
The Reachability-Bound Problem
Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Florian Zuleger ∗

TU Vienna
zuleger@forstye.tuwien.ac.at

Abstract
We define the reachability-bound problem to be the problem of
finding a symbolic worst-case bound on the number of times a
given control location inside a procedure is visited in terms of
the inputs to that procedure. This has applications in bounding re-
sources consumed by a program such as time, memory, network-
traffic, power, as well as estimating quantitative properties (as op-
posed to boolean properties) of data in programs, such as informa-
tion leakage or uncertainty propagation.

Our approach to solving the reachability-bound problem brings
together two different techniques for reasoning about loops in
an effective manner. One of these techniques is an abstract-
interpretation based iterative technique for computing precise dis-
junctive invariants (to summarize nested loops). The other tech-
nique is a non-iterative proof-rules based technique (for loop bound
computation) that takes over the role of doing inductive reasoning,
while deriving its power from the use of SMT solvers to reason
about abstract loop-free fragments.

Our solution to the reachability-bound problem allows us to
compute precise symbolic complexity bounds for several loops in
.Net base-class libraries for which earlier techniques fail. We also
illustrate the precision of our algorithm for disjunctive invariant
computation (which has a more general applicability beyond the
reachability-bound problem) on a set of benchmark examples.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement techniques; Reliability, availability, and ser-
viceability; D.2.4 [Software Engineering]: Software/Program Ver-
ification; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Verification, Performance, Reliability

Keywords Resource Bound Analysis, Disjunctive Invariants,
Transitive Closure, Ranking Functions, Pattern Matching

1. Introduction
Program execution makes use of physical resources, and it is of-
ten important to compute worst-case bounds on usage of those
resources as a function of the program inputs. For example, in

∗ The research of the second author was performed during an internship at
MSR Redmond and was supported in part by Microsoft Research through
its PhD Scholarship Programme.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

memory-constrained environments such as embedded systems, it
is important to bound the amount of memory required to run cer-
tain applications. In real-time systems, it is important to bound the
worst-case execution-time of the program. Applications running on
low-power devices or low-bandwidth environments must use up
little power or bandwidth respectively. With the advent of cloud
computing, where users would be charged per program execution,
predicting resource usage characteristics would be a crucial com-
ponent of accurate bid placement by cloud providers. One of the
fundamental questions that needs to be answered for computing
such resource bounds is: How many times is a given control loca-
tion inside the program that consumes these resources executed?

Program execution also affects certain quantitative properties of
data that it operates on. For example, how much secret information
is leaked by a program depends on the number of times a certain
operation that leaks the data, either by direct or indirect information
flow, is executed [23]. Or the amount of perturbation in the output
data values resulting from a small perturbation or uncertainty in
the input values depends on the number of times additive error
propagation operators are applied. This is the quantitative version
of the boolean problem of continuity studied in [7]. Estimating such
quantitative properties again requires addressing a similar question
as above: How many times is a given control location inside the
program that performs certain operations executed?

We refer to the problem of bounding the number of visits to a
given control location π as the reachability-bound problem. Our
two-step solution to this problem brings together two different
techniques for reasoning about loops: an iterative technique for
computing disjunctive invariants, and a non-iterative proof-rule
based technique for computing bounds of transition systems.

The first step consists of generating a disjunctive transition-
system that describes relationships between values of program vari-
ables that are live at π and their values in the immediate next visit to
π. This requires summarizing inner loops that lie on a path from π
back to itself for which we present an abstract interpretation based
iterative algorithm that generates disjunctive loop invariants. The
precision of our algorithm relies on a convexity-like assumption,
which appears satisfied by all instances that we came across in
practice, and leads to an interesting completeness theorem (The-
orem 12). We also evaluated the precision of this algorithm on
benchmark examples taken from recent work on computing dis-
junctive invariants. Our algorithm can discover required invariants
in all examples, suggesting its potential for effective use in other
applications requiring disjunctive invariants besides bound analy-
sis.

The second step consists of generating bounds for the dis-
junctive transition system thus generated. For this, we propose a
non-iterative proof-rules based technique that requires discharging
queries using an off-the-shelf SMT solver. These proof rules de-
scribe conditions that are sufficient for combining the ranking func-
tions for individual transitions into an overall bound of the transi-
tion system using three different mathematical operators, namely
max, sum, and product. This is unlike existing work [4, 8, 28]

(a)

Ex1(uint n, bool[] A)
1 i := 0;
2 while (i < n)
3 j := i+ 1;
4 while (j < n)
5 if (A[j])
6 ConsumeResource();
7 j--;
8 n--;
9 j++;

10 i++;

(b)

ConsumeResource();

yesπ6

n‐‐;

no A[j]

i := 0;

j := i+1;

i++;

j++;

yes

yes

no

no

end

i < n

j < n

begin

j‐‐;

(c)

ConsumeResource();

n‐‐;

no A[j]

i := 0;

j := i+1;

i++;

j++;

yes

yes

no

no

end

i < n

j < n

begin

j‐‐;

yes

π6a

π6b

(d)

j0=i+1

i0=i+1

ConsumeResource();

j0=j+1

j0=j-1

π6a

π6b

yes

yes

yes

no

no

i < n
j < n

A[j]

n0=n-1

(e)

(i0=iÆj0=jÆn0=n)Ç
(j≥nÆi<n-1Æ
i0=i+1Æj0=i+2)

ConsumeResource();

j0=j+1

j0=j-1

π6a

π6b

yes

yes

no

j < n

A[j]

n0=n-1

(f)

ConsumeResource();

j0=j+1

j0=j-1

π6a

π6b

yes

yes

no

j < n

A[j]

n0=n-1

(i0=iÆj0=jÆn0=n)Ç
(j≥nÆi<n-1Æ
i0≥i+1Æj0≥i+2)

(g)

ConsumeResource();

j0=j+1

j0=j-1

π6a

π6b

yes

yes

j < n

A[j]

n0=n-1

(i0=iÆj0=jÆn0=n)Ç(j≥nÆ
i<n-1Æi0≥i+1Æj0≥i+2)

(i0=iÆj0=jÆn0=n)Ç
(j<n-1Æj0=j+1Æi0=i)Ç
(i<n-1Æi0≥i+1Æj0≥i+2)

(h)

ConsumeResource();

j‘=j+1

j0=j-1

π6a

π6b

yes

yes

j < n

A[j]

n0=n-1

(i0=iÆj0=jÆn0=n)Ç(j≥nÆ
i<n-1Æi0≥i+1Æj0≥i+2)

(j0≥jÆi0=i)Ç
(i<n-1Æi0≥i+1Æj0≥i+2)

(i)
π6a

π6b

(n‘=n-1Æj<nÆ
j‘≥jÆi‘=i)Ç

(n‘=n-1Æi<n-2Æ
i‘≥i+1Æj‘≥i+2)

Figure 1. This figure illustrates generation of transition system for a given control location. (a) A loop skeleton from .Net base-class library.
(b) Flow-graph representation of the program in (a). (c) Flow-graph obtained from (b) by splitting location π6 into π6a and π6b. (d) Part of
the flow-graph from (c) between π6a and π6b after re-drawing it. (e) Body of inner loop in (d) replaced by its transition system representation
T1. (f) Inner loop in (e) replaced by transitive closure T ′1 of transition system T1. (g) Body of outer loop in (f) replaced by its transition
system representation T2. (h) Outer loop in (g) replaced by Transitive closure T ′2 of transition system T2. (i) Transition system for π6.

on termination analysis where the goal is to generate any rank-
ing function for a transition system with disregard to the precision
of the ranking function. This methodology represents an interest-
ing design choice for reasoning about loops, because SMT solvers
are used to perform precise reasoning about transitions (loop-free
code-fragments), whereas a simple proof-rules based technique
takes over the role of performing inductive reasoning effectively.
It will be interesting to consider applying such a methodology to
other problems.

We have implemented our solution to the reachability-bound
problem in a tool that computes symbolic computational com-
plexity bounds for procedures in .Net codebases. This involves
computing amortized complexity for nested loops by solving the
reachability-bound problem for nested loops. To our knowledge,
our analysis is the first that addresses the problem of computing
the amortized complexity for nested loops. Existing techniques for
bound analysis [16, 19, 15, 2] do not compute amortized complex-
ity of nested loops, but instead over-approximate it by the product
of the iterations of the outer loop and the worst-case complexity of
the inner loop for any iteration of the outer loop, thereby leading to
imprecise bounds.

Contributions and Organization
• We define the reachability-bound problem and the notion of a

precise solution to that problem (Section 3). This contributes to
the problem of defining an entire quantitative logic, which is part
of the quantitative agenda set forth recently [21] (as opposed to
the Boolean agenda).

• We describe an algorithm for the generation of a transition
system based on transformations on reducible flowgraphs for
reducing the problem of computing the reachability-bound to
the problem of computing the bound for a transition system
(Section 4).
• We describe an abstract interpretation based iterative algorithm

for computing the transitive closure of a transition system, or,
equivalently, disjunctive invariants for a loop. (Section 5).
• We describe non-iterative proof rules (Section 7) that allow

computing precise symbolic bounds for a transition system from
the ranking functions of individual transitions, which can be
obtained using the technique described in Section 6.
• We present experimental results evaluating the effectiveness of

various aspects of our solution (Section 8).

2. Motivating Examples and Technical Overview
In this section, we discuss some examples that are representative
of some challenges that arise during the computation of symbolic
bounds for the reachability-bound problem. We also provide a
technical overview of our solution.

2.1 Bounding number of visits to a given control location
Consider the program shown in Figure 1, and consider the problem
of computing symbolic bounds on the number of times the proce-
dure ConsumeResource() is called at Line 6. One approach would
be to approximate it by computing a bound on the number of iter-
ations of the closest enclosing loop at Line 4 using techniques for

loop bound computation (as in [16, 19]). However, this approach
will yield quite conservative results since the number of iterations
of the loop at Line 4 is bounded above by n2, while the number of
executions of Line 6 is bounded above by n.

