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Abstract. Symbolic automata allow transitions to carry predicates over
rich alphabet theories, such as linear arithmetic, and therefore extend
classic automata to operate over infinite alphabets, such as the set of
rational numbers. Existing automata algorithms rely on the alphabet
being finite, and generalizing them to the symbolic setting is not a trivial
task. In our earlier work, we proposed new techniques for minimizing
deterministic symbolic automata and, in this paper, we generalize these
techniques and study the foundational problem of computing forward
bisimulations of nondeterministic symbolic finite automata. We propose
three algorithms. Our first algorithm generalizes Moore’s algorithm for
minimizing deterministic automata. Our second algorithm generalizes
Hopcroft’s algorithm for minimizing deterministic automata. Since the
first two algorithms have quadratic complexity in the number of states
and transitions in the automaton, we propose a third algorithm that
only requires a number of iterations that is linearithmic in the number of
states and transitions at the cost of an exponential worst-case complexity
in the number of distinct predicates appearing in the automaton. We
implement our algorithms and evaluate them on 3,625 nondeterministic
symbolic automata from real-world applications.

1 Introduction

Finite automata are used in many applications in software engineering, including
software verification [8] and text processing [3]. Despite their many applications,
finite automata suffer from a major drawback: in the most common forms they
can only handle finite and small alphabets. Symbolic automata allow transitions
to carry predicates over a specified alphabet theory, such as linear arithmetic, and
therefore extend finite automata to operate over infinite alphabets, such as the
set of rational numbers [13]. Symbolic automata are therefore more general and
succinct than their finite-alphabet counterparts. Traditional algorithms for finite
automata do not always generalize to the symbolic setting, making the design
of algorithms for symbolic automata challenging. A notable example appears
in [11]: while allowing finite state automata transitions to read multiple adjacent



inputs does not add expressiveness, in the symbolic case this extension makes
problems such as checking equivalence undecidable.

Symbolic finite automata (s-FA) are closed under Boolean operations and
enjoy decidable equivalence if the alphabet theory forms a decidable Boolean
algebra [13]. s-FAs have been used in combination with symbolic transducers to
analyze complex string and list-manipulating programs [12, 16]. In these appli-
cations it is crucial to keep the automata “small” and, in our previous work,
we proposed algorithms for minimizing deterministic s-FAs [13]. However, no
algorithms have been proposed to reduce the state space of nondeterministic
s-FAs (s-NFAs). While computing minimal nondeterministic automata is a hard
problem [18], several techniques have been proposed to produce “small enough”
automata. These algorithms compute bisimulations over the state space and use
them to collapse bisimilar states [26, 2]. In this paper, we study the problem of
computing forward bisimulations for s-NFAs.

While the problem of computing forward bisimulations has been studied for
classic NFAs, it is not easy to adapt these algorithms to s-NFAs. Most effi-
cient automata algorithms view the size of the alphabet as a constant and use
data structures that are optimized for this view [2]. We propose three new al-
gorithms for computing forward bisimulation of s-NFAs. First, we extend the
classic Moore’s algorithm for minimizing deterministic finite automata [25] and
define an algorithm that operates in quadratic time. We then adapt our previ-
ous algorithm for minimizing deterministic s-FAs [13] to the problem of com-
puting forward bisimulations and show that a natural implementation leads to
a quadratic running time algorithm. Finally, we adapt a technique proposed by
Abdulla et al. [2] to our setting, and propose a new symbolic data-structure that
allows us to perform only a number of iterations that is linearithmic in the num-
ber of states and transitions. However, this improved state complexity comes at
the cost of an exponential complexity in the number of distinct predicates ap-
pearing in the automaton. We compare the performance of the three algorithms
on 3,625 s-FAs obtained from regular expressions and NFAs appearing in verifi-
cation applications and show that, unlike for the case of deterministic s-FAs, no
algorithm strictly outperforms the other ones.

Contributions. In summary, our contributions are:

– a formal study of the notion of forward bisimulations for s-FAs and their
relation to state reduction for nondeterministic s-FAs (§ 3);

– three algorithms for computing forward bisimulations (§ 4, 5 and 6);
– an implementation and a comprehensive evaluation of the algorithms on
3,625 s-FAs obtained from real-world applications (§ 7).

2 Effective Boolean algebras and s-NFAs

We define the notion of effective Boolean algebra and symbolic finite automata.
An effective Boolean algebra A has components (U, Ψ, [[ ]],⊥,⊤,∨,∧,¬). U is a set
called the universe. Ψ is a set of predicates closed under the Boolean connectives
and ⊥,⊤ ∈ Ψ. The denotation function [[ ]] : Ψ → 2U is such that, [[⊥]] = ∅,



[[⊤]] = U, for all ϕ, ψ ∈ Ψ, [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and
[[¬ϕ]] = U \ [[ϕ]]. For ϕ ∈ Ψ, we write SAT(ϕ) when [[ϕ]] 6= ∅ and say that ϕ is
satisfiable. A is decidable if SAT is decidable.

Intuitively, such an algebra is represented programmatically as an API with
corresponding methods implementing the Boolean operations and the denota-
tion function. We are primarily going to use the following two effective Boolean
algebras in the examples, but the techniques in the paper are fully generic.

