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ABSTRACT
Query expansion (QE) is a well known technique to im-
prove retrieval effectiveness, which expands original queries
with extra terms that are predicted to be relevant. A re-
cent trend in the literature is Supervised Query Expansion
(SQE), where supervised learning is introduced to better se-
lect expansion terms. However, an important but neglected
issue for SQE is its efficiency, as applying SQE in retrieval
can be much more time-consuming than applying Unsuper-
vised Query Expansion (UQE) algorithms. In this paper,
we point out that the cost of SQE mainly comes from term
feature extraction, and propose a Two-stage Feature Selec-
tion framework (TFS) to address this problem. The first
stage is adaptive expansion decision, which determines if a
query is suitable for SQE or not. For unsuitable queries,
SQE is skipped and no term features are extracted at all,
which reduces the most time cost. For those suitable queries,
the second stage is cost constrained feature selection, which
chooses a subset of effective yet inexpensive features for su-
pervised learning. Extensive experiments on four corpora
(including three academic and one industry corpus) show
that our TFS framework can substantially reduce the time
cost for SQE, while maintaining its effectiveness.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval

Keywords
Query Expansion, Supervised Learning, Efficiency

1. INTRODUCTION
Queries provided by users can sometimes be ambiguous

and inaccurate in an information retrieval system, which
may generate unsatisfactory results. Query expansion (QE)
is a well known technique to address this issue, which ex-
pands the original queries with some extra terms that are
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predicted to be relevant [26]. It is hoped that these expanded
terms can capture user’s true intent that is missed in orig-
inal query, thus improving the final retrieval effectiveness.
In the past decades, various applications [26, 6] have proved
its value.

Unsupervised QE (UQE) algorithms used to be the main-
stream in the QE literature. Many famous algorithms, such
as relevance model (RM) [21] and thesaurus based methods
[29], have been widely applied. However, recent studies [5,
22] showed that a large portion of expansion terms selected
by UQE algorithms are noisy or even harmful, which limits
their performance. Supervised Query Expansion (SQE) is
proposed to overcome this disadvantage by leveraging the
power of supervised learning. Most of existing SQE algo-
rithms [5, 22, 13, 25, 2] follow a classical machine learning
pipeline: (1) utilize UQE to select initial candidate terms;
(2) features of candidate terms are extracted; (3) pre-trained
classifiers or rankers are utilized to select the best terms for
expansion. Significant effectiveness improvement has been
reported over their unsupervised counterparts, and SQE has
become the new state-of-the-art.

Besides effectiveness, efficiency is another important issue
in QE-involved retrieval [35]. As we will show later, UQE
algorithms are usually very efficient to apply. Therefore,
when UQE is adopted in retrieval, the major inefficiency
comes from the second retrieval, which retrieves the entire
corpus for the expanded queries. This issue is traditionally
handled by indexing or documents optimization [35, 3, 30].
But recently Diaz [11] showed that simply reranking the
retrieval results of original queries can already provide nearly
identical performance with very low time costs, particularly
for precision-oriented metrics.

However, the efficiency issue of SQE algorithms imposes
new challenge beyond the UQE case. Compared with UQE
algorithms, SQE requires extra time to apply supervised
learning, which can incur significant time cost. Moreover,
this issue is unique to SQE, and cannot be addressed by
previous QE efficiency methods such as indexing optimiza-
tion or reranking. Unfortunately, although important, this
issue has been largely neglected in the literature.

The above observations motivate us to propose new re-
search to address this SQE efficiency problem. In this pa-
per, we point out that the major time cost of applying
SQE algorithms comes from term feature extraction. Indeed
leveraging extensive features can enhance the effectiveness
of supervised learning, so that better expansion terms can
be selected. However, it also inevitably decreases the effi-
ciency. Aiming at this point, we propose a Two-stage Fea-



ture Selection framework (TFS) to balance the two conflict-
ing goals. The first stage is Adaptive Expansion Decision
(AED), which predicts whether a query is suitable for SQE
or not. For unsuitable queries, SQE is skipped with no fea-
tures being extracted, so that the time cost is reduced most.
For suitable queries, the second stage conducts Cost Con-
strained Feature Selection (CCFS), which chooses a subset
of effective yet inexpensive features for supervised learning.
We then instantiate TFS for a RankSVM based SQE al-
gorithm. Extensive experiments on four corpora (including
three academic and one industry corpus) show that our TFS
framework can substantially reduce the time cost of SQE al-
gorithm, meanwhile maintaining its effectiveness.

The rest of the paper is organized as follows: Sec. 2 in-
troduces the preliminaries of our work, including problem
analysis and literature review; Sec. 3 presents the Two-stage
Feature Selection framework and its instantiation; Sec. 4
gives all experiments, and in Sec. 5 we conclude this paper.

2. PRELIMINARIES
In this section, we will thoroughly analyze the SQE ef-

ficiency problem. Meanwhile we will review the literature,
and point out the difference between our work and previous
works. The discussions below are presented in three subsec-
tions, each covering one specific aspect.

2.1 QE Algorithm Analysis
First we will review some basics about query epansion.
QE Formulation. Suppose we have a user query q with

n terms q = {tqi |i = 1 : n}. Suppose m expansion terms are
selected by a QE algorithm, denoted as {tei |i = 1 : m}. Then
the expanded query qe is their union, i.e. qe = {tq} ∪ {te}.
Each term t ∈ qe is weighted by the interpolated probability

P (t|qe) = (1− λ)P (t|q) + λPQE(t) (1)

where P (t|q) is the probability of term t occurring in q (i.e.
P (t|q) = frequency of term t in q

query length |q| ), PQE(t) is the term probabil-

ity given by QE algorithm, and λ is the interpolation coeffi-
cient to be tuned. As can be seen, the key question here is
how to select good expansion terms.