Our approach first computes the following symbolic relation-
ship between values of variables i, j, n at Line 6 with their values
i′, j′, n′ in the immediate next visit to Line 6. The relationship is
expressed as the disjunction of two transitions given as two dis-
juncts:

(n′ = n− 1 ∧ j < n− 1 ∧ j′ ≥ j ∧ i′ = i)

∨ (n′ = n− 1 ∧ i < n− 1 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)

This is done using the GenerateTransitionSystem algorithm
described in Figure 4 in Section 4. The algorithm enumerates all
paths in the control-flow graph in Figure 1(d) between the locations
π6a and π6b obtained after splitting the location π6 in the original
control-flow graph (in Figure 1(b)) into π6a and π6b (as shown in
Figure 1(c)). (Note, that such a relationship is different from tran-
sition invariants [28] or variance assertions [4] that relate values of
variables at a control location with their values in any successive
iteration, as opposed to the immediate next iteration). The chal-
lenge in such an enumeration is that the number of paths in pres-
ence of loops between control locations π6a and π6b is not finite.
For this purpose, the loops are summarized by disjunctive relation-
ships between the inputs/outputs of the loop. These disjunctive re-
lationships are generated by computing the transition system of the
loop (recursively, using the same algorithm applied to the control
location immediately after the loop-header) and then computing its
transitive closure (using the algorithm TransitiveClosure de-
scribed in Fig. 6 in Section 5). The transition system of the inner
loop in Figure 1(d) is shown in Figure 1(e). The transitive closure
of the inner loop is given in Figure 1(f). The transition system of
the outer loop is shown in Figure 1(g). The transitive closure of the
outer loop is given in Figure 1(h). The resulting transition system
for location π6 is given in Figure 1(i).

Next, bounds are computed for the transition system thus gen-
erated. This involves computing the ranking functions for the two
transitions of the transition system for location (π6). A ranking
function for a transition s is an integer-valued function (of the vari-
ables that occur in s) that is bounded below by 0 and decreases
every time the transition s is taken. (For a formal definition see Sec-
tion 6.) By using the pattern matching techniques described in Sec-
tion 6 we compute the ranking functions n−j resp. n−i−2 for the
transition given by the first resp. second disjunct of the transition
system for (π6). These ranking functions are then composed using
one of the proof rules described in Section 7 (in this case, the proof
rule in Theorem 16) to obtain a bound of Max(0, n− j, n− i− 2)
in terms of the inputs to the transition system (For details, see Ex-
ample 17). Using the invariants i ≥ 0 ∧ j ≥ 1 that hold during the
first visit to π6) (which can be obtained by generating invariants at
control location π6b in Figure 1(d)), we obtain a bound of n− 1 on
the transition system in terms of procedure inputs. This implies a
bound of n on the number of visits to control location π6.

2.2 Bounding iterations of a loop
Computing bounds on the number of loop iterations is a special
case of the reachability-bound problem where the control loca-
tion under consideration is the location immediately after the loop
header. Under that case, our technique outperforms recent tech-
niques for loop bound computation and termination.

In particular, our technique is able to compute the bounds for
loops whose iterations are affected by inner loops for which exist-
ing bound techniques (such as [2, 16, 19]) mostly fail (for details,
see related work in Section 9). Such loops are quite common in
.Net base-class library, and Figure 2 gives some examples. One of

Ex6(int n, int x, int z)
1 while (x < n)
2 if (z > x) x++;
3 else z++;

Ex7(uint n, uint m)
1 Assume(0 < n < m);
2 j := n+ 1;
3 while (j < n ∨ j > n)
4 if (j > m) j := 0;
5 else j++;

Figure 3. Loop templates Ex6 and Ex7 (from Microsoft product-
code) taken respectively from recent work on proving termina-
tion [8] and loop bound computation [16]. Our proof rules for
bound computation provide an alternative, but simpler, formalism
for computing bounds. (For details see Example 20 and Exam-
ple 23.)

the key challenges addressed by our technique in such examples is
the summarization of the inner loops by precise transitive-closure
of the transition system represented by these loops (in effect, dis-
junctive relationships between the inputs and outputs of the loop).

Also, even in case of loops with no nested loops, our technique
is able to compute bounds for loops using a much simpler uniform
algorithm compared to existing termination techniques or special-
ized bound computation techniques. Figure 3 shows two such ex-
amples that have been used as motivating examples by previous
techniques. The computation of the transition system for these ex-
amples is almost trivial, and the bound computation of the result-
ing transition system is enabled by simple but precise proof rules
(Theorem 19 and Theorem 21) for bound computation from rank-
ing functions of individual transitions (for details, see Example 20
and 23).

3. The Reachability-Bound Problem
There are two classical problems associated with the reachability
of a control location π inside a procedure P with inputs ~n.
• Safety Problem: Is the control location π never reached/visited?
• Termination Problem: Is the control location π visited at most a

finite number of times?
In this paper, we have motivated the following bound problem,

which is a more general instance of both the safety and termination
problem. In fact, as we will see, our solution to the bound problem
builds over techniques for safety and termination checking.
• Reachability-bound Problem: Compute a worst-case symbolic

bound B(~n) on the number of visits to π for any execution of
P .

The notion of a worst-case symbolic bound is defined below.
DEFINITION 1 (Worst-case symbolic bound). An integer-valued
function B(~n) is a worst-case symbolic bound for a control lo-
cation π inside a procedure P with inputs ~n if for any input state
~n0, the number of times π is visited is at most B(~n0).

There may be multiple worst-case symbolic bounds for a given
location. It is desirable to produce a bound that is precise in the
sense that there exists a family φ(~n) of worst-case inputs that
exhibit the bound (up to some constant factor, as motivated by the
definition of asymptotic complexity), formally defined as follows:

DEFINITION 2 (Precision of a worst-case symbolic bound). A worst-
case symbolic bound B(~n) for a control location π inside a pro-
cedure P with inputs ~n is said to be precise (up to multiplicative
constant factors) if there exist positive integers c1, c2, and a for-
mula φ(~n) such that:

E1. For any assignment ~n0 to variables ~n such that φ(~n0) holds, the
number of times control location π is visited (when procedure
P is executed in the input state ~n0) is at least B(~n0)

c1
− c2.

Ex2(uint n, uint m)
1 while (n > 0 ∧m > 0)
2 n--; m--;
3 while (nondet())
4 n--; m++;

Ex3(uint n, bool[] A)
1 while (n > 0)
2 t := A[n];
3 while (n > 0 ∧ t = A[n])
4 n--;

Ex4(uint n)
1 flag := true;
2 while (flag)
3 flag := false;
4 while (n > 0 ∧ nondet())
5 n--; flag := true;

Ex5(uint n)
1 i := 0;
2 while (i < n)
3 flag := false;
4 while (nondet())
5 if (nondet())
6 flag:=true;n--;
7 if (¬flag) i++;

n′ ≤ n ∧ m′ ≥ m n′ ≤ n (n′ ≤ n− 1 ∧ flag′)
∨(Same({n, flag}))

(n′ ≤ n-1 ∧ flag′ ∧ i′ = i)
∨(Same({i, n, flag}))

n>0 ∧m>0 ∧ n′≤n-1
(n>0 ∧ n′≤n ∧ A[n] 6=A[n′])
∨ (n>0 ∧ n′≤0)

(flag∧flag′ ∧ n>0∧ n′≤n-1)
∨(flag ∧ ¬flag′ ∧ n′ = n)

(i<n ∧ flag′ ∧ n′≤n−1 ∧ i′=i)
∨ (i<n ∧ ¬flag′ ∧ i′≥i+1 ∧ n′=n)

n n n+ 1 n

Figure 2. Loop templates from .Net class libraries where iterators of a loop are modified by inner loops. The second row shows the required
transitive closure of the inner loops to enable precise symbolic bound computation of respective outer loops. The third row shows the resultant
transition-system generated for the outer loops after summarizing the respective inner loops by the transitive closure of their transition-system
(using the algorithm in Figure 4). The final (fourth) row shows the bound computed from the transition-system by the algorithm in Figure 7.
We use the predicate Same(V) inside a transition to denote that the variables in V do not change their value, i.e., Same(V) =

∧
x∈V

(x′ = x).

E2. For any integer k, there exists a satisfying assignment ~n1 for
φ(~n) such that B(~n1) > k. In other words, the formula ∃~n :
(B(~n) ≥ k ∧ φ(~n)) has a satisfying assignment.

We refer to the triple (φ, c1, c2) as precision-witness for bound B.

The following example explains and motivates the requirements
E1 and E2 in the above definition.

EXAMPLE 3. A precision-witness for the bound of n on the number
of times Line 6 is visited in the example program Ex1 in Figure 1
can be φ = ∀k(0 ≤ k < n ⇒ A[k]), c1 = 1 and c2 = 1 since
it can be shown that under the precondition φ, Line 6 is visited at
least n− 1 times.

A precision-witness for the bound of n2 on the number of times
the inner loop (Line 5) is executed can be φ = ∀k(0 ≤ k < n ⇒
¬A[k]), c1 = 4 and c2 = 1 since it can be shown that under
the precondition φ, Line 5 is visited at least n2/4 times. This is
because, for example, i takes all values between 0 to n/2 − 1 at
Line 2 (hence the number of visits to Line 2 is at least n/2), and
for each of those visits, j takes all values between n/2 to n− 1 at
Line 4 (i.e., the number of visits to Line 4 is at least n/2). Note that
if we did not relax the requirement E1 to allow for constants c1 and
c2, then computation of a precise bound would have required us to
compute the exact bound of (n−1)(n−2)

2
. It would be impractical to

find such exact closed-form solutions.
A bound of, say, 100, on the number of times Line 6 is visited

is not precise. It may appear that φ = (∀k(0 ≤ k < 100 ⇒
A[k]) ∧ n ≤ 100), c1 = 1 and c2 = 1 is a precision-witness.
However, note that it violates requirement E2 since for k = 101 (in
fact, for any k greater than 100), there does not exist a satisfying
assignment for the formula φ ∧ 100 ≥ 101.