2bvk is the powerset algebra whose domain is the finite set bvk, for some k > 0,
consisting of all non-negative integers smaller than 2k—i.e., all k-bit bit-
vectors. A predicate is represented by a Binary Decision Diagram (BDD) of
depth k.3 Boolean operations correspond directly to BDD operations and ⊥
is the BDD representing the empty set. The denotation [[β]] of a BDD β is
the set of all integers n such that a binary representation of n corresponds
to a solution of β.

int[k] is an algebra for small finite alphabets of the form Σ = {0, . . . , 32k− 1}.
A predicate ϕ is an array of k unsigned 32-bit integers, ϕ = [a1, . . . , ak], and
for all i ∈ Σ: i ∈ [[ϕ]] iff in the integer ai/32+1 the bit in position i mod 32
is 1. Boolean operations can be performed efficiently using bit-vector opera-
tions. For example, the conjunction [a1, . . . , ak] ∧ [b1, . . . , bk] corresponds to
[a1&b1, . . . , ak&bk], where & is the bit-wise and of two integers.

We can now define symbolic finite automata. Intuitively, a symbolic finite
automaton is a finite automaton over a symbolic alphabet, where edge labels
are replaced by predicates. In order to preserve the classical Boolean closure
operations (intersection, complement, and union) over languages, the predicates
must also form a Boolean algebra. Since the core topic of the paper is about
nondeterministic automata we adopt the convention often used in studies of
NFAs [22, 10, 28] that an automaton has a set of initial states rather than a
single initial state as used in other literature on automata theory [21].

Definition 1. A symbolic nondeterministic finite automaton (s-NFA) M is a
tuple (A, Q, I, F,∆) where A is an effective Boolean algebra, called the alphabet,
Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of
final states, and ∆ ⊆ Q × ΨA ×Q is a finite set of moves or transitions.

Elements of UA are called characters and finite sequences of characters, elements
of U∗

A , are called words ; ǫ denotes the empty word. A move ρ = (p, ϕ, q) ∈ ∆ is

also denoted by p
ϕ
−→M q (or p

ϕ
−→ q when M is clear from the context), where p

is the source state, q is the target state, and ϕ is the guard or predicate of the
move. Given a character a ∈ UA, an a-move of M is a tuple (p, a, q) such that

p
ϕ
−→M q and a ∈ [[ϕ]], also denoted p

a
−→M q (or p

a
−→ q when M is clear). In the

following let M = (A, Q, I, F,∆) be an s-NFA.

3 Let the variable order of the BDD be the reverse bit order of the binary representa-
tion of a number, i.e., the most significant bit has the lowest ordinal, etc.



Definition 2. Given a state p ∈ Q, the (right) language of p in M , denoted
L (p,M), is the set of all w = [ai]

k
i=1 ∈ U∗

A such that, either w = ǫ and p ∈ F , or

w 6= ǫ and there exist pi−1
ai−→M pi for 1 ≤ i ≤ k, such that p0 = p, and pk ∈ F .

The language of M is L(M)
def

=
⋃

q∈I L (q,M). Two states p and q of M are
indistinguishable if L (p,M) = L (q,M). Two s-NFAs M and N are equivalent
if L(M) = L(N).

The following terminology is used to characterize various key properties of
M . A state p ∈ Q is called complete if for all a ∈ UA there exists an a-move from
p, p is partial otherwise. A move is feasible if its guard is satisfiable.

– M is deterministic: |I| = 1 and whenever p
a
−→ q and p

a
−→ q′ then q = q′.

– M is complete: all states of M are complete; M is partial, otherwise.
– M is clean: all moves of M are feasible.
– M is normalized : for all (p, ϕ, q), (p, ψ, q) ∈ ∆: ϕ = ψ.
– M is minimal : there exists no equivalent s-NFA with fewer states.

In the following, we always assume that M is clean. If E is an equivalence
relation over Q, then, for q ∈ Q, q/E denotes the E-equivalence class containing
q, for X ⊆ Q, X/E denotes {q/E | q ∈ X}. The E-quotient of M is the s-NFA

M/E
def

= (A, Q/E, I/E , F/E , {(p/E, ϕ, q/E) | (p, ϕ, q) ∈ ∆})

3 Forward bisimulations

Here we adapt the notion of forward bisimulation to s-NFAs. Below, consider a
fixed s-NFA M = (A, Q, I, F,∆).

Definition 3. Let E ⊆ Q×Q be an equivalence relation. E is a forward bisim-
ulation on M when, for all (p, q) ∈ E, if p ∈ F then q ∈ F , and, for all a ∈ UA
and p′ ∈ Q, if p

a
−→ p′ then there exists q′ ∈ p′/E such that q

a
−→ q′.

If E is a forward bisimulation on M then the quotient M/E preserves the
language of all states in M , as stated formally by Theorem 1, as a generalization
of the same property known in the classical case when the alphabet is finite.

Theorem 1. Let E be a forward bisimulation on M . Then, for all states q of
M , L (q,M) = L (q/E,M/E).