UQE versus SQE. Unsupervised QE (UQE) algorithms
used to be the mainstream in QE literature. For exam-
ple, some well known UQE algorithms include relevance
model (RM) [21], positional relevance model [24], and mix-
ture model [36]. UQE algorithms are very popular because
on one hand their formulations are in general simple, and
on the other hand their empirical performance is quite rea-
sonable. However, recent works [5, 22] observed that a large
portion of the expansion terms from UQE can be noisy or
even harmful, which limits their performance.

SQE tackles this problem by introducing supervised learn-
ing to predict the quality of candidate expansion terms. Cao
et al. [5] proposed perhaps the first SQE research, where
they designed a set of term features and applied SVM for
term classification (either good or bad). Later Lee et al.
[22] claimed that ranking oriented term selection outper-
forms classification oriented methods. Gao et al. [13, 12]
applied SQE to web search, where search log is utilized for
candidate term generation. Some other extensions include
QE robustness [25], query reformulation [2], etc. A common
pipeline of SQE training and testing [5, 13] is summarized
in Alg. 1. Notice here we only concern test-time efficiency,
rather than the training-time efficiency.

Algorithm 1 SQE Training and Testing Pipeline

. Training SQE model H
1: For training query q, record its retrieval accuracy rq (e.g.

ERR@20). Select M candidate terms {tci |i=1:M} via UQE.
2: Each time, a single candidate term tc is appended to q, i.e.

qc = q∪tc; record its retrieval accuracy rqc ; then ∆rqc = rqc−rq
is the label for tc.

3: Extract term features Ft for all tc, and train a classifier (based
on if ∆rqc > 0 or ∆rqc ≤ 0) or train a ranker (based on the
ranking order of ∆rqc ), denoted as H.

. Testing (i.e. applying H in QE retrieval)
1: For testing query q, use UQE to select M candidate terms.
2: Extract Ft for all candidate terms.
3: Apply H to get top m terms for expansion.

2.2 QE Efficiency Analysis
Now we will analyze the efficiency issue when QE is ap-

plied in retrieval.
QE in Retrieval. The retrieval process with QE can be

described as follows. Let C denote the target corpus upon
which we will run and evaluate retrieval; denote S as the re-
source from which expansion terms are extracted. In tradi-
tional pseudo relevance feedback (PRF) scenario [6], S = C.
In more general scenario, S is not necessarily the same as
C. For example, in web search, C (e.g. Clueweb09) might
be too low-quality to be used for QE [1]; instead some other
resources of higher quality can be used as S (e.g. search log
[10] or Wikipedia [1]). Assuming a retrieval algorithm (e.g.
BM25 or KL divergence) is utilized, then a typical process
of QE in retrieval is summarized in Table 1:

Table 1: QE in retrieval with and without reranking.
(1) First Retrieval: search original query q on resource S;
(2) Applying QE Model: select expansion terms {te} from S.
(3) Second Retrieval:

(Full) retrieve corpus C for expanded query qe.
——————–OR——————–
(Reranking)

(A) If C 6= S, retrieve C for q, denote the results as L;
If C = S, then let the results of first retrieval as L;

(B) Rerank L for expanded query qe.

In the above table we list two possible implementations
of second retrieval. The full second retrieval is more tra-
ditional, in which the entire target corpus C is retrieved
for expanded query qe. This, however, is painfully time-
consuming, particularly on large scale corpus. Recently Diaz
[11] suggested to rerank the retrieval results of original query
q as the results for qe. Diaz pointed out that this reranking
implementation can provide nearly identical performance as
the full second retrieval, particularly for precision-oriented
evaluation metrics. Our preliminary experiments also ver-
ified this statement. Therefore throughout this paper, we
will utilize reranking as the default implementation for sec-
ond retrieval. Notice in the (A) step, we present the dif-
ferent implementation details regarding both PRF scenario
(C = S) and non-PRF scenario (C 6= S).

Existing QE Efficiency Studies. Despite the useful-
ness of reranking, the majority of existing works on QE ef-
ficiency still focused on how to speed up the full second
retrieval. As far as we know, all of these works addressed
the problem by optimizing underlying data structures such
as indexing or document representation. Billerbeck et al.
[3] proposed to use compact document summaries to reduce
retrieval time. Lavrenko et al. [20] pre-calculated pairwise
document similarities to reduce the amount of calculation
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Figure 1: Comparison of the time cost of each retrieval step.

AED and CCFS are the two-stages in our TFS framework,

the target corpus C is Cw09BNS, resource S is Wikipedia,

the number of expansion terms is 20, and the averaged time

costs per query are reported by running experiments using

a single-thread program on a single PC. The blue line is the

averaged retrieval time cost for original query.

when searching expanded queries. Wu et al. [35] utilized a
special index structure named impact-sorted indexing that
improves the scoring procedures in retrieval. Theobald et
al. [30] proposed the idea of merging inverted list of dif-
ferent terms in an incremental on-demand manner so that
document scan can be delayed as much as possible. Un-
fortunately, our goal now is not the second retrieval, which
is handled by reranking as [11] does. Nor can the ineffi-
ciency challenge of SQE be handled by the above data-level
approaches.

2.3 SQE Efficiency Analysis
Now we will show why the efficiency issue of SQE is a

unique and challenging problem beyond the UQE case.
Step-wise Time Cost Analysis. First let’s see how

UQE and SQE differs in the time cost spent on each re-
trieval step. On Clueweb09-B corpus, we conduct UQE (RM
[21]) and SQE (applying RankSVM [19] based on Cao et al’s
work [5]) for QE with 20 expansion terms. As comparison,
we apply our Two-stage Feature Selection framework (TFS)
to SQE. Notice that although UQE does not involve term
feature extraction, we can still apply adaptive expansion de-
cision to UQE. In Figure 1, we show the time cost of each
retrieval step with respect to Table 1. More experiment de-
tails can be found in Sec. 4. Here we mainly discuss the
observations that motivate our research.