In this paper, we describe an algorithm for computing a worst-
case symbolic bound. Manual investigation of the bounds returned
by our algorithm on our benchmark examples confirms that the
bounds are precise. Automatically establishing the precision of a
bound B returned by our algorithm is an orthogonal problem that
we are currently working on. It requires identifying a precision-
witness (φ, c1, c2) and establishing that B

c1
− c2 is a lower bound

for all inputs that satisfy φ. The duality between the problems of
computing a symbolic bound B and the problem of finding a wit-
ness φ to show that B is precise is similar to the duality between the
problems of proving a given safety property, or finding a concrete
counterexample/witness to the violation of a safety property. How-
ever, the challenge in our case is that the witness φ that establishes
the precision of a given symbolic bound is symbolic as opposed to
being concrete.

We next describe our overall algorithm for bound computation.

3.1 Algorithm
Our algorithm for the reachability-bound problem is as follows.

ReachabilityBound(π)
1 T := GenerateTransitionSystem(π);
2 B := 1 + ComputeBound(T);
3 return TranslateBound(B, π);
Line 1 of the algorithm first computes a disjunctive transition

system T for the control location π that describes how the variables
at π get updated in the immediate next visit to control location π.
This is done using the algorithm described in Figure 4 (Section 4),
which in turn uses the algorithm for transitive closure computation
described in Figure 6 (Section 5) to summarize any inner loops.

Line 2 of the algorithm computes a bound for the transition
system T using the algorithm described in Figure 7 (Section 7),
which in turn makes use of techniques described in Section 6 for
computing ranking functions of individual transitions. The bound
B on number of visits to π is then obtained by adding 1 to the bound
for transition system T to account for the first visit to π.

The bound B is expressed in terms of inputs to the transition
system, which may not necessarily be the procedure inputs. The
function TranslateBound at Line 3 then translates the bound B
at π in terms of the procedure inputs. This can be done either by
using invariants (computed with an invariant generation tool) that
relate the procedure inputs with the inputs to the transition system
T , or by using a backward symbolic engine to express the transition
system inputs in terms of the procedure inputs. We implemented the
latter approach, which we found to be extremely effective in terms
of both precision and efficiency. This technique is detailed in [17].

Notice, how our solution builds on techniques for safety or
termination checking. Step 1 uses disjunctive invariants, which is
essentially what is needed for safety checking. Step 2 uses ranking
functions, which are required for termination checking. Use of
these techniques together with novel proof-rules for composing
ranking functions yields an effective solution to the bound problem.

4. Generation of Transition System
We first define the notion of a transition and a transition system
with regard to a control location π.

DEFINITION 4 (Transition for a Control Location π). Let ~x be the
tuple of the variables live at π. A transition for π is a relation
T (~x, ~x′) between variables ~x and their primed counterparts ~x′

such that if ~x take values ~v1 and ~v2 during any two immediate
successive/consecutive visits to π, then T (~v1, ~v2) holds.

A transition is always assumed to be represented as a conjunc-
tion of formulae over the variables ~x and ~x′.

DEFINITION 5 (Transition System for a Control Location π). A tran-
sition system is a set of transitions.

A transition system is always assumed to be represented as a
DNF formula where every disjunct corresponds to the representa-
tion of a transition of the transition system.

We desire a disjunctive representation for our transition system
since our bound computation algorithm in Section 7 works by
identifying precise ranking functions for a single transition/path,
and then using proof rules to obtain the ranking function/bound for
the entire transition system.

The key idea for generating a transition system for a control
location π is to split the control location π into the two locations
(πa, πb) (using the Split transformation shown in Figure 5(a)) and
enumerate all paths that start at πa and end at πb and take the dis-
junctions of the transitions represented by each path. The challenge
that arises in such an enumeration is the presence of any nested
loops. We address this challenge by replacing the nested loop by
the transitive closure of the transition system of the nested loop
(using the Summarize transformation shown in Figure 5(b)). Since
path enumeration leads to an exponential blowup, we generate the
transition systems on the flowgraph that has been sliced with re-
spect to the statements on which π is control-dependent [25] (since
these are the statements that determine the number of times π is ex-
ecuted). This usually leads to transition systems with a very small
number of transitions, as is exemplified by statistics in Fig. 8 (Sec-
tion 8.1).

Figure 4 describes the algorithm to generate the transition sys-
tem for a control location π. The algorithm is described at flow-
graph level. We make the assumption about the flowgraphs being
reducible, but not necessarily structured. Our algorithm can be ex-
tended to irreducible flowgraphs too; but we avoid that for ease of
presentation, and the fact that most flowgraphs in practice are in
fact reducible [25]. However, it is important to consider the case
of unstructured flowgraphs because even if the original flowgraph
was structured, after the splitting transformation, the new flow-
graph would no longer be structured. The splitting transformation,
however, is reducibility-preserving. 1

Line 1 transforms the flowgraph by splitting the input control
location π into two locations πa and πb using the Split transfor-
mation described in Figure 5(a). The loop in Line 2 iterates over
each top-level loop L in the transformed flowgraph. (Recall that
any graph can be decomposed into a DAG of maximal strongly-
connected components.) Line 3 makes use of the fact that every
loop in a reducible flow-graph has a unique header node. Line 4 re-
cursively generates the transition system for the loop L in the trans-
formed flow-graph, while Line 5 generates its transitive closure (us-
ing the algorithm described in Figure 6 in Section 5). Lines 6 and
7 replace the loop L by its summary obtained by generating tran-
sitive closure of the transition system represented by it (using the
Summarize transformation shown in Figure 5(b)). The effect of the
foreach-loop in Line 2 is to replace all loops on the paths between
πa and πb by (disjunctive) loop-free abstract code-fragments. The
transition system can now simply be generated by enumerating all
paths (which are now finite in number) between πa and πb.

Lines 8-10 generate the transition system for an acyclic flow-
graph by a simple forward dataflow analysis that associates a (dis-
junctive) transition system F [π] with each edge/control location π
in the transformed flowgraph. For this purpose, we associate the

1 It is interesting to observe that the nesting structure of the loops inside
which π was originally nested, is completely reversed after the splitting
transformation, but the flowgraph stays reducible.

GenerateTransitionSystem(π)
1 (πa, πb) := Split(π);
2 foreach top-level loop L:
3 πL := location before header of L;
4 T := GenerateTransitionSystem(πL);
5 Tc := TransitiveClosure(T);
6 Insert Summary(Tc) before header;
7 Remove back-edges;
8 Initialize F [πa] to the transition system Id;
9 Propagate transitions F using Merge/Compose rules;

10 return F [πb];

Figure 4. Generation of transition system for a control location π.

entry location πa with the transition system consisting of a single
transition Id, which is the identity mapping between the variables
and their primed versions. The transfer functions for performing
this dataflow analysis are described in Figure 5. Without loss of any
generality, we assume that all conditional guards have been trans-
lated into Assume statements. The Merge transfer function simply
returns the disjunctions of the transitions in the two input transition
systems. The Compose transfer function makes use of the compose
operator ◦ that returns the composition of two transitions.

DEFINITION 6 (Composition of Transition Systems). Given two
transition systems T (~x, ~x′) =

∨
i

si and T ′(~x, ~x′) =
∨
j

s′j , we

define their binary composition to be

T ◦ T ′ def
=

∨
i,j

si ◦ s′j ,

where si ◦ s′j denotes the transition

si(~x, ~x′) ◦ s′j(~x, ~x′)
def
= ∃ ~x′′

(
si[~x′′/~x′] ∧ s′j [~x′′/~x]

)
,

where si[~x′′/~x′] denotes the substitution of ~x′ by ~x′′ in si.

The Translate function converts a statement into a transition
system as follows. Without loss of any generality, we assume that
the only assignment statement is of the form x := e since memory
can be modeled using Select and Update expressions. The other
kinds of statements can be either an Assume statement (obtained
from the conditional guards) or a Summary statement (obtained
from the summarization of nested loops).

Translate(x := e) = (x′ = e) ∧ (
∧
y 6=x

y′ = y)

Translate(Assume(guard)) = Id ∧ guard

Translate(Summary(T)) = T

EXAMPLE 7. The transition system for control location π6 in Fig-
ure 1(b) is shown in Figure 1(e) along with the various steps re-
quired to obtain it from the flowgraph in Figure 1(d). These include
computing the transition system for the inner loop and then replac-
ing the inner loop by its transitive closure. Next, the process is re-
peated for the outer loop.

5. Computation of Transitive Closure
In this section, we describe an algorithm for computing a transitive
closure (defined below) of a transition system. This operation is re-
quired by the GenerateTransitionSystem algorithm described
in Figure 6 in the previous section.

DEFINITION 8 (Transitive Closure). We say that T ′(~x, ~x′) is a
transitive closure of a transition system T (~x, ~x′) if

Id ⇒ T ′ and T ′ ◦ T ⇒ T ′

(a) Split

π

…

…

πb

πa

…

…

(b) Summarize

…

…
header…

…

incoming
edges

back
edges Summary(Tc)

… (c) Compose

…
πout

stmt

πin

…

F[πout] = F[πin] ◦ Translate(stmt)

(d) Merge

…
π3

π1

…

F[π3] = F[π1] Ç F[π2]

π2

…

Figure 5. This figure describes the flowgraph transformations Split and Summarize, and the transfer functions Compose and Merge
required in the algorithm GenerateTransitionSystem for computing the transition system for any control location.

EXAMPLE 9. Figure 1(e) provides an example of a transition sys-
tem T and its transitive closure. Note that i′ ≥ i is another choice
for the transitive closure for T . However, it is not as precise as the
one shown in Figure 1(e), and would lead to the generation of a
transition system for location π6 for which no bound exists.