Proof. We prove the statement φ(w) by induction over |w| for w ∈ U∗
A :

φ(w) : ∀p ∈ QM (w ∈ L (p,M) ⇔ w ∈ L (p/E ,M/E))

The base case |w| = 0 follows from the property of the forward bisimulation E
on M that if p ∈ F then p/E ⊆ F and by definition of E-quotient of M that its
set of final states is F/E .



For the induction case assume that φ(w) holds as the IH. Let a ∈ UA. We
prove φ(a · w). Fix p ∈ QM .

a · w ∈ L (p,M) ⇔ ∃q ∈ Q such that (p
a
−→M q, w ∈ L (q,M))

by IH
⇔ ∃q ∈ Q such that (p

a
−→M q, w ∈ L (q/E ,M/E))

(∗)
⇔ ∃q ∈ Q such that (p/E

a
−→M/E

q/E, w ∈ L (q/E ,M/E))

⇔ a · w ∈ L (p/E ,M/E)

Proof of (∗):

(⇒): If p
a
−→M q then there is (p, ϕ, q) ∈ ∆M such that a ∈ [[ϕ]]. By definition of

M/E, there is (p/E, ϕ, q/E) ∈ ∆M/E
, hence p/E

a
−→M/E

q/E.

(⇐): Fix a q such that p/E
a
−→M/E

q/E and w ∈ L (q/E,M/E). By definition of
∆M/E

there exists a transition (p1, α, q1) in ∆M where a ∈ [[α]] and p1/E = p/E

and q1/E = q/E, so p1
a
−→M q1. By the assumption that E is a bisimulation on

M it follows that there exists q′ ∈ q1/E such that p
a
−→M q′. But q1/E = q/E , so

q′/E = q/E and therefore ∃q′ ∈ Q such that (p
a
−→M q′, w ∈ L (q′/E ,M/E)). ⊠

Corollary 1. Let E be a forward bisimulation on M . Then L(M) = L(M/E).

For a deterministic s-NFAM one can efficiently compute the coarsest forward
bisimulation relation≡M overQM defined by indistinguishability of states, in or-
der to constructM/≡M

as the minimal canonical (up to equivalence of predicates)
deterministic s-NFA that is equivalent to M [13, Theorem 2]. The nondetermin-
istic case is much more difficult because there exists, in general, no canonical
minimal NFA [22] for a given regular language.

Our aim in this paper is to study algorithms for computing forward bisim-
ulations for s-NFAs. Once a forward bisimulation E has been computed for an
s-NFA M , it can be applied, according to Corollary 1, to build the equivalent
E-quotientM/E with reduced number of states,M/E need not be minimal though.

4 Symbolic partition refinement

We start by presenting the high-level idea of symbolic partition refinement for
forward bisimulations as an abstract algorithm. Let the given s-NFA be M =
(A, Q, I, F,∆). It is convenient to view∆, without loss of generality, as a function
from Q × Q to ΨA, and we also lift the definition over its second argument to
subsets S ⊆ Q of states,

∆(p, q)
def

=
∨

(p,ϕ,q)∈∆

ϕ, ∆(p, S)
def

=
∨

q∈S

∆(p, q),

where the predicates are effectively constructed using ∨A. Essentially, this view
of ∆ corresponds to M being normalized, where all pairs (p, q) such that there

is no transition from p to q have ∆(p, q) =
∨

∅
def

= ⊥, else the guard of the



transition from p to q is ∆(p, q). The predicate ∆(p, S) denotes the set of all
those characters that transition from p to some state in S.

M is assumed to be nontrivial, so that both F and Q\F are nonempty. We
construct partitions Pi of Q such that Pi is a refinement of Pi−1 for i ≥ 1, i.e.,
each block in Pi is a subset of some block in Pi−1. Initially let

P0 = {Q}, P1 = {F,Q\F}.

For a partition P of Q define ∼P as the following equivalence relation over Q:

p ∼P q
def

= ∃B ∈ P such that (p, q ∈ B).

Let ∼i
def

= ∼Pi . The partition Pi is refined until Pn+1 = Pn for some n ≥ 1. Each
such refinement step maintains the invariant (1) for i ≥ 1 and p, q ∈ Q:4

p ∼i+1 q ⇐⇒ p ∼i q and for all B ∈ Pi: [[∆(p,B)]] = [[∆(q, B)]] (1)

Under the assumption that A is decidable, [[∆(p,B)]] = [[∆(q, B)]] can be decided
by checking that ∆(p,B) < ∆(q, B) is unsatisfiable.5 So Pi+1 can be computed
effectively from Pi and iterating this step provides an abstract algorithm for

computing the fixpoint ∼M
def

= ∼Pn such that Pn+1 = Pn.

Theorem 2. ∼M is the coarsest forward bisimulation on M .