We can observe that, indeed applying SQE model can
be much more time-consuming than applying UQE model,
which supports our previous statement and validates our
motivation. Notice here, step “FirstRet” and “ApplyQE”
are involved in expansion term selection, while “SecRet” in-
cludes only retrieving C for original query q and reranking
for expanded query qe. Also notice the reranking in second
retrieval only incurs very low time cost.

Feature Extraction in SQE. It is then natural to ask,
which part of SQE incurs the major time cost, and why?

We argue that term feature extraction is the major ineffi-
cient part in SQE models. Recall the testing phase in Alg. 1,
there are three steps to apply SQE model. The first step is
essentially UQE, which is in general very efficient. The third
step, which applies learned SQE model H for term classifi-
cation or ranking, is also efficient in practice. For example,
many SQE works [5, 22, 13, 2] adopted linear model, which
is extremely fast yet effective. Therefore, the second step
of term feature extraction constitutes the majority of ineffi-
ciency.
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Figure 2: With more time spent on term feature extraction,

more term features will be obtained, and higher retrieval ac-

curacy can be achieved.

But why would we spend much time on term feature ex-
traction? This is because predicting the quality of terms is
very challenging, so we want plenty of powerful features to
enhance the learning algorithm [5, 13, 22]. In Figure 2, we
show the retrieval accuracy (ERR@20) when different time
cost is spent on term feature extraction. The purple triangle
is UQE which does not extract any term feature (i.e. time
cost equals zero); the blue rectangle is the full SQE model
with all available term features (defined later). In the middle
is our proposed cost constrained feature selection method.
Clearly, with more time spent, more term features will be
obtained, and the retrieval accuracy is higher as well. How-
ever, this inevitably degrades the efficiency.

We can further observe that, with more term features,
although the retrieval accuracy of SQE is usually higher,
the marginal gain becomes smaller. This motivates us to
find a subset of features such that their total cost is low,
meanwhile the effectiveness is reasonably maintained. This
coincides with the idea of feature selection [15], although
most of such methods only concern the number of selected
features while ignoring their difference in time cost, which
can be suboptimal.

3. TWO-STAGE FEATURE SELECTION FOR
EFFICIENT SQE RETRIEVAL

Based on the above analysis, in this section we will present
the proposed Two-stage Feature Selection (TFS) framework.
Below we will first present TFS as a general framework, then
instantiate it for an example SQE algorithm.

3.1 A General Framework
Assume the initial full set of term features are Ft, where

subscript t indicates the features are for terms. As analyzed
earlier, when retrieval effectiveness is the only goal, Ft tends
to become abundant and inefficient. Therefore, the goal of
our TFS framework is to select a subset of term features F∗t
from Ft, so that the effectiveness and efficiency can be opti-
mally balanced. As mentioned earlier, the TFS framework
includes the following two stages:
• Adaptive Expansion Decision (AED), which predicts

whether a query is suitable for SQE or not. For unsuit-
able queries, SQE is skipped with no term features being
extracted, which reduces the time cost most. To this end,
AED builds a classifier VAED with pre-defined query fea-
ture Fq, so that VAED(Fq) < 0 for unsuitable queries and
VAED(Fq) > 0 for suitable ones.
• Cost Constrained Feature Selection (CCFS), which se-

lects a subset of effective yet inexpensive term features for
SQE to apply. For those SQE-suitable queries that pass the
first stage, this second stage can further reduce the time cost



Table 2: SQE in Retrieval with TFS.
(1) First retrieval:

(1.1) Search original query q on resource S.
(1.2) AED: Extract query feature Fq . If VAED(Fq) ≤ 0,

directly go to step (3.1); otherwise continue.
(2) Apply QE model:

(2.1) Apply UQE to generate candidate expansion terms.
(2.2) CCFS: extract term features F∗t for candidate terms.
(2.3) Select the best terms to form expanded query qe.

(3) Second retrieval (Reranking):
(3.1) If VAED(Fq) ≤ 0: if target corpus is the resource

(i.e. C = S), then return the retrieval results in step
(1.1); if C 6= S, retrieve C for original query q. Exit.

(3.2) If VAED(Fq) > 0: if C = S, then rerank the retrieval
results in step (1.1) for qe; if C 6= S, retrieve C for
original query q, then rerank the results for qe. Exit.

to some extent. To this end, CCFS builds a feature selector
VCCFS , which requires the time cost uf of each term feature
f , and a pre-defined overall time cost upper bound U . In
this way, there is F∗t = VCCFS(Ft) and

∑
f∈F∗t

uf ≤ U .

Accordingly, the complete retrieval process is shown in
Table 2, which is self-evident to interpret. Below we will
give more details about the two stages.

3.1.1 Adaptive expansion decision (AED)
Training. The training process of AED classifier VAED

is as follows. For training query q, we first retrieve corpus C
and record its retrieval accuracy as rq (e.g. ERR@20 value).
Then we apply the SQE model H from Alg. 1 to get the
expanded query qe. Retrieve C for qe by following the pro-
cedures in Table 2, and denote the retrieval accuracy as rHq .

Then if rHq > rq, we assign label +1 to query q, which means
SQE can help improve the retrieval effectiveness for q; oth-
erwise we assign −1 to q. Finally, we extract query features
Fq for q, and adopt some supervised learning algorithm (e.g.
SVM) to get the classifier VAED.

Discussion. The idea of AED stems from query per-
formance prediction. It is known that query expansion may
hurt the retrieval effectiveness for some queries [25, 7]. There-
fore, accurately predicting those queries and avoid applying
expensive SQE model to them can substantially improve the
efficiency. This idea of adaptive expansion has also been ap-
plied in [18, 27, 23, 8], although their works mainly focused
on retrieval effectiveness and did not report the efficiency
advantage that this method might bring.