Generating the transitive closure of a transition system is like
computing the invariants for a loop which represents the transition
system. Example 9 suggests the importance of these invariants to
be precise, and hence disjunctive. There has been some work on
discovering disjunctive invariants [5, 16, 20, 29, 13, 14] in general.
We present below a technique that takes advantage of its particular
application to bound analysis. (We also remark that our technique
can be used in general for proving safety properties of programs.
In Section 8.2, we present preliminary results that demonstrate the
effectiveness of our technique on a set of benchmark examples
taken from a variety of recent literature on generating disjunctive
invariants.)

Our algorithm for the computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold true
for all examples we have come across in practice. (This includes the
desired transitive closure of the transitions-systems of nested loops
to compute precise bounds, as well as the benchmarks considered
by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula φ in that theory, if φ implies a disjunction of equalities,
then it implies one of those equalities, i.e.,(

φ⇒

(∨
i

(xi = yi)

))
=⇒

(∨
i

(φ⇒ (xi = yi))

)
(1)

Now, if
m∨
j=1

s′j is a transitive closure of
n∨
i=1

si, then it fol-

lows from the definition of the transitive closure, that for all i ∈
{1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒
m∨
k=1

s′k and s′j ◦ si ⇒
m∨
k=1

s′k

After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 1), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 10 (Convexity-like Assumption).

Let T ′ =
m∨
j=1

s′j(~x, ~x′) be a transitive closure for a transition

system T =
n∨
i=1

si(~x, ~x′), where each si and s′j is a conjunc-

tive relation. We say that the transitive closure
∨
j

s′j satisfies the

convexity-like assumption if there exists an integer δ ∈ {1, . . ,m},
a map σ : {1, . . ,m} × {1, . . , n} 7→ {1, . . ,m}, such that for all
i ∈ {1, . . , n} and j ∈ {1, . . ,m}, the following holds:

Id ⇒ s′δ and (s′j ◦ si) ⇒ s′σ(j,i)

TransitiveClosure(
n∨
i=1

si)

1 for j ∈ {1, . . ,m} − {δ}: s′j := false;
2 s′δ := Id;
3 do {
4 for i ∈ {1, . . , n} and j ∈ {1, . . ,m}:
5 s′σ(j,i) := Join(s′σ(j,i), s

′
j ◦ si)

6 } while any change in
m∨
j=1

s′j

7 return
m∨
j=1

s′j;

Figure 6. Transitive closure computation of a transition system.

The tuple (δ, σ) is referred to as a convexity-witness of
m∨
j=1

s′j .

The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 11. All the transitive closures of the respective tran-
sition systems described in Figure 1(e) and Figure 2 satisfy the
convexity-like assumption. For example, the convexity-witness for
the transitive closure of the transition system T shown in Fig-
ure 1(e) is δ = 1 and σ = {(1, 1) 7→ 2, (2, 1) 7→ 2}. A convexity-
witness for the transitive closure of the transition system T ′ shown
in Figure 1(e) is δ = 1 and σ = {(1, 1) 7→ 1, (2, 1) 7→ 2, (1, 2) 7→
2, (2, 2) 7→ 2}.

Given a convexity-witness (δ, σ) of any transitive-closure T ′

(that satisfies the convexity-like assumption) of a transition system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T ′. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 12 (Precision of TransitiveClosure Algorithm).

Let
m∨
j=1

s′′j be any transitive closure of a given transition system

n∨
i=1

si that satisfies the convexity-like assumption. Given the num-

ber of disjuncts m and a convexity-witness (δ, σ), algorithm in
Figure 6 outputs a transitive closure that is at least as precise as
m∨
j=1

s′′j .

PROOF: We can prove that s′j ⇒ s′′j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.

�

The algorithm in Figure 6 performs abstract interpretation over
the power-set extension of an underlying abstract domain (such as
polyhedra [10], octagons [24], conjunctions of a given set of pred-
icates), where the elements are restricted to at most m disjuncts.
We assume, that the underlying abstract domain is equipped with
a Join operator, which takes two elements and returns the least
upper bound of both elements. The algorithm uses the map σ to
determine how to merge the n×m different disjuncts (into m dis-
juncts) that are obtained after the propagation ofm disjuncts across
n transitions using the Join operator. The key distinguishing fea-
ture of the algorithm from earlier work on computing disjunctive
invariants is that our algorithm uses a syntactic criterion based on
σ to merge disjuncts as opposed to using a semantic criterion based
on the notion of differences between disjuncts. This is justified by
Theorem 12, which, in effect, says that no semantic merging crite-
rion can be more powerful than a static syntactic criterion. There
are two issues with the algorithm presented in Figure 6 that we dis-
cuss below.

Abstract Domains with Infinite Height The algorithm may not
on domains with infinite height. The standard solution would be to
the apply a Widen operator (as defined in [9]) in place of the Join
operator, in order to enforce termination.

Since the use of widening may overapproximate the least fixed
point in general, it is no longer possible to formally prove precision
results as in Theorem 12. However, we show experimentally (in
Section 8.2) that our algorithm is able to compute precise enough
invariants with the use of standard widening techniques when ap-
plied on benchmarks taken from recent work on computing dis-
junctive invariants.

Choice of m and a convexity-witness (δ, σ) Since we do not
know the desired transitive closure and its convexity-witness (δ, σ)
upfront, we have two options.
Option 1: We can enumerate all possible (δ, σ) for a specifically
chosen m. There are mmn such possible maps since without loss
of any generality, we can assume that δ is 1. If m and n are
small constants, say 2 (which is quite often an important special
case), then there are 16 possibilities. Each choice for σ and δ
results in some transitive closure computation by the algorithm.
One can then select the strongest transitive closure among the
various transitive closures thus obtained (or heuristically select
between incomparable transitive closures). However, if m or n is
large, then this approach quickly becomes prohibitive.
Option 2: We can use some heuristics to construct m, δ, σ. The
following heuristic turns out to be the most effective for our appli-
cation of bound computation. We set m and δ to n + 1, and select
the map σ from the DAG of dependencies between transitions of T
generated from bound computation of T (as described in Section 7).
In particular, for any i, j ∈ {1, . . , n}, we define σ(n+ 1, i) := i,
σ(i, i) := i, and σ(i, j) := i except when ¬NI(sj , si, r) (where
r ∈ RankC(si) was the ranking function that contributed to the
bound computation of T) in which case we define σ(i, j) := j. It
can be proved that such a choice of the map δ and σ would gener-
ate a transitive closure that would allow for computing the bound
of (T ◦ TransitiveClosure(T)) using the bound computation
algorithm described in Section 7, provided it was able to gener-
ate a bound for the transition system T . Such a transitive closure
preserves important relationships (between the program variables)
for the application of computing the bound of the transition sys-
tem that is to be obtained after replacing the corresponding loop by
the transitive closure. In particular, note that this heuristic for the
construction of a convexity-witness, when used in conjunction with
the algorithm in Figure 6 discovers the required transitive-closures
of the respective transition systems mentioned in Figure 1(e) and
Figure 2.

6. Ranking Function for a Transition
In this section, we show how to compute a ranking function for a
transition. These ranking functions are made use of by the bound
computation algorithm described in Section 7.

DEFINITION 13 (Ranking Function for a Transition). We say that
an integer-valued function r(~x) is a ranking function for a transi-
tion s(~x, ~x′) if it is bounded below by 0 and if it decreases by at
least 1 in each execution of the transition, i.e.,

• s⇒ (r > 0)

• s⇒ (r[~x′/~x] ≤ r − 1)

We denote this by Rank(s, r).

We say that a ranking function r1(~x) is more precise than a
ranking function r2(~x) if r1 ≤ r2 (because in that case, r1 provides
a more precise bound for the transition than r2).

We discuss below the design of a functionality RankC that takes
as input a transition s(~x, ~x′) and outputs a set of ranking func-
tions r(~x) for that transition. We use a pattern-matching based
technique that relies on asking queries that can be discharged by
an SMT solver. We found this technique to be effective (fast and
precise) for most of the transitions that we encountered during the
process of bound computation on .Net base-class libraries. How-
ever, other techniques, such as constraint-based techniques [27] or
counter instrumentation enabled iterative fixed-point computation
based techniques [15, 19] can also be used for generating ranking
functions. Clearly, there are examples where the constraint-based
or iterative techniques that perform precise arithmetic reasoning
would be more precise, but nothing beats the versatility of sim-
ple pattern matching that can handle non-arithmetic patterns with
equal ease.

We list below some patterns that we found to be most effective.

6.1 Arithmetic Iteration Patterns
One standard way to iterate over loops is to use an arithmetic
counter. Ranking functions for such an iteration pattern can be
computed using the following pattern.

If s⇒ (e > 0 ∧ e[~x′/~x] < e), then e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
from ~x and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 0), after rewriting a
conditional of the form (e1 > e2) to (e1 − e2 > 0). In the fol-
lowing we give example transitions whose ranking functions can
be computed using an application of this pattern.

• RankC(i′=i+1∧ i<n∧ i<m∧ n′=n∧m′≤m)={n−i,m−i}
• RankC(n > 0 ∧ n′ ≤ n ∧ A[n] 6= A[n′]) = {n}

The second example transition above (obtained from the transition
system generated for the loop in the example program Ex3 in Fig-
ure 2) is a good illustration of how simple pattern matching is used
to guess a ranking function, and an SMT solver (that can reason
about combination of theory of linear arithmetic and theory of ar-
rays) can be used to perform the relatively complicated reasoning
of verifying the ranking function over a loop-free code fragment.

Another common arithmetic pattern is the use of a multiplica-
tive counter whose value doubles or halves in each iteration (as in
case of binary search). A more precise ranking function for such a
transition can be computed by using the pattern below.

If s⇒ (e ≥ 1 ∧ e[~x′/~x] ≤ e/2), then log e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables

from ~x and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 1), after rewriting a
conditional of the form (e1 > e2) that occurs in s to (e1

e2
> 1),

provided e2 is known to be positive. In the following we give ex-
ample transitions whose ranking functions can be computed using
an application of this pattern.