Proof. Let ∼ = ∼M . We show first that ∼ is a forward bisimulation on M by
way of contradiction. Suppose that ∼ is not a forward bisimulation on M . Since
p ∼1 q iff p, q ∈ F or p, q /∈ F , and ∼ refines ∼1, the condition that for p ∼ q
if p ∈ F then q ∈ F holds. Therefore, there must exists p ∼ q such that for
some a ∈ UA and p′ ∈ Q we have p

a
−→ p′, while for all q′ such that q

a
−→ q′ we

have q′ ≁ p′. Hence there is B ∈ Pi for some i ≥ 1, namely B = p′/∼, such that

a ∈ [[∆(p,B)]] but a /∈ [[∆(q, B)]], so [[∆(p,B)]] 6= [[∆(q, B)]]. But then p ≁i+1 q,
contradicting that p ∼ q. So ∼ is a forward bisimulation on M .

Next, consider any bisimulation ≃ on M . We show that ≃ ⊆ ∼i for all i ≥ 1.

Base case. Suppose p ≃ q. If p ∈ F then q ∈ F , by Definition 3, and, since ≃
is an equivalence relation, symmetrically, if p /∈ F then q /∈ F . So p ∼1 q.

Induction case. Assume as the IH that ≃ ⊆ ∼i. We prove that ≃ ⊆ ∼i+1.
Suppose p ≃ q. We show that p ∼i+1 q. By using the IH, we have that p ∼i q. By
using Equation (1), we need to show that for all B ∈ Pi, [[∆(p,B)]] = [[∆(q, B)]].
By way of contradiction, suppose there exists B ∈ Pi such that [[∆(p,B)]] 6=

[[∆(q, B)]]. Then, w.l.o.g., there exists a ∈ UA and p′ ∈ B such that p
a
−→ p′, and

for all q′ ∈ Q if q
a
−→ q′ then q′ /∈ B, i.e., q′ ≁i p

′, and by using the contrapositive
of the IH (≁i ⊆ 6≃) we have q′ 6≃ p′. But then p

a
−→ p′ while there is no q′ ∈ p′/≃

such that q
a
−→ q′, contradicting, by Definition 3, that p ≃ q. Thus, for all B ∈ Pi,

[[∆(p,B)]] = [[∆(q, B)]]. So p ∼i+1 q.

It follows that ≃ ⊆ ∼ which proves that ∼ is coarsest. ⊠



1 SimpleBisimSFA(M = (A, Q, I, F,∆))
def

=
2 P := {F, Q\F} //initial partition
3 W := {F, Q\F} //workset
4 while (W 6= ∅)
5 pull R from W //choose a splitter candidate
6 while (exists B in P and q, r in B such that SAT(∆(q,R) ∧ ¬∆(r,R)))
7 let D = {p ∈ B | SAT(∆(p,R) ∧∆(q,R) ∧ ¬∆(r,R))}
8 P := (P \ {B}) ∪ {D,B\D} //refine the partition
9 W := (W \{B}) ∪ {D,B\D} //update the workset
10 return ∼P

1 GreedyBisimSFA(M = (A, Q, I, F,∆))
def

=
2 P := {F,Q\F} //initial partition
3 W := {if (|F | ≤ |Q\F |) then F else Q\F} //workset
4 super(F ) := Q; super(Q\F ) := Q //super(B) is the superblock of B
5 while (W 6= ∅)
6 pull R from W //choose a splitter candidate
7 let R′ = super(R)\R
8 while (exists B in P and q, r in B such that

9 SAT(∆(q,R) ∧ ¬∆(r,R)) or SAT(∆(q,R′) ∧ ¬∆(r,R′)))
10 let D = if SAT(∆(q,R) ∧ ¬∆(r,R))
11 then {p ∈ B | SAT(∆(p,R) ∧∆(q,R) ∧ ¬∆(r,R))}
12 else {p ∈ B | SAT(∆(p,R′) ∧∆(q,R′) ∧ ¬∆(r,R′))}
13 P := (P\{B}) ∪ {D,B\D} //refine P
14 if (B ∈W ) then //add both parts into the workset
15 W := (W \{B}) ∪ {D,B\D}
16 super(D) := super(B); //super(B) remains the superblock of B parts
17 super(B\D) := super(B)
18 else //add only the smaller of the two parts into the workset
19 W := W ∪ {if (|D| ≤ |B\D|) then D else B\D}
20 super(D) := B; //B becomes the superblock of both parts
21 super(B\D) := B

22 return ∼P

Fig. 1. Simple and greedy algorithms for computing ∼M .

A simple algorithm for computing ∼M is shown in Figure 1. It differs from the
abstract algorithm in that the partition is refined in smaller increments, rather
than in large parallel refinement steps corresponding to Equation (1). The order
of such steps does not matter as long as progress is made at each step.

Theorem 3. SimpleBisimSFA(M) computes ∼M .

4 One can view one iteration of refinement from Pi to Pi+1 as computing ≁i+1 from
≁i, which is often how Moore’s algorithm is presented for DFAs.

5 ϕ ⇔ ψ is defined as ((ϕ ∨ ¬ψ) ∧ (¬ϕ ∨ ψ)) and ϕ < ψ stands for ¬(ϕ⇔ ψ).