3.1.2 Cost constrained feature selection (CCFS)
Despite the existence of AED, queries that pass AED still

face the problem of expensive term feature extraction in
SQE. Now we will explain how cost constrained feature se-
lection is designed for those SQE-suitable queries.

Algorithm Design. As mentioned, CCFS aims to select
a subset of term features F∗t from the complete feature set
Ft, so that the overall time cost will not exceed a pre-defined
upper bound U , i.e. F∗t = VCCFS(Ft) with

∑
f∈F∗t

uf ≤ U .

Our CCFS algorithm is formulated as follows. Since the
SQE model H is used to predict the quality of expansion
terms, we assume X ∈ RN∗K as the feature matrix for N
candidate terms, where each row is a K-dimensional feature
vector for each term. Denote Y ∈ RN∗1 as the corresponding
labels for terms in X, which is calculated as the ∆rqc in
Alg. 1. Assume the SQE model H is learned via a loss
function LH(X,Y |θ), where θ is the model parameter. We
introduce feature selector d ∈ {0, 1}K , where the ith element

Algorithm 2 Cost Constrained Feature Selection

Input Learning algorithm H, algorithm parameter θ, data X ∈
RN∗K , label Y ∈ RN∗1, algorithm loss function LH(X,Y |θ),
feature cost vector u ∈ RK∗1, final cost upper bound U , cost
decrease ∆U .

Output Feature selector d∗ ∈ {0, 1}K satisfying uT d∗ ≤ U , and
the learned parameter θ∗.

1: t← 0, d∗ = 1K∗1, U
0 = uT 1K∗1

2: do
3: X ← Xd∗, learn θ∗ = arg minθ LH(X,Y |θ).
4: Learn d∗ = arg mind LH(Xd, Y |θ∗), s.t. d ∈ {0, 1}K ,

uT d ≤ U i.
5: Ut+1 ← Ut −∆U, t← t+ 1.
6: while U i > U

di = 1 means the ith feature is selected. With fixed d,
those unselected features in X will become invalid, which is
equivalent to X ← Xd. Together θ and d form a revised
learning objective as follows:

d, θ = arg minLH(Xd, Y |θ), s.t. uT d ≤ U. (2)

The optimization process is shown in Alg. 2, where a co-
ordinate descent strategy is adopted to iteratively optimize
w.r.t θ and d. During the iteration, we gradually decrease
the cost upper bound (i.e. ∆U), so that the feature selec-
tion process can be smooth. In extreme case where U ≥ U0,
Alg. 2 will produce the same results as vanilla H where no
selection occurs (i.e. d = 1K∗1).

Discussion. Feature selection is a hot research topic in
machine learning [15], and has been successfully adopted in
information retrieval [13, 14, 33]. Popular methods include
L1 based regularization [28, 13], cascading structure [31],
feature number constraint [34], etc. Theoretically, any fea-
ture selection method can reduce time cost. But in practice
we find better effectiveness can be achieved if the time cost
of each feature can be explicitly considered. Unfortunately,
most of previous research did not model such feature cost dif-
ference, which can be suboptimal. Wang et al. [33] proposed
a greedy search algorithm for time cost aware feature selec-
tion in learning to rank. We also compare this method in
our experiments, which shows our formulation outperforms
this greedy design. CCFS can also be applied to the AED if
necessary, which is straightforward. But due to space limi-
tation, we simplify our experiments by only applying CCFS
to term features.

3.2 Instantiation for RankSVM based SQE
So far we have elaborated all the details of TFS as a gen-

eral framework. Now we will instantiate it with respect to
a representative SQE algorithm, to show the implementa-
tion details. For SQE, we adopt a RankSVM based SQE
method. Linear model has been widely applied in SQE lit-
erature [2, 13, 12]. Moreover, a ranking perspective has been
proven to be very effective [22, 12] for SQE. Therefore, we
believe RankSVM will make a representative example. Also
Lavrenko’s Relevance Model (RM) is utilized as the UQE
model to generate candidate expansion terms, which is ar-
guably one of the most successful UQE algorithms.

3.2.1 AED
The AED stage is simple to implement. Here we utilize

SVM with Gaussian kernel for VAED training. The adopted
query features Fq are listed in Table 3, which are all well
known query performance prediction features in the litera-
ture [17, 23, 16, 37].



Table 3: Query Features Fq
Description Formulation
Qry length |q|

Qry Entropy
∑
t∈q −P (t|DF )log2p(t|DF )

Qry Clarity 1
∑
t∈q P (t|q)log P (t|q)

P (t|C)

Qry Clarity 2
∑
t∈q −P (t|DF )log

P (t|DF )

P (t|C)

Feedback
Radius

1
|DF |

∑
d∈DF

∑
t∈d

P (t|d)log
P (t|d)

p(t|d̄)
,

P (t|d̄) = 1
|DF |

∑
d∈DF

P (t|d)

Qry IDF Var var(idf(t ∈ q)), idf(t) =
log2(|C|+0.5)/|Dt|

log2(|C|+1)

Max IDF max idf(t ∈ q)
AvICTF 1

|q| log2
∏
t∈q

N
Nt

Qry Collection
Similarity

∑
t∈q(1 + logNt)log(1 +

|C|
|Dt|

)

Max of QCS maxt∈q(1 + logNt)log(1 +
|C|
|Dt|

)

Qry Variability
(QVar)

∑
t∈q

√
1
|Dt|

∑
d∈Dt

(wd,t − w̄t)2, w̄t = 1
|Dt|

∑
d∈Dt

wd,t,

wd,t = 1 + logNd,t ∗ log(1 +
|C|
|Dt|

)

Max of QVar maxt∈q
√

1
|Dt|

∑
d∈Dt

(wd,t − w̄t)2

Similar Qry
Click Score

1

|Qsim|

∑
q′∈Qsim

RankScore(q′, click doc)

Similar Qry
Click Rank

1

|Qsim|

∑
q′∈Qsim

Rank(q′, click doc)

Here q is the given query, t represents term, DF is the pseudo
relevant documents obtained from first retrieval of unexpanded
query, C is the entire corpus, |C| is the total document number in
corpus, d represents document, N is the total term number in
corpus, Nt is the number of term t in corpus, Dt is the set of
documents containing t, Nd,t is the number of t in doc d. The last
two features are based on search log for industry dataset, which
calculate the average clicked doc score/ranks of similar queries

(Qsim) in search log (see Sec. 4 for more details).