• RankC(i′ ≤ i/2 ∧ i > 1) = {log i}
• RankC(i′ = 2×i ∧ i > 0 ∧ n > i ∧ n′ = n) = {log (n/i)}

The above two patterns are good enough to compute ranking func-
tions for most loops that iterate using arithmetic counters. However,
for the purpose of completeness, we describe below two examples
(taken from some recent work on proving termination) that can-
not be matched using the above two patterns, and hence illustrate
the limitations of pattern-matching. However, we can find ranking
functions or bounds for these examples using the counter instru-
mentation and invariant generation techniques described in [15].

• Consider the terminating transition system (x′ = x+ y ∧ y′ =
y + 1 ∧ x < n ∧ n′ = n) from [6], which uses the principle of
polyranking lexicographic functions for proving its termination.
Note that the reason why the transition system terminates is
because even though y is not known to be always positive, it
will eventually become positive by virtue of the assignment
y′ = y + 1.
• Consider the terminating transition system (x′ = y ∧ y′ =
x−1∧x > 0). This transition system can be proven terminating
by monotonicity constraints as introduced in [3]). Note, that the
reason why the transition system terminates is because in every
two iterations the value of x decreases by 1.

6.2 Boolean Iteration Patterns
Often loops contain a path/transition that is meant to execute just
once. The purpose of such a transition is to switch between different
phases of a loop, or to perform the cleanup action immediately
before loop termination. Such an iteration pattern can be captured
by the following rule/lemma, where the operator Bool2Int(e)
maps boolean values true and false to 1 and 0 respectively.

If s⇒ (e ∧ ¬(e[~x′/~x])), then Bool2Int(e) ∈ RankC(s)

The candidates for boolean expression e while applying the
above pattern are restricted to those expressions that only involve
variables from ~x and those that occur syntactically in the transition
s. In the following we give example transitions whose ranking
functions can be computed using an application of this pattern.

• RankC(flag′ = false ∧ flag) = {Bool2Int(flag)}
• RankC(x′ = 100 ∧ x < 100) = {Bool2Int(x < 100)}

6.3 Bit-vector Iteration Patterns
One standard way to iterate over a bit-vector is to change the
position of the lsb, i.e., the least significant one bit (or msb, i.e.,
most significant one bit). Such an iteration pattern can be captured
by the following rule/lemma, where the function LSB(x) denotes
the position of the least significant 1-bit, counting from 1, and
starting from the most significant bit-position. LSB(x) is defined
to be 0 if there is no 1-bit in x. Note that LSB(x) is bounded above
by the total number of bits in bit-vector x.

If s⇒ (LSB(x′) < LSB(x) ∧ x 6= 0), then LSB(x) ∈ RankC(s)

The candidates for the variable x while applying the above
pattern are all the bit-vector variables that occur in the transition
s. The query in the above pattern can be discharged using an
SMT solver that provides support for bit-vector reasoning, and, in

particular, the LSB operator. (If the SMT solver does not provide
first-class support for the LSB operator, then one can encode the
LSB operator using bit-level manipulation as described in [31].)
In the following we give example transitions whose bound can be
computed using the above rule.

• RankC(x′ = x << 1 ∧ x 6= 0) = {LSB(x)}
• RankC(x′ = x&(x− 1) ∧ x 6= 0) = {LSB(x)}

6.4 Data-structure Iteration Patterns
Iteration over data-structures or collections is quite common, and
one standard way to iterate over a data-structure is to follow field
dereferences until some designated object is reached. Such an iter-
ation pattern can be captured by the following rule/lemma, where
the function Dist(x, z, f) denotes the number of field dereferences
along field f required to reach z from x.

If s⇒ (x 6= z ∧ (Dist(x′, z, f) < Dist(x, z, f))),

then Dist(x, z, f) ∈ RankC(s).

The candidates for variables x, z and field f , while applying
the above pattern are all variables ~x and field names that occur
in s. The query in the above pattern can be discharged using an
SMT solver that implements a decision procedure for the theory
of reachability and can reason about its cardinalities (e.g., [18]).
Note, that Dist(x, z, f) denotes the cardinality of the set of all
nodes that are reachable from x before reaching z along field f . In
the following we give example transitions whose ranking functions
can be computed using an application of this pattern.

• RankC(x 6= Null∧x′ = x.next) = {Dist(x, Null, next)}

• RankC(Mem′=Update(Mem, x.next, x.next.next) ∧
x 6= Null ∧ x.next 6= Null) = {Dist(x, Null, next)}

7. Bound Computation for Transition Systems
In this section, we show how to compute a bound for a transition
system T .

If a transition system consists of a single transition s, then a
bound for the transition system can be obtained simply from any
ranking function r of the transition s using the following theorem.

THEOREM 14. Let r ∈ Rank(s). Then,

Bound(s) = Max(0, r)

where the Max operator returns the maximum of its arguments.

PROOF: If the transition s is ever taken, then r denotes an upper
bound on number of iterations of s (since, by our definition of
a ranking function, transition s implies that r is bounded below
by 0 and decreases by at least 1 in each iteration). The other
case is when s is never executed (i.e., the number of iterations
of s is 0). Combining these two cases, we obtain the result.

�

The significance of sanitizing the bound by applying the Max oper-
ator in Theorem 14 is illustrated in Example 20.

Obtaining a bound for a transition system consisting of multi-
ple transitions is not as straight-forward. We cannot simply add the
ranking functions of all individual transitions to obtain the bound
for the transition system, since the interleaving of those transitions
with each other can invalidate the decreasing measure of the rank-
ing function. An alternative can be to define the notion of lexico-
graphic ranking functions [6] or disjunctively well-founded ranking
functions [28] for transition systems consisting of multiple transi-
tions. Such an approach may sometimes work for proving termina-
tion, but would usually not be precise for yielding bounds.

For the purpose of precise bound computation, we distinguish
between the different ways in which two transitions of a transition
system can interact with each other. These cases (described in Sec-
tions 7.1, 7.2, and 7.3) allow for composing the ranking functions
of the two transitions using one of three operators max, sum, and
product. These cases can be efficiently identified asking queries to
SMT solvers.

7.1 Max Composition of Ranking Functions
The bound for a transition system consisting of two transitions
s1 ∨ s2 can be obtained by applying the Max operator to ranking
functions for the individual transitions under cases when the transi-
tions are either disjoint, or they decrease each other’s ranking func-
tions. In fact, the criterion is slightly more general, and is formal-
ized in Theorem 16, which makes use of the following definition.

DEFINITION 15 (Cooperative-interference). We say there is coop-
erative interference between transitions s1 and s2 through their
ranking functions r1 and r2, if any of the conditions below hold:
• (Non-enabling condition) s1 ◦ s2 = false.
• (Rank-decrease condition) s1 ⇒ r2[~x′/~x] ≤ Max(r1, r2)− 1.

We denote such a cooperative-interference by CI(s1, r1, s2, r2).

THEOREM 16 (Proof Rule for Max-Composition).
Let r1 ∈ RankC(s1) and r2 ∈ RankC(s2). If CI(s1, r1, s2, r2) ∧
CI(s2, r2, s1, r1), then

Bound(s1 ∨ s2) = Max(0, r1, r2)

PROOF: We consider four cases below. (1) If both transitions s1
and s2 satisfy the non-enabling condition, then either only tran-
sition s1 can execute or only transition s2 can execute. Hence,
the result. (2) If both transitions satisfy the rank-decrease con-
dition, then it can be shown that Max(r1, r2) is a ranking func-
tion for both the transitions s1 and s2. Hence, the result. (3)
Now suppose transition s1 satisfies the non-enabling condition,
while transition s2 satisfies the rank-decrease condition. The
only possibility is that a sequence of transitions s2 is followed
by a sequence of transitions s1. The result now follows from
the fact that Max(r1, r2) is a ranking function for s2, while r1
is a ranking function for s1. (4) The last case is similar to (3).

�

EXAMPLE 17. Consider the transition system s1 ∨ s2 from Fig-
ure 1(i) with the following 2 transitions:

s1
def
= (n′ = n− 1 ∧ j < n ∧ j′ ≥ j ∧ i′ = i)

s2
def
= (n′ = n− 1 ∧ i < n− 2 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)

We can compute RankC(s1) = {n − j} and RankC(s2) = {n −
i− 2}. We can prove CI(s1, n− j, s2, n− i− 2) and CI(s1, n−
i − 2, s2, n − j). An application of the max-composition theorem
yields a bound of Max(0, n− i− 2, n− j) for the transition system
s1 ∨ s2.

7.2 Additive Composition of Ranking Functions
The bound for a transition system consisting of two transitions
s1 ∨ s2 can be obtained by adding together the ranking functions
for the two transitions under cases when the transitions do not
interfere with each other’s ranking functions. To state this formally
(Theorem 19), we first define the notion of non-interference of a
transition with respect to the ranking function of another transition.

DEFINITION 18 (Non-interference). We say that a transition s1
does not interfere with the ranking function r2 of another transition
s2, if any of the following conditions hold:

• (Non-enabling condition) s1 ◦ s2 = false

• (Rank-preserving condition) s1 ⇒ (r2[~x′/~x] ≤ r2)
We denote such a non-interference by NI(s1, s2, r2).

The following theorem holds. We use the notation Iter(s)
to denote the total number of iterations of transition s inside its
transition system.

THEOREM 19 (Proof Rule for Additive-Composition). Let r1 ∈
RankC(s1), r2∈RankC(s2). If NI(s1, s2, r2) ∧ NI(s2, s1, r1), then

Bound(s1 ∨ s2) = Iter(s1) + Iter(s2), where
Iter(s1) = Max(0, r1)

Iter(s2) = Max(0, r2)

PROOF: The non-interference conditions NI(s2, s1, r1) ensure
that the value of the ranking function r1 for transition s1 is not
increased by any interleaving of transition s2. Hence, the total
number of iterations of the transition s1 is given by Max(0, r1)
(based on an argument similar to that in proof of Theorem 14).
Similarly, the total number of iterations of the transition s2 is
given by Max(0, r2). Hence, the result.

