VLSI 2000 Design Contest: Student Entry

Finding Large Prime Numbers
(A Hardware-Software Codesign System)

Vaibhav Vaish Ashish Kapoor
(Senior Students)

Department of Computer Science & Engineering
Indian Institute of Technology, New Delhi

September, 1999

Contact Author: Vaibhav Vaish

Email: csu96173@cse.iitd.ernet.in

Address:

Department of Computer Science & Engineering,
Indian Institute of Technology,

Hauz Khas,

New Delhi 110 016

Phone: (11) 6861977 - 6861986
FAX: (11)6868765

Abstract

We describe a fast method to find primes of the form 2P — 1, by implementing special
circuits to perform modulo 2P — 1 arithmetic, where p itself is an input to the circuit.
We have followed a codesign approach. The primality verification is implemnented
in hardware. The software component supplies inputs to the randomized verification
algorithm.

Currently, we have a working implementation that uses the Xiling™ 4010E FPGA
and the 8051 microcontroller. In addition, we have simulated the FPGA portion ex-
tensively. We are working on running the FPGA at higher frequencies, and developing
variants for specific applications.

Introduction

Large primes are required in almost all aspects of secure communication. Modern
cryptography relies extensively on the computational hardness of problems like prime
factorization to provide a secure communication channel. Public key cryptosystems,
such as RSA require large primes to generate the necessary keys. For fast and se-
cure communication, it becomes necessary to perform arithmetic operations modulo
a prime number at high speed.

An interesting case arises when the (prime) number is of the form 2" — 1. From
the results we describe in the next section, it will become apparent that this case
lends itself to an elegant hardware implementation, that eliminates the requirement
for doing division and computing remainders. In section 2 we describe the design of
modules to perform addition, multiplication and exponentiation modulo 2™ — 1. Here
we describe how these modules can be utilised for verifying if 2" — 1 is a prime. We
would like to point out, however, that with these circuits, augmented by appropriate
software components, we can perform more sophisticated cryptographic systems. An
example is the El Gamal digital signature implementation [4], which requires an ad-
ditional module for computing g.c.d.

In passing, we would like to mention that primes of the form 2" — 1 are well known
to mathematicians, who have named these Mersenne primes. It is known that there
are infinitely many of them. The largest known primes today are Mersenne primes.

Mathematical Background

We begin by introducing some notation. T'wo integers, a and b are said to be congruent
modulo n if n divides a — b, this is written as a = b(mod n). Let N = 2™ — 1. Note

that NV is the largest n-bit number. The following lemma shows us how to do addition
mod N.

Lemma 1 Let a,b be two n-bit numbers. Then (a + b)mod N can be computed by
adding a and b with an n-bit full adder, deleting the carry bit of the result, and adding
it to the remaining bits of the result.

Proof. Let a4+ b = 2"Q + R, where R < 2". Then, () is the carry bit and R the
number formed by the rest of the bits. Now, a+b=2"Q+R=(2"-1)Q+Q+ R =
NQ+Q+R=(Q+ R)mod N. |

Theorem 1 If p is a prime, and 0 < z < p, then zP~! = 1(mod p).

This is Fermat’s little theorem, for a proof, refer to [3]. This gives a necessary
condition for primality. Using the multiplication and exponentiation circuits, we
can compute 2V "!(mod N) in O(n) time, doing n-bit arithmetic. This is a popular
primality test, if a number fails this, we know it is composite, but if not, there is a high
probability that it is prime. For a justification of using this probablistic algorithm,
refer to [5].

Hardware modules

We give an AHPL [1] specification of the hardware modules, along with a circuit dia-
gram of the datapath. Throughout, we are doing n-bit arithmetic in a 64-bit circuit,
with the n rightmost bits holding the data values.

Adder

The adder works on the principle described in Lemma 1. A filter circuit is used to
extract the rightmost n bits of the sum of the two inputs, the number obtained this
way is added to the carry bit to get the final result. This approach requires two
additions. Mask[64] is a global 64-bit bus, whose rightmost n bits are one, the rest
zero. It is generated by subtracting one from the output of a 6 to 64 decoder, with
input n.