3.2.2 CCFS
Applying Alg. 2 in practice requires a deeper insight into

the SQE model itself. Nonetheless, as we show below, Alg. 2
can generate elegant solutions that are easy to implement.

Objective. For training queries q, let xqi ∈ R|Ft| be the
feature vector for the ith candidate term of q. Here the
term features Ft are adopted from [5, 13], and are listed in
Table 4. Following the notations of u, U, d in Alg. 2, the
objective of cost constrained RankSVM is as follows:

w, d = arg min
1

2
w
T
w +

G

|P|
∑

q,i,j∈P
γq,i,jξq,i,j

s.t.∀(q, i, j) ∈ P : w
T

(x
q
i ◦ d) > w

T
(x
q
j ◦ d) + 1− ξq,i,j , ξq,i,j ≥ 0,

d ∈ {0, 1}|Ft|, u
T
d ≤ U

(3)

Here P is the set of pairwise candidate terms (q, i, j) where
∆rqi > ∆rqj ; ◦ is element-wise multiplication; and we add
γq,i,j = |∆rqi − ∆rqj | as loss weight that emphasizes large
relevance difference, which works well in practice. Notice
for RankSVM, there’s no need to add offset.

Eq. 3 is how Eq. 2 looks like when RankSVM objective
[19] is introduced. The first three lines (if without d) of
Eq. 3 constitute vanilla RankSVM (with slight modification
of γq,i,j), while the feature selector d and the last line of con-
straints formulate the cost constrained version of RankSVM.
The outcome d indicates what features are selected under
cost upper bound U , and the w is the resulted RankSVM
model based on the selected features.

Optimization. We solve Eq. 3 by converting it into the
dual form via Lagrange multiplier [4], which gives:

min
αk,d

∑K

k=1
αk −

1

2

(∑K

k=1
αk(δxk ◦ d)

)T (∑K

k=1
αk(δxk ◦ d)

)
s.t. 0 ≤ αk ≤

Gγk

K
, d ∈ {0, 1}|Ft|, u

T
d ≤ U

(4)

Table 4: Term Features Ft
Description Formulation
UQEScore log score of UQE model

Term Doc Num log|De|
Term Prob in Corpus log(Ne/N)

Term Distribution log

∑
d∈DF

Nd,e∑
d∈DF

∑
t∈d

Nd,t

Co-occurrence with
single query term

log 1
|q|
∑
t∈q

∑
d∈DF

Win(t,e|d)∑
d∈DF

∑
t∈d

Nd,t

Co-occurrence with
pair of query terms

log 1
|ti,j∈q|

∑
|ti,j∈q|

∑
d∈DF

Win(ti,j ,e|d)∑
d∈DF

∑
t∈d

Nd,t

Term Proximity log

∑
t∈q

Win(t,e)dist(t,e|DF )∑
t∈q

Win(t,e)

Document Number
of t,e together

log(
∑

d∈DF
I(t, e|d) + 0.5)

Probability in similar
queries in search log

log 1

|Qsim|

∑
q∈Q

P (e|q)

Probability in docs that
similar queries clicked

log 1
|Dclick|

∑
d∈Dclick

P (e|d)

Here e is the target term. DF means the working set of documents.
Win(t, e|d) is the co-occurrence times that term t and e appear
within distance 10 in d. Win(ti,j , e|d) is the co-occurrence times
that e appear within distance 10 with both ti, tj . dist(t, e|DF ) is
the minimal terms between t and e in doc set DF . The last two
rows are search log based term features for industry dataset, which
calculate the probability of e in similar queries and their clicked
documents. These two features are essentially one-step random walk
features in a more general context [13]. In [5], the doc working set
DF has two choices, one is the pseudo relevant docs and the other is
the entire corpus. The latter, however, is prohibitively expensive in
large dataset. Therefore, we relax DF as follows: assume the
number of pseudo relevant docs is K1, and the number of final
evaluation is K2 (actually fixed as 1000 in this paper); DF is set as
the top {0.5K1, K1, 2K1, 2.5K2, 5K2} docs from first retrieval.

where ∀(q, i, j) in Eq. 3 is re-indexed by k = 1 : K with
each k representing one (q, i, j) triplet; yk = 1 if ∆rqi >
∆rqj , otherwise yk = −1; δxk = xqi − x

q
j ; γk = γq,i,j . α =

[α1, ..., αK ] is the dual parameter to be learned, and we can
get w as

w =
∑K

k=1
αk(δxk ◦ d) (5)

Based on Eq. 4, now the CCFS problem can be easily
optimized by iteratively solving step 3 and step 4 in Alg. 2.

(Step 3) Fix d and optimize w. When d is fixed, we
can absorb d into X as X ← X ◦ d. Under this circum-
stance, Eq. 3 and Eq. 4 become the standard RankSVM
training problem without cost constraint, for which we can
utilize existing algorithms for optimization. Considering the
potential large scale of pairwise term comparison, here we
adopt cutting plane method [19] for efficient optimization.