�

EXAMPLE 20. Consider the transition system s1 ∨ s2 (obtained
from the loop in the example program Ex6 in Fig. 3) with the
following 2 transitions:

s1
def
= z > x ∧ x < n ∧ x′ = x+ 1 ∧ Same({z, n})

s2
def
= z ≤ x ∧ x < n ∧ z′ = z + 1 ∧ Same({x, n})

We can compute RankC(s1) = {n−x} and RankC(s2) = {n−z}.
We can prove NI(s1, s2, n− z) and NI(s2, s1, n− x). An applica-
tion of additive-composition theorem yields a bound of Max(0, n−
x) + Max(0, n− z) for the transition system s1 ∨ s2.

We now explain the importance of using the Max operators in the
statement of Theorem 14 and Theorem 19. If we defined Iter(s) to
simply r instead of Max(0, r), then we would incorrectly conclude
the bound on the transition system s1∨ s2 to be 2n−x− z. This is
incorrect because, for example, suppose that the transition system
was executed in the initial state n = 100, x = 0, z = 200, then
the expression n−x− z evaluates to 0, while the transition system
s1 ∨ s2 executes for 100 iterations.

This example is also a good illustration of how our technique
differs significantly from (and, in fact, provides a simpler alterna-
tive to) recently proposed techniques for proving termination [8]
and loop bound analysis [16]. The control-flow refinement tech-
nique used in [16] unravels the exact interleaving pattern between
the two transitions to conclude that s1 and s2 interleave in lock-
steps, only after which it is able to derive the bound. In contrast,
our proof rule stated in Theorem 19 only requires to establish the
non-interference property between the two transitions. The prin-
ciple of disjunctively well-founded ranking functions used in [8]
requires computing the transitive closure of the transition system
only to conclude a quadratic bound. In contrast, our proof rule
stated in Theorem 19 does not require computing any transitive-
closure, and is even able to obtain a precise linear bound. (The
transitive-closure is required in our technique only to summarize
any inner nested loops, which, however, are not present in the loop
in the example program Ex6).

Observe, that the additive-composition and max-composition
Theorems provide quite orthogonal proof-rules. The bound for the
transition system in Example 17 can be computed using the max-
composition Theorem, but not using the additive-composition The-
orem. Similarly, the bound for the transition system in Example 20

can be computed using the additive-composition Theorem, but not
using the max-composition Theorem.

7.3 Multiplicative Composition of Ranking Functions
If we cannot establish mutual cooperative-interference or mutual
non-interference properties of two transitions, then it is still possi-
ble to compute bounds provided one of the transition satisfies the
non-interference property. The bound in such a case is obtained by
multiplying together the ranking functions for the two transitions,
as made precise in the following theorem. This is a common case
for bounding iterations of an inner loop when its iterators are re-
initialized inside the outer loop leading to a multiplicative bound.

THEOREM 21 (Proof Rule for Multiplicative-Composition). Let
r1 ∈ RankC(s1), and r2 ∈ RankC(s2). If NI(s2, s1, r1), then

Bound(s1 ∨ s2) = Iter(s1) + Iter(s2), where
Iter(s1) = Max(0, r1)

Iter(s2) = Max(0, r2) + Max(0, u2)× factor

where factor = Max(0, r1)

where u2(~x) denotes an upper bound on expression r2(~x′) in terms
of ~x as implied by TC(s1). For the special case when (r1 > 0)∧ s2
is unsatisfiable, we can choose factor to be 1.

PROOF: From the non-interference condition NI(s2, s1, r1), we
can conclude that Iter(s1) ≤ Max(0, r1) (the same argument
as in the proof of Theorem 19). However, the same thing cannot
be s2. Instead we observe that the maximum number of itera-
tions of s2 in between any two interleavings of s1 is bounded
above by Max(0, u2) (since the starting value of the ranking
function r2 is reset to u2 by any execution of s1). However, the
number of iterations of s2 before any interleaving of s1 is still
bounded by Max(0, r2). Hence, the total number of iterations
of s2 is bounded by Max(0, r2)+Max(0, u2)×Max(0, r1). The
special case follows from the observation that even though s1
interferes with the ranking function r2 of s2, it can interfere
at most once since s2 is enabled only after completion of all
iterations (as opposed to somewhere in the middle) of s1. In
other words, the worst-case possibility is a sequence of transi-
tions s2, followed by a sequence of transitions s1, followed by
a sequence of transitions s2.

�

EXAMPLE 22. Consider the transition system with the following
two transitions s1 and s2.

s1
def
= i′=i−1 ∧ i>0 ∧ j′=j−1 ∧ j>0 ∧ Same({k′,m′})

s2
def
= j′ = m ∧ k′=k−1 ∧ k > 0 ∧ Same({i′,m′})

We can compute RankC(s1) = {i, j} and RankC(s2) = {k}.
We can prove NI(s1, s2, k) and NI(s2, s1, i). An application
of additive-composition theorem yields a bound of Max(0, i) +
Max(0, k) for the transition system s1 ∨ s2. An application of
multiplicative-composition theorem yields an incomparable bound
of Max(0, j) + Max(0,m)× Max(0, k).

7.4 Combining the Composition Rules
In this section, we discuss how to compute bounds for a transition
system with multiple (including more than 2 transitions) by putting
together the proof rules mentioned in Theorem 16, 19, and 21.

First, observe that an optimal way of applying the proof rules
in additive-composition Theorem and multiplicative-composition
Theorems (Theorem 19 and Theorem 21) is to compute the total
number of iterations for each transition individually, and then sum
them up together. The algorithm described in Figure 7 implements

ComputeBound(
n∨
i=1

si)

1 for i ∈ {1, . . , n}: Iter[si] := ⊥;
2 do {
3 for i ∈ {1, . . , n} and r ∈ RankC(si):
4 J := {j | ¬NI(sj , si, r)};
5 if (Iter[si] = ⊥) ∧ (∀j ∈ J : Iter[sj] 6= ⊥)
6 factor := 0;
7 foreach j ∈ J: factor:=factor+Iter[sj];

8 Let u(~x) be an upper bound on r[~x′/~x]
as implied by TC(

∨
j 6=i

sj).

9 Iter[si] := Max(0, r) + Max(0, u)× factor′;
10 } while any change in Iter array;
11 if (∀j ∈ {1, . . , n} : Iter[sj] 6= ⊥), return

∑
j

Iter[sj];

12 else return ‘‘Potentially Unbounded’’

Figure 7. Bound Computation for a Transition System
n∨
i=1

si from

ranking functions RankC(si) of individual transitions.

such a strategy based on a simple extension of Theorem 19 and
Theorem 21 to the case when a transition system contains more
than 2 transitions. The algorithm iteratively computes an array
Iter such that Iter[si] denotes a bound on the total number of
iterations of the transition si during any execution of the transition
system s1∨ . .∨sn. The array J at Line 4 contains the indices of all
transitions that interfere with the ranking function r of transition si.
If a bound on the total number of iterations of all those transitions
is known (test on Line 5), then the iterations of si is obtained
using a generalization of Theorems 19 and 21 (Line 9). A bound on
the entire transition system is obtained by simply summing up the
bound on the total number of iterations of the individual transitions
(Line 11). For simplicity, we have presented the algorithm to output
only one bound, but the algorithm can be easily extended to output
multiple bounds by relaxing the condition Iter[si] = ⊥ in Line 5
and by associating a set of bounds (as opposed to a single bound)
with Iter[si].

EXAMPLE 23. Consider the transition system s1 ∨ s2 ∨ s3 (ob-
tained from the loop in Ex7 in Figure 3) with the following 3 tran-
sitions:
s1 = j < n ∧ j < m ∧ j′=j+1 ∧ 0 < n < m ∧ Same({n,m})
s2 = j > n ∧ j < m ∧ j′=j+1 ∧ 0 < n < m ∧ Same({n,m})
s3 = j ≥ m ∧ j′ = 0 ∧ 0 < n < m ∧ Same({n,m})
We can compute RankC(s1) = {n−j,m−j}, RankC(s2) = {m−
j}, RankC(s3) = {Bool2Int(j ≥ m)}. Since NI(s1, s2,m − j)
and NI(s3, s2,m − j), the algorithm in Figure 7 first computes
Iter[s2] = Max(0,m− j). Using NI(s1, s3, Bool2Int(j ≥ m)),
the algorithm now computes Iter[s3] = Bool2Int(j ≥ m) ×
(1 + 1) ≤ 2. From NI(s2, s1, n− j), the algorithm now computes
Iter[s1] = Max(0, n − j) + Max(0, n) × 2. The algorithm now
returns a total bound of Max(0,m − j) + 2 + Max(0, n − j) +
Max(0, n) × 2. This bound can be translated to a bound in terms
of the inputs in the example program Ex7 by substituting n + 1
for j (as obtained from the initial state before the loop) to yield
m + 1 + n, which is a factor of 2 away from the real bound of
m+ 1 (since n < m).

This example also illustrates how our technique differs signifi-
cantly from (and, in fact, provides a simpler alternative to) recently
proposed techniques for termination and loop bound analysis. The
control-flow refinement technique used in [16] uses a sophisticated
machinery to unravel the exact interleaving pattern between the
three transitions (in particular, s2 follows s3 which in turn follows

s1) and is able to obtain the exact bound of m+1. In contrast, our
proof rules yield a bound ofm+1+n, but using a much simpler for-
malism. We do not know of any other technique (including [8, 19])
that can even prove termination of this example.

We now briefly discuss an extension to the above-described al-
gorithm that also takes advantage of the proof rule in the max-
composition Theorem (Theorem 16). Before running the algorithm,
we extend RankC(s) for any transition s with Max(r, r′), where
r ∈ RankC(s) and r′ ∈ RankC(s′) for some other transition s′,
provided Rank(s, Max(r, r′)) holds. This allows for an application
of additive-composition Theorem to obtain an additive bound that
is a constant factor of 2 away from what would have been obtain-
able from application of the max-composition Theorem (but much
better than a multiplicative-bound). A more complete scheme that
directly takes advantage of the max-composition Theorem is a bit
involved and is left out for lack of space.