Mod 2" —1 Adder Module

Inputs: A[64], B[64], n[6], Mask[64], Soa
Memory: R[64],FR[64]

Outputs: Eoa

Clunits: Add[64],Filter[64][6]

— (—So0a,S0a)/(1,2)

R« Add(A,B)

FR« Filter(R,n)

R« Add(FR, 64 T 0);Carryin=Add(A,B)[n];
Eoa=1; —(1)

ok

CS5 Cs1 cs2 Ccs3

csl g) b Q j) Q D Q—
DA ; > FF Start FF FF
SoA

CS3 Cs4 CS5
EOA

FF FF

Control Unit

A[63:0] FR[63:0] B[63:0] 0
CH eanit CHAL 6amit
X LIX
0
64 bit Adder mu
RIn|
Cc+4
Cs2 64 bit Register :R
CE
N[5:0—
[64 bit Filter
cs3 CE

64 bit Register :FR

‘ ‘ FR[63:0]

Data Path

Figure 1.1: Mod 2" — 1 Adder

M64 Mi+1 Mi MO
CE CE CE CE
e DI— Q D Q D T 19 D
FF FF FF FF
ROT(63) ROT(i+1) ROT()) ROT(0)

64tol
MUX

ROT[64] .

Figure 1.2: Rotation Register

Multiplier

The multiplier design is similar to that of the conventional shift and add multiplier,
with a few differences. The output of multiplying two n-bit numbers, (n < 64) mod-
ulo N is another n-bit number, so the output goes to a 64-bit register instead of 128
bits, as it would in a usual multiplier. The adder module defined in the previous
section is used in place of the conventional full adder.

The most interesting variation, however, is the left shift. From Lemma 1, the left-
most bit, which goes to the (n + 1) position - that of a carry bit - should be added
to the number formed by the rest of the bits. However, the left shift ensures the
rightmost bit is zero. Hence, in place of a shift, all we have to do is perform a left
rotation of the n bits. Recall that n is just an input to the circuit, and we must
rotate the n rightmost bits in a 64 bit register. This is facilitated by using a decoder
to enable only the rightmost n bits of the rotation register, and using a multiplexor
to obtain the rotated bit.

DIANNN T — 4g POIN :€'T 9In31]

CSs8
Cs1

SoM

Mult[0]

!
’

Zero(courgbO CSLD

Csl
D
Q)7 Q cso
FF SoM FF
Mult[0Q] CS3
—1=0 =)
C+A4 Q CS5
© —P L
FF FF
Not EoA
EoA
CS6 Cs7
FF FF

—

Zero(Count)

Control Unit

CS3
D Q
FF
CS6
D Q
FF
CS8
EoM

PUABN T — 4g POIN F'T 98]

A[63:0] out[63:0]

Cs2 CS6
cS2 < Load Load
CE : " Cs2 CE .]
— 64 bit Rotate Register :Rot — 64 bit Register :Addout
CS6 ~ CS6 cS2
CS6 | Rotate Clear
[64 bit mod 2"n-1 Adder
N[5:0]
‘CH4_ | SoA
‘ ‘ B[63:0]
out[63:0] EoA
Count[7:0 CSs2
0— o [7:0] | Zero (count) Load
— 8-hit cs?
CE 64 it Shift Register :Mult
Counter ey :
cs2 | CSe CS6_| Right Shift
|
CS6 ‘
mult[63:0]

Data Path

Mod 2" — 1 Multiplier Module

Inputs: A[64], B[64], n[6], Mask[64], Som
Memory: Rot[64], Mult[64], Addout[64], Count[8]
Outputs: Eom

1. —(—=Som,Som)/(1,2)
2. Rot+ A;
3. Mult+ B;
Count« 0;
Addout<+ 0
4. —(Mult[0],=Mult[0])/(4,6).
5. Add[mod 2" — 1](Rot,Addout); # Adder output goes to Addout
Soa=1.
6. —(Eoa/—Eo0a)/(6,5).
7. Rotate(Rot);
Rshift(Mult);
Inc(Count).
8. —(V/count,— V/count)/(3,8).
9. Eom=1; —(1).

The 64-bit register Addout holds the result of the multiplication after the ocmpu-
tation is over. This register is accessible from the exponentiator also.