(Step 4) Fix w and optimize d. With fixed w, now we
aim to find the optimal d. Notice that from step 3, we have
w =

∑K
k=1 αkδxk (recall X is updated to absorb previous d

in step 3). In this way, Eq. 4 can be reformulated as follows:

d∗ = arg max
(∑K

k=1
αk(δxk ◦ d)

)T (∑K

k=1
αk(δxk ◦ d)

)
= arg max

((∑K

k=1
αkδxk

)
◦
(∑K

k=1
αkδxk

))T
d

= arg max
d

(w ◦ w)T d

s.t. d ∈ {0, 1}|Ft|, uT d ≤ U

(6)

This is a standard linear integer programming problem,
for which we utilize Gurobi1 for efficient optimization.

During iteration, the upper bound U is meant to be a
tunable parameter for the users. In practice, we can set U
as a portion of the overall time cost, i.e. U = λ ∗

∑
f∈Ft uf ,

1http://www.gurobi.com/



where λ take values such as {1, 1
2
, 1
4
, ...}. ∆U controls the

number of iterations. In our implementation, we set ∆U =∑
f∈Ft uf−U

#Iter
, where #Iter is the desired iteration number

(e.g. #Iter = 5 or 10).

4. EXPERIMENTS
So far we have elaborated all the details of the proposed

TFS framework. Below we will present extensive experi-
ments to verify its validity.

4.1 Datasets
We adopt four corpora for experiments, including three

academic and one industry corpus.
Robust04. This dataset includes about 0.5 million high

quality documents. 250 queries (301-450 and 601-700) pro-
vided by TREC’04 robust track [32] are utilized for the ex-
periments. MAP is the primary evaluation metric. Notice
here by primary evaluation metric, we mean the metric that
is used to rank TREC competition teams.

Cw09BNS. Clueweb09 category B is used, which includes
50 million web pages. We utilize University of Waterloo’s
spam scores [9]2 to remove those with spam scores lower
than 70, which leaves 29 million web pages. 150 queries
(51 to 200 from TREC’10/11/12 web track) are examined.
ERR@20 is the primary evaluation metric. We denote this
dataset as Cw09BNS, as NS stands for no spam.

Cw12BNSLD. Clueweb12 category B is used, which also
includes 50 million web pages. Since category B contains
very few relevant documents that are labeled by TREC, we
add all the labeled relevant documents into this dataset.
Again University of Waterloo’s spam scores [9]3 are applied
to remove those spam web pages (with the same threshold
70), which leaves about 15 million documents. 50 queries
from TREC’13 web track are utilized, with ERR@20 being
the primary evaluation metric. We denote this dataset as
Cw12BNSLD, as LD means labeled documents are added.

Industry. This is a large scale web page corpus collected
from a major search engine company (i.e. Bing). We in-
corporate an industry corpus to diversify our experiment
settings. For example, the availability of industry search log
provides a new resource for query expansion, as well as the
search log related features in Table 3 and Table 4. Specif-
ically, this corpus includes about 50 million web pages and
2000 queries. NDCG@20 is the primary evaluation metric
as in previous research on a similar industry corpus [13].

4.2 Settings
Now we present all the detailed experiment settings.
Corpus Preprocessing. We utilize Indri4, one of the

most popular academic search systems, to index all our cor-
pora in the form of inverted index [38]. Krovetz stemmer is
applied for stemming, and standard InQuery stopwords are
removed. Except stopwords removal, we do not conduct any
further pruning that might reduce document lengths.

Code & Hardware. In accordance with Indri index, all
our algorithms and experiments are implemented in C++
using Lemur/Indri API. The code is compiled by GCC4.7.3
with -O3 option. The code runs in a single thread on a
single lab Linux server, which is equipped with a AMD 64bit

2https://plg.uwaterloo.ca/∼gvcormac/clueweb09spam/
3http://www.mansci.uwaterloo.ca/ msmucker/cw12spam/
4http://www.lemurproject.org/indri.php

Table 5: Examples of Search Log Records
Query Clicked URL Score Rank

bloomberg
news

http://www.bloomberg.com/news/ 201 1

firefox
com

http://www.mozilla.org/
en-US/firefox/fx/

81 2

gibson
althea

http://en.wikipedia.org/
wiki/Althea Gibson

145 3

Smaller ranks and higher scores represent a better match between
queries and clicked URLs. Notice these search log queries should not
be misinterpreted as the 2000 queries for QE test. They actually
serve as S to find the relevant web pages for those 2000 queries.

2.0GHz quad-core CPU, 12G memory and a 3TB disk that
contains all the indexed corpora.

QE scenarios. As mentioned in Sec. 2, we can get differ-
ent QE scenarios, depending on the resource S upon which
expansion terms are extracted. For Robust04, we apply the
traditional pseudo relevance feedback (PRF) for query ex-
pansion, where resource S is identical to the target corpus
C. Top 20 documents retrieved for q are considered relevant,
from which expansion terms are extracted.

This PRF scenario, however, did not work well on the
other corpora, which include web pages of relatively low
quality [9]. We find that, on Cw09BNS and Cw12BNSLD,
even after filtering spams, the traditional PRF still does not
work well, which is also reported in [1]. Therefore, we try
the strategy of S 6= C.

For Cw09BNS and Cw12BNSLD, we follow the sugges-
tion of Bendersky et al. in [1] to use Wikipedia as S. Top
5 ranked Wikipedia documents of original query q are con-
sidered relevant, upon which QE is applied. On Industry
corpus, we follow the idea of Gao et al. in [13] to use
search log as S. The search log is also acquired from the
same search engine company, which includes one million dis-
tinct click records. Each record contains four elements: user
issued query, clicked URL, the score and the rank of the
clicked URL returned by the search engine. A snapshot of
the search log records is shown in Table 5. For each of the
2000 queries to be experimented, we first find the top 20 sim-
ilar queries from the log; then the corresponding clicked web
pages are considered relevant, from which expansion terms
are extracted. This is actually a one-step random walk in
search log [13].