Proof (outline). The key observation is the following: if [[∆(q, B)]] 6= [[∆(r, B)]]
holds for some q ∼P r and B ∈ P and B has been split into {Bi}ni=1 before
it has been chosen from the workset then [[∆(q, Bi)]] 6= [[∆(r, Bi)]] for some i,
or else [[∆(q, B)]] =

⋃

i[[∆(q, Bi)]] =
⋃

i[[∆(r, Bi)]] = [[∆(r, B)]]. In other words,
even if B has not yet been used as a splitter, the fact that q ≁M r holds will
be detected at some later point using one of the blocks Bi because all subblocks
are added to the workset W .

The splitting of B intoD and B\D requires some explanation. First note that
q ∈ D and r ∈ B\D, so both new blocks are nonempty. Second, pick any p ∈ D
and any s ∈ B\D. We need to show that [[∆(p,R)]] 6= [[∆(s,R)]] to justify the
split. We know that SAT(∆(p,R)∧∆(q, R)∧¬∆(r, R)) holds. Thus, if ∆(p,R)
were equivalent to ∆(s,R) then SAT(∆(s,R) ∧∆(q, R) ∧ ¬∆(r, R)) would also
hold, contradicting that s /∈ D.

It follows that upon termination, when W = ∅, P cannot be refined further
and thus ∼P = ∼M . ⊠

Complexity. If the complexity of checking satisfiability of predicates of size ℓ
is f(ℓ), then SimpleBisimSFA(M) has complexity O(mnf(nℓ)), where m is the
number of transitions in the input s-FA, n is the number of states, and ℓ is the size
of the largest predicate in the input s-FA.6 Since we check satisfiability by taking
the union of all predicates in multiple transition (e.g., ∆(q, R)), satisfiability
checks are performed on predicates of size O(nℓ).

5 Greedy symbolic partition refinement

We can improve the simple algorithm by incorporating Hoprcoft’s “keep the
smaller half” partition refinement strategy [19]. This strategy is also reused in
Paige-Tarjan’s relational coarsest partition algorithm [26]. Hopcroft’s strategy is
generalized to symbolic alphabets in [13] by incorporating the idea of using sym-
metric differences of character predicates during partition refinement, instead of
single characters, as illustrated also in the simple algorithm. Here we further
generalize the algorithm from [13] to s-NFAs. The algorithm can also be seen
as a generalization of Paige-Tarjan’s relational coarsest partition algorithm from
computing the coarsest forward bisimulation of an NFA to that of an s-NFA.

The greedy algorithm is shown in Figure 1. The computation of partition P
is altered in such a way that whenever a block B (that is no longer, or never was,
in the workset W ) is split into D and B\D, only the smaller of the two halves
is added to the workset. In order to preserve correctness, the original SAT con-
dition involving R must be augmented with a corresponding condition involving
R′ = super(R)\R, where super(R) is the block that contained R before split-
ting. This means that the other half will also participate in the splitting process.
The gain is how efficiently the information computed for a block is reused in the
computation. The core difference to the deterministic case [13] is that if M is

6 This bound is obtained using the same amortized complexity argument used for
Moore’s minimization algorithm [25].



deterministic then the use of R′ is redundant, i.e., the SAT check holds for R
iff it holds for super(R)\R, so the superblock mapping is not needed.

q f

r
aa

a

Fig. 2. Sample NFA.

Example 1. This example illustrates why the
additional SAT-checks on super(R)\R are
needed in the greedy algorithm, when M is
nondeterministic. Let M be the NFA in Fig-
ure 2, where UA = {a}. Then initially W =
{{f}} and P = {{q, r}, {f}}. So, in the first
iteration R = {f}. Let R′ = super(R)\R = {q, r}. The only candidate block for
B is {q, r}. SAT(∆(q, R)∧¬∆(r, R)) fails because [[∆(q, R)]] = [[∆(r, R)]] = {a},
while [[∆(q, R′)]] = {a} and [[∆(r, R′)]] = ∅. Thus, if SAT(∆(q, R′) ∧ ¬∆(r, R′))
was omitted then the algorithm would return ∼{{q,r},{f}} but q ≁M r. ⊠

Theorem 4. GreedyBisimSFA(M) computes ∼M .

Proof (outline). The justification behind splitting of B into D and B\D based
on R or super(R)\R is analogous to the argument provided in the proof of
Theorem 3. We show that no splits are missed due to the additional optimization.

In the case a block B in W has not yet been used as a splitter, its original
superblock Bs = super(B) must be kept as the superblock of the new sub-
blocks D and B\D. This implies that blocks Bs\D and Bs\(B\D) serve as the
replacement candidate splitters for the block Bs\B. In the case a block B is not
in W , its use as a splitter is already covered, and it serves as the superblock for
its subblocks D and B\D, i.e., super(D) = B and super(B\D) = B, which
implies that super(D)\D = B\D and super(B\D)\(B\D) = D. ⊠

Complexity. If the complexity of checking satisfiability of predicates of size ℓ
is f(ℓ), the naive implementation of GreedyBisimSFA(M) presented in Fig. 1,
which explicitly computes ∆(r, super(R)\R), has complexity O(mnf(nℓ)), with
m as the number of transitions in the input s-FA and n as the number of states.
Even though only the small block is added to added to W after a split, both
blocks are eventually visited. Therefore, we still have a quadratic complexity as
n and m are multiplied. In the next section, we discuss a different data structure
that yields a different complexity for the greedy algorithm in Figure 1.