8. Experiments
We have implemented our proposed solution to the reachability-
bound problem in C# using the Phoenix Compiler Infrastruc-
ture [26] and the SMT solver Z3 [1]. This implementation is part of
a tool that computes symbolic complexity for procedures in .Net bi-
naries. Below we present two different sets of experimental results
that measure the effectiveness of various aspects of our solution.

8.1 Loop Bound Computation
We considered the problem of computing symbolic bounds on the
number of loop iterations, which is an instance of the reachability-
bound problem where the control location under consideration is
the loop header. We chose mscorlib.dll (a .Net base-class library),
which had 2185 loops, as our benchmark. Our tool analyzes these
2185 loops in less than 5 minutes and is able to compute bounds
for 1677 loops. The problem of loop bound computation is espe-
cially challenging under the following two cases for which earlier
techniques for bound computation do not perform as well.

Case 1: Iterations of outer loops depending on inner loops (exam-
ples of the kind described in Figure 2). There were 113 such loops
out of the total 2185 loops. The key idea of our paper to address
such challenges is to replace the inner loops by their transitive-
closure that preserves required relationships between the inputs and
outputs of the loop. The effectiveness of our transitive closure com-
putation algorithm is illustrated by the fact that our success ratio
for such cases (80 out of 113, i.e., 70%) is similar to our overall
success ratio (1677 out of 2185, i.e., 76%).

Case 2: Loop bound computation for nested loops. The challenge
here is to compute precise amortized bounds on the total number of
iterations of those loops, as opposed to the number of iterations
per iteration of the immediate outer loop (the latter is an easier
problem than the former). This is the same issue as exemplified by
the example in Figure 1. There were 250 such loops out of the to-
tal 2185 loops. Unfortunately, we cannot evaluate the precision of
our bounds automatically. As described in Section 3, the problem
of computing a precision-witness for a given symbolic bound is
an orthogonal problem that we are currently working on. Instead,
we manually investigated the generated bounds for most of these
loops and found all these bounds to be precise (according to Defini-
tion 2). This points out the effectiveness of our bound-computation
algorithm based on the three proof rules presented in Section 7.

Another interesting statistic is the distribution of the number
of transitions generated for each loop, as shown in Figure 8. The
small number of transitions validates the design choice behind our
transition system generation algorithm that enumerates all paths

Transitions 1 2 3 4 5 6 7 8 9 ≥10
Loops 1561 224 107 44 25 11 9 5 8 191

Figure 8. Number of loops for respective number of transitions.

between two program points (in order not to loose any precision)
after slicing has been performed.

Out of the 508 loops for which we failed to compute a bound,
the failure for 503 loops is attributed to not being able to com-
pute ranking functions for some transition in the transition sys-
tem corresponding to the loop. There were two main causes. (i)
Our implementation is intra-procedural, meaning that our transi-
tion system generation algorithm fails when the value of loop iter-
ators gets modified because of procedure calls. This problem can
be addressed by simply inlining the procedure, provided there are
no recursive calls. (ii) Of the various proof rules described in Sec-
tion 6, we only implemented those corresponding to arithmetic and
boolean iteration patterns, while several transitions were iterating
using field dereferences or bit-vector manipulation. A sound han-
dling of field dereferences would require use of an alias analysis. A
more optimistic way to read this statistic is to observe the effective-
ness of the proof-rule based technique for finding ranking functions
: a handful of patterns are sufficient to compute ranking functions
for transitions arising in 76% of the examples.

There were only 5 cases (out of 1682 cases) for which we were
able to compute a ranking function for each transition, but were
not able to compute a bound for the transition system. This points
out the effectiveness of our proof rules for bound computation from
composition of ranking functions of individual transitions.

8.2 Disjunctive Invariant Computation
We also evaluated the effectiveness of our transitive closure algo-
rithm on a variety of benchmark examples chosen by recent state-
of-the-art papers on computing disjunctive invariants. Figure 9 de-
scribes these four examples that have been used as flagship exam-
ples to motivate new techniques for proving non-trivial safety as-
sertions. Proving validity of the assertions in all these examples re-
quires disjunctive loop invariants. It turns out that the required dis-
junctive invariant for each of these examples satisfies the convexity-
like assumption, and hence can be discovered by our transitive clo-
sure algorithm in Figure 6. We adapt our algorithm slightly to take
advantage of the initial condition (as is done by all the other ap-
proaches) by initializing s′1 to Init ∧ Id at Line 2, instead of only
Id since Init is known at the beginning of each loop. This allows
our algorithm to establish the desired assertion using a disjunctive
invariant with fewer disjuncts. (For a more detailed discussion on
this adaptation, see the end of this section).

Given that the number of disjuncts in the desired transitive
closure is 2 for all examples, and that the number of transitions
in the transition system represented by the loop is either 2 or 3, the
total number of possibilities for the map σ is 16 or 64 respectively.
Hence, by trying out all possible maps, the algorithm in Figure 6
can discover the desired disjunctive invariants.

Instead, we experimented with a heuristic for dynamic construc-
tion of map σ that we found to be effective for all examples. We
choose m = 1 and initialize s′1 to Init ∧ Id. We maintain a par-
tial map σ that is completely undefined to start with, and use the
following heuristic to construct σ on the fly. For each choice of
(i, j) on Line 4 in the algorithm, if σ(j, i) is undefined, we com-
pute s = s′j ◦ si in the abstract domain. If s is not equal to false,
then we use a semantic-merging criterion to find any k such that
s is close to an existing disjunct s′k and define σ(j, i) to be k. If
no such k exists, we increase m by 1 and define σ(j, i) to the new
value of m. The semantic-merging criterion that we used for our
experiments was one that checks agreements on variable equalities
(as opposed to the more general inequality relationships expressible

Original Example Various Details
Gopan and Reps 06.
P. 3, F. 1
x:=0, y:=0;
while (*)

if (x ≤ 50) y++;
else y--;
if (y<0) break;
x++;

assert(x=102)

(x ≤ 50∧y+1 ≥ 0∧y′ = y+1∧x′ = x+1)s1
∨(x > 50 ∧ y − 1 ≥ 0 ∧ y′ = y − 1 ∧ x′ =

x+ 1)s2

Init ≡ x = 0 ∧ y = 0

(0 ≤ x′ ≤ 51 ∧ x′ = y′)s′1
∨(52 ≤ x′ ≤ 102 ∧ x′ + y′ = 102)s′2

δ = 1, σ = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→
2, (2, 1) 7→ 1}

Beyer et al. 07.
P. 306, F. 4.
x:=0; y:=50;
while (x<100)

if (x<50) x++;
else x++; y++;

assert(y=100);

(x ≤ 50 ∧ x′ = x+ 1 ∧ y′ = y)s1
∨(51 ≤ x ≤ 100∧x′ = x+1∧y′ = y+1)s2

Init ≡ x = 0 ∧ y = 50

(0 ≤ x′ ≤ 50 ∧ y′ = 50)s′1
∨(51 ≤ x′ ≤ 100 ∧ x′ = y′)s′2

δ = 1, σ = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→
2, (2, 1) 7→ 1}

Gulavani et al. 06.
P. 5, F. 3. Henzinger
et al. 02. P. 2, F. 1.
lock:=0;assume(x 6= y)
while (x 6= y)

lock := 1; x := y;
if (*)

lock := 0; y++;
assert(lock = 1);

(x 6= y ∧ lock′ = 1 ∧ x′ = y ∧ y′ = y)s1
∨(x 6= y∧lock′ = 0∧x′ = y∧y′ = y+1)s2

Init ≡ x 6= y ∧ lock = 0

(x′ = y′ ∧ lock′ = 1)s′1
∨(x′ + 1 = y′ ∧ lock′ = 0)s′2

δ = 1, σ = {(1, 1) 7→ 1, (2, 1) 7→ 1, (1, 2) 7→
2, (2, 2) 7→ 2}

Popeea and Chin 06. P. 2
x := 0; upd := 0;
while (x < N)

if (*)
l := x; upd := 1;

x++;
assert(upd = 1

⇒ 0 ≤ l < N);

(x < N∧x′ = x+1∧l′ = l∧upd′ = upd)s1
∨(x < N∧x′ = x+1∧l′ = x∧upd′ = 1)s2

Init ≡ x = 0 ∧ upd = 0

(x′ ≥ 0 ∧ l′ = l ∧ upd′ = 0 ∧N ′ = N)s′1
∨(x′ ≥ 1∧upd′=1∧N ′=N∧0 ≤ l′ < N)s′2

δ = 1, σ = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→
2, (2, 1) 7→ 2}

Figure 9. Prominent disjunctive invariant challenges from recent
literature. Entries in 2nd column show the following details in that
order: transition-system representation of the loop, initial condition
Init, transitive closure of the transition-system required to prove
the assertion, and the convexity-witness (δ, σ).

in the octagon domain [24] used by our prototype implementation).
This heuristic is an excellent example of combining the strengths of
semantic-merging criterions in the light of the importance of hav-
ing a static syntactic merging criterion as suggested by Theorem 12
(if we do not want to iterate over all maps σ). We implemented this
heuristic and our prototype implementation is able to validate the
assertion in each of the examples in less than 0.2sec.