Models & Parameters. Following [5], we utilize KL
divergence (KLD) as the basic retrieval model for all the
experiments below. The Dirichlet coefficient is set as 1500.
The UQE and SQE algorithm are the same as explained
in Sec. 3.2, i.e. relevance model for UQE and RankSVM
for SQE. For both of them, we empirically set the number
of expansion terms as m = 20. Other values of m will be
examined in Sec. 4.8. For SQE, the number of candidate
terms are empirically set as M = 100. Selected expansion
terms are added to the original query by probability interpo-
lation, as introduced in Eq. 1. The interpolation coefficient
λ is tuned over a finite set of values {0, 0.1, ..., 0.9, 1} on the
training/validation set.

Evaluation Metrics. Both retrieval effectiveness and
efficiency will be evaluated. For effectiveness, MAP and
Prec@20 are used for Robust04, and ERR@20 and NDCG@20
are utilized for the other three web page corpora. For effi-
ciency, we report the retrieval time costs per query, which is
averaged on each query set.

Training/Validation/Testing. For all the query sets,
based on the order of their query IDs, we select the first 40%
queries for training all the models (e.g. SQE and TFS), the



Table 6: Retrieval Performance on Robust04
MAP(?) 	 Prec

@20
	 Time

(sec)
%

OrigRet 0.268 - 0.345 - 0.13 -
UQE 0.319 0 0.369 0 0.61 0

UQEα 0.321 0.002 0.373 0.004 0.78 +27.9%
SQE 0.327 0 0.381 0 4.73 0

SQEα 0.329 0.002 0.383 0.002 4.65 -1.7%

SQEβ( 1
4

) 0.325 -0.002 0.378 -0.003 1.66 -64.9%�
SQEαβ( 1

4
) 0.327 0 0.380 -0.001 1.76 -62.8%�

Table 7: Retrieval Performance on Cw09BNS
ERR

@20(?)
	 NDCG

@20
	 Time

(sec)
%

OrigRet 0.129 - 0.169 - 9.5 -
UQE 0.149 0 0.190 0 11.3 0

UQEα 0.159 0.01↑ 0.194 0.004 11.67 +3.3%
SQE 0.181 0 0.197 0 27.9 0

SQEα 0.187 0.006 0.191 -0.006 20.7 -25.8%�
SQEβ( 1

4
) 0.176 -0.005 0.186 -0.011↓ 15.6 -44.1%�

SQEαβ( 1
4

) 0.186 0.005 0.191 -0.006 13.8 -49.5%�

middle 10% queries for parameter validation, and the re-
maining 50% queries for testing evaluation. All experiments
are repeated three times to report averaged time cost.

TFS Notation. As the two stages in TFS can be applied
independently, we will utilize superscript α and β to indicate
the case when AED and CCFS are applied alone, such as
UQEα and SQEβ . When the full set of TFS is applied for
SQE, then we denote as SQEαβ .

4.3 More on Time Cost
As mentioned, the time costs reported below are all ob-

tained by running experiments using a single thread on a
Linux server. The absolute value might appear larger than
previous works (mainly on Cw09BNS and Cw12BNSLD),
for which we feel necessary to give a full explanation.

Versus Previous Studies. The reason why previous
studies such as [3, 35, 20] reported very low time costs of QE
retrieval is mainly due to their selection and pre-processing
upon the corpus. For example, (1) Lavrenko et al. [20]
and Billerbeck et al. [3] utilized corpora that only contains
O(105 ∼ 106) documents; in comparison our Clueweb09/12
and Industry corpora have O(107) documents, which are at
least 10 times larger. (2) Billerbeck [3] and Wu [35] reduced
the document length into 20 ∼ 100 terms long, while the
averaged document length for our corpora are 500 ∼ 800,
which are again about 5 ∼ 40 times larger. The difference
of corpus size and document length is the major reason why
our reported time costs are larger than previous studies.

Versus Indri Official. With the above settings, our re-
ported time costs are actually quite reasonable. As a proof,
the Indri official website5 reported an averaged time cost of
20 seconds per query (wall clock time) on Cw09B (50 mil-
lion docs, with spam, one thread program on a 3.0GHz CPU,
average query length is about 4), while ours is 9.5 seconds
per query (29 million docs, no spam, 2.0GHz CPU, average
query length is 2.4). After normalizing various factors6, we
can conclude that our time cost per query is very close to
that reported by Indri official website. Although this is not
an exact comparison, it indeed partially supports our claim.

5http://www.lemurproject.org/clueweb09/indri-howto.php
6
We divide the averaged time cost per query by the number of doc-

uments (in millions) and the averaged query length, and multiply
the CPU frequency (in GHz). The result can be seen as an atomic
time cost for a single query term on a million documents using 1GHz
CPU. In this way, the atomic time cost from official Indri website is
0.3 seconds, while ours is 0.27, which is very close.

Table 8: Retrieval Performance on Cw12BNSLD
ERR

@20(?)
	 NDCG

@20
	 Time

(sec)
%

OrigRet 0.258 - 0.618 - 4.37 -
UQE 0.261 0 0.632 0 6.13 0

UQEα 0.262 0.001 0.626 -0.006 6.27 +2.3%
SQE 0.291 0 0.660 0 23.5 0

SQEα 0.292 0.001 0.664 0.004 18.1 -23%�
SQEβ( 1

4
) 0.287 -0.004 0.665 0.005 10.5 -55.3%�

SQEαβ( 1
4

) 0.288 -0.003 0.665 0.005 9.1 -61.3%�

Table 9: Retrieval Performance on Industry
NDCG
@20(?)