6 Counting symbolic partition refinement

We want to avoid explicit computation of ∆(p, super(R)\R) in the greedy algo-
rithm. We investigate a method that can reuse the computation performed for
super(R) and R in order to calculate ∆(p, super(R)\R). We consider a sym-
bolic bag datastructure that, by using predicates in ΨA, provides a finite partition
for UA and maps each part in the partition into a natural number. A (symbolic)
bag σ denotes a function [[σ]] from UA to N that has a finite range. All elements



that map to the same number effectively define a part or block of the partition.
For p ∈ Q and S ⊆ Q let Bag(p, S) be a bag such that, for all a ∈ UA,

[[Bag(p, S)]](a) = |{q ∈ S | p
a
−→ q}|.

In other words, in addition to encoding if a character a can reach S from p, the
bag also encodes, to how many different target states. Let Set be a function that
transforms bags σ to predicates in ΨA such that

[[Set(σ)]] = {a ∈ UA | [[σ]](a) > 0}

In particular [[Set(Bag(p, S))]] = [[∆(p, S)]]. A bag can be implemented effectively
in several ways and we defer the discussion of such choices to below. We assume
that there is an effective difference operation σ .− τ over bags such that, for all

a ∈ UA, given m
.− n

def

= max(0,m− n), [[σ .− τ ]](a) = [[σ]](a) .− [[τ ]](a). So

[[∆(p, super(R)\R)]] = [[Set(Bag(p, super(R)) .− Bag(p,R))]].

This shows that each ∆(p,X) in the greedy algorithm can be represented us-
ing a symbolic bag. The potential advantage is, provided that we can effi-
ciently implement the difference and the Set operations, that in the compu-
tation of Bag(p, super(R)) .− Bag(p,R) we can reuse the prior computations of
Bag(p, super(R)) and Bag(p,R), and therefore do not need super(R)\R.

We call the instance of the greedy algorithm that uses symbolic bags, the
counting algorithm or CountingBisimSFA. The counting algorithm is a general-
ization of the bisimulation based minimization algorithm of NFAs [2] from using
algebraic decision diagrams (ADDs) [4] and binary decision diagrams (BDDs) [9]
for representing multisets ands sets of characters, to symbolic bags and predi-
cates. If the size of the alphabet is k = 2p then p is the depth or the number
of bits required in the ADDs. An open problem for symbolic bags is to main-
tain an equally efficient data structure. Although theoretically p is bounded by
the number of predicates in the s-NFA, the actual computation of those bits
and their relationship to the predicates of the s-NFA requires that the s-NFA is
first transformed into an NFA. However, the NFA transformation has complexity
O(2p). This factor is also reflected in the complexity of the algorithm in [2] that
is O(km logn) with k, m and n as above.

Implementation. We define symbolic bags over A, denoted BagA, as the least set
of expressions that satisfies the following conditions.

– If n ∈ N then nat(n) ∈ BagA.
– If ϕ ∈ ΨA and σ, τ ∈ BagA then ite(ϕ, σ, τ) ∈ BagA.

The denotation of a bag σ is a function [[σ]] : UA → N such that, for all a ∈ UA,

[[nat(n)]](a)
def

= n, [[ite(ϕ, σ, τ)]](a)
def

=

{

[[σ]](a), if a ∈ [[ϕ]];
[[τ ]](a), otherwise.



We say that a symbolic bag is clean if all paths from the root to any of its leaves
is satisfiable. In our operations over bags we maintain cleanness. An operator ⋄,
such as + or .−, over N is lifted to bags as follows.

σ ⋄ τ
def

= σ ⋄⊤ τ

nat(m) ⋄γ nat(n)
def

= nat(m ⋄ n)

ite(ϕ, σ, τ) ⋄γ ρ
def

= ite(ϕ, σ ⋄γ∧ϕ ρ, τ ⋄γ∧¬ϕ ρ)

nat(n) ⋄γ ite(ϕ, σ, τ)
def

=







nat(n) ⋄γ τ, if not SAT(γ ∧ ϕ);
nat(n) ⋄γ σ, else if not SAT(γ ∧ ¬ϕ);
ite(ϕ,nat(n) ⋄γ∧ϕ σ,nat(n) ⋄γ∧¬ϕ τ), otherwise.

Cleaning of the result is done incrementally during construction by passing the
context condition γ with the operator ⋄γ . Observe that if α ∧ β is unsatisfiable
(i.e., [[α]] ∩ [[β]] = ∅) then α implies ¬β (i.e., [[α]] ⊆ [[¬β]]). For all p, q ∈ Q let

Bag(p, q)
def

=

{

ite(∆(p, q),nat(1),nat(0)), if ∆(p, q) 6= ⊥;
nat(0), otherwise.

Let Bag(p,R)
def

=
∑

q∈R Bag(p, q). One additional simplification that is performed
is that if [[σ]] = [[τ ]] then the expression ite(ϕ, σ, τ) is simplified to σ. The Set(σ)
operation replaces each non-zero leaf in σ with ⊤ and each zero leaf in σ with
⊥, assuming, w.l.o.g., that A has the corresponding operator ite(ϕ, ψ, γ) with
the expected semantics that [[ite(ϕ, ψ, γ)]] = [[(ϕ ∧ ψ) ∨ (¬ϕ ∧ γ)]].