We now return to the discussion on what would happen if we do
not adapt our algorithm to make use of the initial condition Init
while computing a loop summary. We can still prove the desired
assertion, but the required transitive closure would consist of more
disjuncts, and would involve elements from a numerical domain
richer than the octagon abstract domain. For example, for the first
example, we would require the following disjunctive invariant:

(Id)s′1
∨ (x ≤ 50 ∧ x′ ≤ 51 ∧ x′ − x = y′ − y)s′2

∨ (x ≥ 51 ∧ x′ ≥ 52 ∧ x′ − x = y′ − y)s′3
∨ (x ≤ 50 ∧ x′ ≥ 52 ∧ 102− x′ − x = y − y′)s′4

Observe, that the above invariant again satisfies the convexity-
like assumption, where a convexity-witness σ is as follows: σ =
{(1, 1) 7→ 2, (2, 1) 7→ 2, (3, 1) 7→ 3, (4, 1) 7→ 4, (1, 2) 7→
3, (2, 2) 7→ 4, (3, 2) 7→ 3, (4, 2) 7→ 4}. Hence, our approach
can be used to discover this invariant. In contrast, none of the
techniques presented for the respective examples can analyze the
loops in such a modular setting where the initial condition is not

initially known. Further discussion on the use of our technique for
modular analysis is beyond the scope of this paper.

9. Comparison with Related Work
Disjunctive Invariant Generation A variety of techniques exist
to lift classical abstract domains (like intervals, octagons [24], and
polyhedra [10]), which typically infer conjunctive invariants, to the
powerset extension or some approximation of it for discovering
disjunctive invariants [20, 29, 13, 14]. These techniques address the
hardness inherent in this problem by proposing various semantic-
merging heuristics. In contrast, we present a result that calls for
working with a static syntactic merge criterion under the convexity-
like assumption (which appears to be satisfied by the benchmark
examples).

Some syntactic techniques based on program restriction [5] or
control-flow refinement [16] have also been suggested for discov-
ering disjunctive invariants. These can be viewed as instantiations
of our more general framework based on a convexity-witness σ.

Symbolic Bound Generation There is recent work on generating
symbolic bounds on the number of loop iterations [16, 19, 15, 2],
but none of these techniques directly addresses the more general
problem of reachability-bound that we introduce in our paper. Our
solution reduces the reachability-bound problem to the problem of
computing bounds of an outer loop, but one whose iterations are
influenced by inner loops. None of [16, 19, 15, 2] directly address
the challenge of computing bounds for such loops, and hence would
fail to compute bounds for most of the examples presented in the
paper. In contrast, our technique can compute bounds for all the
motivating examples presented in [16, 19, 15, 2].

[19] would fail to compute bounds for the example programs
Ex1, Ex3, Ex4, Ex5, Ex7 because the invariants required for estab-
lishing bounds on the counters are disjunctive. (It can only compute
bounds for Ex2 and Ex6.) The multiplicative counter instrumenta-
tion strategies that are meant to alleviate the problem of computing
disjunctive invariants do not help in this case because there is only
one back-edge for the outer loop and only one counter can be in-
strumented.

[16] would fail to compute bounds for Ex1, Ex3, Ex4, Ex5 for
the same reason of requiring disjunctive invariants for performing
the desired reasoning on inner loops. (It can only compute bounds
for Ex2, Ex6 and Ex7.) The control-flow refinement strategy is
meant to alleviate the problem of computing disjunctive invariants,
but it does not help in any of these cases since the control-flow is
already refined, and it cannot be refined any further.

[15] requires user annotations to identify interesting non-linear
and disjunctive expressions to compute bounds for transition sys-
tems with multiple transitions. We address these challenges by
means of novel proof rules. However, the technique described
in [15] can be used in a synergistic manner with our technique,
in particular, as an extension to the pattern-matching based tech-
nique to compute bounds/ranking-functions for single transitions.

[2] computes bounds by generating recurrence relations and
then deriving a closed form expression for the maximum size of
the unfoldings of the recurrence relations into trees. Since they
do not precisely summarize inner loops, they cannot handle loops
where the inner loop changes the iterators of the outer loop as
in the example programs Ex2, Ex3, Ex4, Ex5. Also, they can’t
handle examples Ex6, Ex7 and are unable to compute the amortized
complexity as in the example program Ex1.

We report the first implementation of symbolic bound genera-
tion for .Net binaries, while [19, 16, 15] and [2] implemented bound
generation for C++ and Java programs respectively. Hence, we only
provide analytical (not experimental) comparison with these tech-
niques. Quite significantly, our implementation scales to large pro-

grams, while [19, 15, 2] have been applied to only small bench-
marks.

[12] computes symbolic bounds by curve-fitting timing data ob-
tained from profiling. Their technique has the advantage of measur-
ing real time in seconds for a representative workload, but does not
provide worst-case bounds. There is a large body of work on es-
timating worst case execution time (WCET) in the embedded and
real-time systems community [30, 32]. WCET research is largely
orthogonal, focused on distinguishing between the complexity of
different code-paths and low-level modeling of architectural fea-
tures such as caches, branch prediction, instruction pipelines. For
establishing loop bounds, WCET techniques either require user an-
notation, or use simple techniques based on pattern matching or
simple numerical analysis. These WCET techniques cannot com-
pute bounds for most of the examples considered in this paper.

[11] presents a type system for the certification of resource
bounds (once they are provided by the programmer). In contrast,
we infer bounds. [22] uses linear programming to infer bounds
for functional programs, but they are restricted to computing only
linear bounds.

Termination Analysis There has been a large body of work on
proving termination of programs and the standard approach used
has been that of finding ranking functions. We also use ranking
functions to compute bounds, but our focus is on finding precise
ranking functions, using composition by Max or + operators if
possible, that can yield precise symbolic bounds. Bounds can also
be obtained from the standard lexicographic ranking functions or
disjunctively well-founded ranking relations [8], but only using
multiplicative-composition, which is imprecise compared to the
bounds that can be obtained from max- or additive-composition.

In fact, our proof rules can also be regarded as an alternative
new technique for proving termination. For example, the recently
proposed approach based on variance assertions or disjunctively
well-founded ranking relations cannot be used to prove termination
of the loop in the example program Ex7, while our technique can.

There is superficial similarity between termination techniques
based on computing variance assertions [4], transition invari-
ants [28] and disjunctively well-founded ranking relations [8] in
that they also summarize relationships between two different visits
to a control location, and often require disjunctive invariants. How-
ever, there are two key technical differences: (a) Our technique re-
quires computing relationships between two immediate visits to a
control location, while the approach based on transition invariants
or variance assertions requires computing relationships between
any two visits to a control location. (b) Our technique requires use
of disjunctive invariants only to summarize nested loops.

10. Future Work and Conclusion
This paper defined and motivated the reachability-bound problem.
The paper also presented a solution to the reachability-bound prob-
lem in the context of non-recursive and sequential programs. The
next technical challenge is to address the reachability-bound prob-
lem in context of recursive procedures and concurrent execution.

On the applications side, we are working on integrating the
proposed solution to the reachability-bound problem with other
specific techniques to provide an integrated solution for resource
bound analysis in some contexts such as memory bound analysis,
and active-task graph size analysis in asynchronous programs.

References
[1] Z3 Theorem Prover. research.microsoft.com/projects/Z3/.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference
of upper bounds for recurrence relations in cost analysis. In SAS, 2008.

[3] A. M. Ben-Amram. Size-change termination, monotonicity con-
straints and ranking functions. In CAV, pages 109–123, 2009.

[4] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn.
Variance analyses from invariance analyses. In POPL, 2007.

[5] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. In PLDI, pages 300–309, 2007.

[6] A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial
programs. In VMCAI, 2005.

[7] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis
of programs. In POPL, 2010.

[8] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI, pages 415–426, 2006.

[9] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In POPL, pages 238–252, 1977.

[10] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Re-
straints among Variables of a Program. In POPL, 1978.

[11] K. Crary and S. Weirich. Resource bound certification. In POPL ’00.
[12] S. Goldsmith, A. Aiken, and D. S. Wilkerson. Measuring empirical

computational complexity. In ESEC/SIGSOFT FSE, 2007.
[13] D. Gopan and T. W. Reps. Lookahead widening. In CAV, 2006.
[14] D. Gopan and T. W. Reps. Guided static analysis. In SAS, 2007.
[15] B. S. Gulavani and S. Gulwani. A numerical abstract domain based

on expression abstraction and max operator with application in timing
analysis. In CAV, pages 370–384, 2008.

[16] S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and
progress invariants for bound analysis. In PLDI, 2009.

[17] S. Gulwani and S. Juvekar. Bound analysis using backward symbolic
execution. Technical report, Oct 2009.

[18] S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for
tracking partition sizes. In POPL, 2009.

[19] S. Gulwani, K. Mehra, and T. Chilimbi. Speed: precise and efficient
static estimation of program computational complexity. In POPL ’09.

[20] M. Handjieva and S. Tzolovski. Refining static analyses by trace-
based partitioning using control flow. In SAS, pages 200–214, 1998.

[21] T. Henzinger. From boolean to quantitative system specifications,
keynote. In Ist Workshop on Quantitative Analysis of Software.
http://research.microsoft.com/users/sumitg/qa09/keynote.pdf, 2009.

[22] S. Jost, H. Loidl, K. Hammond, and M. Hofmann. Static determination
of quant. resource usage for higher-order programs. In POPL ’10.

[23] P. Malacaria. Assessing security threats of looping constructs. In
POPL, pages 225–235, 2007.

[24] A. Miné. The octagon abstract domain. In WCRE, 2001.
[25] S. S. Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann, 1997.
[26] Microsoft Phoenix Compiler, research.microsoft.com/phoenix/.
[27] A. Podelski and A. Rybalchenko. A complete method for the synthesis

of linear ranking functions. In VMCAI’04.
[28] A. Podelski and A. Rybalchenko. Transition invariants. In LICS ’04.
[29] C. Popeea and W.-N. Chin. Inferring disjunctive postconditions. In

ASIAN, pages 331–345, 2006.
[30] A. Prantl, J. Knoop, M. Schordan, and M. Triska. Constraint solving

for high-level wcet analysis. CoRR, 2009.
[31] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 2002.
[32] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-

ley, G. Bernat, C. Ferdinand, R. Heckmann, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The Determination of
Worst-Case Execution Times—Overview of the Methods and Survey
of Tools. In ACM Transactions on Embedded Computing Systems
(TECS), 2007.

