
Sci., 167(1&2):131–170, 1996.

[34] S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static
analysis in disjunctive numerical domains. InSAS, pages 3–17, 2006.

[35] S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop
invariant generation using gröbner bases. InPOPL, pages 318–329,
2004.

[36] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based
linear-relations analysis. InSAS, pages 53–68, 2004.

[37] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis
of linear systems using mathematical programming. InVMCAI, pages
25–41, 2005.

[38] A. Schrijver.Theory of Linear and Integer Programming. 1986.

[39] H. Seidl, A. Flexeder, and M. Petter. Interprocedurally analysing
linear inequality relations. InESOP, pages 284–299, 2007.

[40] C. Wang, Z. Yang, A. Gupta, and F. Ivancic. Using counterex. for
improv. the prec. of reachability comput. with polyhedra. InCAV,
pages 352–365, 2007.

[41] Y. Xie and A. Aiken. Saturn: A sat-based tool for bug detection. In
CAV, pages 139–143, 2005.

	Introduction
	Program Verification
	Background: Conversion of programs to constraints
	Constraint solving
	Choice of cut-set

	Interprocedural Analysis
	Weakest Precondition
	Binary search strategy
	Locally pointwise-weakest strategy
	Neighborhood Structure

	Strongest Postcondition
	Applications
	Termination and Bounds Analysis
	Counterexamples for Safety Properties
	Counterexamples for Termination

	Experiments
	Related Work
	Conclusion and Future Work