Example 2. Consider an s-NFA M with alphabet A such that UA = N that has

the following transitions from a given state p: {p
φ2

−→ q2, p
φ3

−→ q3, p
φ6

−→ q6}
where φk for k ≥ 1 is a predicate such that n ∈ [[φk]] iff n is divisible by k. In
the following ite(ϕ, l, r) is depicted with ϕ as the node, l as the left subtree,
and r as the right subtree. Let R = {q2, q3, q6}. Then Bag(p,R) = Bag(p, q2) +
Bag(p, q3) + Bag(p, q6) is computed as follows:

φ2

1 0

+ φ3

1 0

+ φ6

1 0

= φ2

φ3

2 1

φ3

1 0

+ φ6

1 0

= φ2

φ3

3 1

φ3

1 0

= t

In the second addition, all the branch conditions of the leaves of the first tree,
other than the first branch, become unsatisfiable with the condition φ6. Only
the very first branch condition φ2∧φ3 is consistent (in this case equivalent) with
φ6 while nat(0) is the identity. Hence nat(3) = nat(2) + nat(1) in t. ⊠

Complexity. In this implementation, ∆(r, B) is represented by Set(Bag(r, B)),
and ∆(r, super(R)\R) can be computed from Bag(r, super(R)) and Bag(r, R)
without having to iterate over the automaton transitions. However, in the worst
case, at each step in the algorithm, the Bag data structure can have exponential



Fig. 3. State reduction for the two benchmark sets.

size in p, the number of distinct predicates in the s-FA. Using a similar amor-
tized complexity argument to that used by Hopcroft’s algorithm for minimizing
DFAs [20], we have that, if we ignore the cost of computing the bag data struc-
ture, the algorithm has complexity O(m logn). In summary, if the complexity of
checking satisfiability of predicates of size ℓ is f(ℓ), the counting implementation
of GreedyBisimSFA(M) presented in Fig. 1 has complexity O(2pm lognf(nℓ)),
where m is the number of transitions in the input s-FA and n is the number
of states, and p is the number of distinct predicates in the automaton. Con-
cretely, while this implementation helps reducing the number of iterations over
the automaton transitions, it suffers from an extra cost that is a function of the
alphabet complexity and of the predicates appearing in the automaton. Notice,
that in the case of finite alphabets 2p is exactly the size of the alphabet and
this problem does not exist [2]. This is another remarkable case of how adapting
classic algorithms to the symbolic setting is not always possible.

7 Evaluation

We evaluate our algorithms on two sets of benchmarks. We report the state re-
duction obtained using forward bisimulations and, for each algorithm, we com-
pare the running times and the number of explored blocks. We use Simple to
denote the algorithm presented at the top of Fig. 1, Greedy to denote the al-
gorithm presented in Sec. 5, and Count to denote the counting based algorithm
described in Sec. 6. As a sanity check, we assured that all the algorithms com-
puted the same results. All the experiments were run on a 4-core Intel i7-2600
CPU 3.40GHz, with 8GB of RAM.

Regexlib. We collected the s-NFAs over the alphabet 2bv16 resulting from
converting 2,625 regular expressions appearing in http://regexlib.com/. This
website contains a library of crowd-sourced regular expressions for tasks such
as detecting URLs, emails, and phone numbers. These s-NFAs have 1 to 3,174
states, 1 to 10,670 transitions, and have an average of 2 transitions per state.



Fig. 4. Running times of three algorithms on regular expression from regexlib.com and
on NFAs from verification applications. In the second plot, we do not show data points
that are very close to each other to make the figure readable.

These benchmarks operate over very large alphabets and can only be handled
symbolically. We use the algebra 2bvk.

Verification s-NFAs. We collected 1,000 s-NFAs over small alphabets (2-40
symbols) appearing in verification applications from [8]. These s-NFAs are gen-
erated from the steps of abstract regular model checking while verifying the
bakery algorithm, a producer-consumer system, bubble sort, an algorithm that
reverses a circular list, and a Petri net model of the readers/writers protocol.
These s-FAs have 4 to 3,782 states, 7 to 18,670 transitions, and have an average
of 4.1 transitions per state. Given the small size of the alphabets, these automata
are quite dense. We represent the alphabet using the algebra int[k].

State reduction. Figure 3 shows the state reduction obtained by our algo-
rithm. Each point (x, y) in the figure shows that an automaton with x states
was reduced to an equivalent automaton with y states. On average, the number of
states reduces by 14% and 19% for the regexlib benchmarks and the verification
NFAs respectively.

Runtime. Figure 4 shows the running times of the algorithms on each bench-
mark s-FA. For the regexlib s-FAs, most automata take less than 1ms to complete
causing the same running time for the three algorithms on 2528 benchmarks. In
general, the Greedy algorithm is slightly faster than the other two algorithms
and the Count algorithm is at times slower than both the other two algorithms
(93 cases total), on relatively small cases. On two large instances (1,502 and
3,174 states, 1,502 and 10,670 transitions) the Greedy and Count algorithms
clearly outperform the Simple algorithm.