Exponentiator

To compute 2V ', we need O(logy(N —1) multiplications. The algorithm is as follows:

Exponentiation Algorithm
acc < 1;buf < x;count + 0;
while (count < n)

buf < buf x buf;

acc < acc X buf;

count < count + 1;
endwhile.

The multiplier module is used twice in each iteration step.

Mod 2" — 1 Exponentiation Module
Inputs: x[64],n[6],Soe

Memory: Accum|64],buff[64],Addout[64],Count[6]
Clbuses: Tc[1]

Outputs: Eoe

1. —(—Soe,Soe)(1,2)

2. Buff« x;
Accum<+ 1;
Count« 0;
Addout+ 0

3. Mult[mod 2" — 1](Buff,Buff);
Som=1

4. —(Eom/—Eom)/(5,4)

5. Buff<— Addout

6. Mult[mod 2" — 1](Buff,Accum);
Som=1

7. —(Eom/—Eom)/(8,7)

8. Accum<— Addout;
Inc(count);

9. —(Tc/—Tc)/(10,3)

10. Eoe=1; —(1)

Implementation Details

We implemented the system on a demo board used at the FPGA laboratory in the
department [2]. This consists of a Xilinx[*"! 4010E FPGA, and an 8051 microcon-
troller, which can communicate using common ports.

The software component runs on the 8051. This is responsible for taking the value
of n as input and returning the result. Given the value of n, it invokes the verification
procedure with a fixed number of values of x. It polls the FPGA port, until the result
is known. If the test is passed for all x, it returns that N = 2" — 1 is a prime. If even
a single test is failed, it immediately returns failure.

While the modules above were described for 64 bit implementation, our initial im-
plementation used a 32 bit version (n < 32). This was because the 64-bit version
required 453 CLBs, as opposed to the 400 available on the FPGA. We are imple-
menting a 64-bit version, saving CLBs by implementing some of the multiplexors
using tri-state buffers. The major part of memory is used by the 9 64-bit registers.
Since the FPGA has only 800 flip-flops, we cannot scale the deisgn to a 128-bit version.

" o)

CSs10
Cs1

oD

O

cst s

Not EoM

fjj;}%

CS6
Csr. "
NotEol

cs4 Q| CS5 | CS6
Q ﬁ)b D Q
FF FF FF
EoM
cs7 css Q | Cs9
Q —D Q D
FF FF FF
EoM
cs9 cs10
IE—] Q
EoE
FF
Tc

Control Unit

Figure 1.5: Exponentiator for computing V! mod N

01

N pour ; .z Sunnduiod 10§ 10yeryueuodxy] :9°T 9INSL]

Sj)i -
CE 64 bit Register :Buff
S5

1 ddout[63:0]

Cs2 64bit Mu

Load

CS2 CE . .
64 bit Register :Accum
Cs8

Il o 1.

N[5:0]

CS3
) >7 SoM
CS6

64 bit mod 2*n-1 Multiplier

Count[5:0]
_ e |
0= 6bit
Counter |
CS2 | Tc
Ld‘ CE
Cs8

out[63:0] EoM
Load
c4 CE . ')
64 bit Shift Register :Addout
Ccs7

Addout[63:0]

Data Path

Conclusion and Future Work

We have identified an interesting special case of an important problem, that of per-
forming arithmetic modulo N, when N is of the form 2" — 1. When N is a prime
number, it can be used as a part of public / private key for most cryptosystems. Our
work illustrates a fast method of generating such keys. We will try and extend this
approach to handle more involved cryptographic operations, such as digital signatures.

Acknowledgements

We are grateful to Prof. M. Balakrishnan and Dr. V.B. Taneja for giving us an op-
purtunity to study codesign systems in our microprocessors course. We are thankful
to them for their guidance and encouragement in this project.

11

Bibliography

[1] Digital Systems: Hardware - Software Organisation and Design
Hill and Peterson (Wiley)

[2] Development of a User Friendly Environment for Hardware - Software Codesign
Kapil Verma (Mini-project undertaken at IIT, New Delhi)

(3] An Introduction to the Theory of Numbers
Ivan Niven and Herbert Zuckermann (Wiley Eastern)

[4] Handbook of Applied Cryptography
A. Menezes, P. van Oorschot and S. Vanstone (CRC Press)

[5] Structure and Interpretation of Computer Programs
H. Abelson and G. Sussman (MIT Press)

12