For s-FAs from [8], the algorithms Simple and Greedy, have very comparable
performances (Greedy is, on average, 6 ms slower than Simple). The Count
algorithm is slower than both these algorithms in 90% of the cases and has the
same performance in the remaining 10% of the cases.

In both experiments, almost all the computation time of the Count algorithm
is spent manipulating the counting data structure presented in Sec. 6. In sum-



Fig. 5. Ratio of number of explored blocks between the Simple algorithm and the other
algorithms.

mary, the Count algorithm, despite having m logn complexity, is consistently
slower than the other two algorithms and the slowdown is due to the complexity
of manipulating the counting data structure.

Explored blocks. We measure the number of blocks pushed into the worklist
W for the different algorithms. Figure 5 shows the ratio between the explored
blocks of the Simple algorithm and the other two algorithms. As expected from
the theoretical complexities, the Count algorithm consistently explores fewer
blocks than the Simple algorithm. As we observed in Figure 4, this is not enough
to achieve better speedups. The Greedy algorithm often explores more blocks
than the other two algorithms. This is because R′ = super(R)\R of a set R is
explored even in the cases where R′ has already been split into subsets. In this
case, the simple algorithm will only explore the splits and not the original set,
while the Greedy algorithm will explore both R′ as well as its splits.

8 Related work

Minimization of deterministic automata. Automata minimization algorithms
have been studied and analyzed extensively in several different aspects. Moore’s
and Hopcroft’s algorithms [25, 20] are the two most common algorithms for min-
imizing DFAs. Both of these algorithms compute forward bisimulations over
DFAs and can be implemented with complexity O(kn logn) (where k is the size
of the alphabet). This bound is tight [7, 6, 5]. The two algorithms, although in
different ways, iteratively refine a partition of the set of states until the for-
ward bisimulation is computed. In the case of DFAs, the equivalence relation
induced by the bisimulation relation produces a minimal and canonical DFA.
In our earlier work, we extended Hopcroft’s algorithm to work with symbolic
alphabets [13] and showed how, for deterministic s-FAs, the algorithm can be
implemented in O(m lognf(nl)) for automata with m transitions, n states, and
predicates of size l. Here f(x) is the cost of checking satisfiability of predicates



of size x. The algorithm proposed in [13] is similar to the greedy algorithm in
Figure 1. The main difference is in the necessity to use super(R)\R in the SAT

checks and that this seemingly small change has drastic complexity implications.

Minimization and state reduction in nondeterministic automata. In the case
of NFAs, there exists no canonical minimal automaton and the problem of finding
a minimal NFA is known to be PSPACE complete [24]. It is shown in [18] that it
is not even possible to efficiently approximate NFA minimization. The original
search based algorithm for minimizing NFAs is known as the Kameda-Weiner
method [22]. A generalization of the Kameda-Weiner method based on atoms of
regular languages [10] was recently introduced in [28]. Most practical approaches
for computing small nondeterministic automata use notions of state reductions
that do not always produce a minimal NFAs [2]. These techniques are based
on computing various kinds of simulation and bisimulation relations. The set of
most common such relations has been described in detail and extended to Büchi
automata in [23]. In this paper, we are only concerned with performing state
reduction by computing forward bisimulations.

Abdulla et al. were the first to observe that forward bisimulation for NFAs
could be computed with complexity O(km logn) by keeping track of the num-
ber of states each symbol can reach from a certain part of a partition [2]. In
their paper, they also proposed an efficient implementation based on BDDs and
algebraic decision diagrams for the special case in which the alphabet is a set
of bit-vectors. The techniques proposed in [2] are tailored for finite alphabets
and the goal of our paper is extending them to arbitrary alphabets that form a
decidable Boolean algebra. In this paper, we propose an extension based on our
symbolic bag data structure and experimentally show that, unlike for the case
of finite alphabets, the counting algorithm is not practical.

Recently, Geldenhuys et al. have proposed a technique for reducing the size of
certain classes of NFAs using SAT solvers [17]. In this technique, a SAT formula
is used to describe the existence of an NFA that is equivalent to the original one,
but has at most k states. Applying these techniques to symbolic automata is an
interesting research direction.

Automata with predicates. The concept of automata with predicates instead
of concrete symbols was first mentioned in [31] and was first discussed in [29] in
the context of natural language processing. Since then s-FAs have been studied
extensively and we have seen algorithms for minimizing deterministic s-FAs [13]
and deterministic s-FAs over trees [14], and extensions of classic logic results to
s-FAs [15]. To the best of our knowledge, the problem of reducing the states and
efficiently computing forward bisimulations for nondeterministic s-FAs has not
been studied before. The term symbolic automata is sometimes used to refer
to automata over finite alphabets where the state space is represented using
BDDs [27]. This meaning is different from the one described in this paper.

AutomataDotNet. This is an open source Microsoft Automata project [1] that
is an extension of the automata toolkit originally introduced in [30]. The source
code (written in C#) of all the algorithms discussed in this paper as well as the
source code of the experiments discussed in Section 7 are available in [1].
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