	 ERR
@20

	 Time
(sec)

%

OrigRet 0.372 - 0.253 - 11.5 -
UQE 0.387 0 0.260 0 12.1 0

UQEα 0.391 0.004 0.268 0.008 12.3 +1.7%
SQE 0.403 0 0.281 0 22.7 0

SQEα 0.408 0.005 0.285 0.004 19.1 -15.8%�
SQEβ( 1

4
) 0.4 -0.003 0.276 -0.005 15.1 -33.5%�

SQEαβ( 1
4

) 0.406 0.003 0.279 -0.002 13.9 -38.8%�

Versus Engineering Strategy. The absolute value of
time costs can be reduced by engineering strategies such as
better hardware or distributed/parallel computing, which
are widely adopted in commercial search engines like Bing
and Google. However, such devices are usually very expen-
sive to equip, and are not available to us. Moreover, accu-
rately counting the time costs in distributed/parallel com-
puting environment becomes difficult, because usually the
computing resouces (e.g. CPU or memory) are automati-
cally allocated and can vary as time passes. The advantage
of us utilizing single thread program on single computer is
that, the overall time costs directly reflects the amount of
computation (thus the efficiency), and makes it easy to com-
pare different retrieval methods.

4.4 Overall Performance
We first present the major results of retrieval performance

on the four corpora, as shown in Table 6, 7, 8 and 9.
Comparison Methods. We conduct extensive compar-

ison with the following retrieval configurations:
(1) Retrieval for original queries without QE (OrigRet);
(2∼3) UQE and UQE+AED (UQEα);

(4∼7) SQE, SQE+AED (SQEα), SQE+CCFS (SQEβ(
1
4
)),

and SQE+TFS (SQEαβ(
1
4
)). Here β( 1

4
) is an example pa-

rameter for upper bound U in CCFS, which means the upper
bound U is a quarter of the overall time costs of all term fea-
tures, i.e. U = 1

4

∑
f∈Ft uf . Other choices of upper bounds

will be examined in Sec. 4.5.
As mentioned earlier, by default reranking (top 1000 doc-

uments) is utilized in the second retrieval to report the time
costs for the above retrieval methods.

Table Explanation. We adopt evaluation metrics re-
garding both effectiveness (e.g. ERR@20, NDCG@20, MAP)
and efficiency (Time in seconds). Here (?) indicates pri-
mary evaluation metric. We treat UQE and SQE as the
baseline, so that we can show how AED, CCFS and TFS
improve the efficiency respectively. We use column “	”
to represent the effectiveness difference between UQE/SQE
and their speedup versions, and use % for the relative time
cost reduction. For example, on Cw09BNS, SQEα vs SQE
has ERR@20 difference 0.187-0.181=0.006; their time cost
change (%, in percentage) is (20.7-27.9)/27.9=-25.8%. ↑ and
↓ label the positive and negative effectiveness difference that
are statistically significant, and � means the time cost reduc-
tion upon SQE is statistically significant (t-test, p < 0.05).
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Figure 3: Comparison between different feature selection methods. The horizontal axis is the time cost for term

feature extraction (excluding any retrieval time). Purple triangles at left end of curves are UQE method with no term

features, and blue rectangles at right end are SQE algorithm with all available features. AED is not applied here.

Major Observations. From the tables we can draw the
following two major observations.

(1) SQE is more effective but also less efficient than UQE
and OrigRet. Compared with OrigRet and UQE, the re-
trieval effectiveness of SQE can be substantially higher. How-
ever, the time costs are also substantially larger. This ver-
ifies our motivation that the efficiency issue of SQE is an
important research topic.

(2) Both AED and CCFS can substantially improve the
efficiency of SQE, meanwhile only incurring insignificant ef-
fectiveness fluctuation. In the above tables, we progres-
sively add each component to SQE, so that one can see
how the efficiency is progressively improved. In general we
can conclude that for SQE, CCFS achieves higher efficiency
than AED, and their combination (i.e. our TFS framework)
achieves the most efficiency improvement. For effectiveness,
although both positive and negative changes are observed,
most of them are statistically insignificant (t-test, p<0.05).
I.e. most of the effectiveness changes are not labeled by ↑
or ↓. Therefore, we can conclude that our TFS framework
can well maintain the effectiveness of SQE.

We also notice that for UQE, UQEα has slightly increased
time costs. There are two reasons for this phenomenon.
First, for UQE there is no expensive term feature extraction,
so that AED only skips the generation of UQE expansion
terms and the reranking process in second retrieval. Since
these two steps are already very fast, the reduced time cost
is not substantial. Second, AED will result in some extra
time costs for query feature extraction as well as the appli-
cation of AED classifier. Therefore, the overall time costs
of UQEα will be slightly higher than UQE. But notice, the
absolute value of such increase is very low (at most 0.37
seconds). Furthermore, as we will show in Sec. 4.9, the effi-
ciency improvement of AED can be very substantial, if the
full second retrieval is applied instead of reranking, which
verifies the usefulness of AED.

Below, we will present more experiments to thoroughly
investigate AED and CCFS. As CCFS will also be utilized
in AED experiments, we will first analyze CCFS for sake of
clear presentation.

4.5 Cost Constrained Feature Selection
In the above we have verified the validity of feature selec-

tion in speeding up SQE. Now we will investigate how our
CCFS algorithm in Alg. 2 performs in this task.

Comparison Methods. The following two algorithms
are compared with our CCFS algorithm.

L1-RankSVM. L1 regularization is a very popular feature
selection method. When feature selection occurs, we re-
place the L2 regularizer in vanilla RankSVM (Eq. 3) with

L1 regularizer ||w||1. By adjusting the coefficient G, ||w||1
will function to different extent, thus resulting in various
combinations of features. Notice this method is unaware of
the difference in the time costs of extracting each feature.
L1General library7 [28] is utilized for optimization.

Wang’s method [33]. This is a greedy algorithm for cost
aware feature selection, proposed by Wang et al. in [33] for
learning to rank. In this algorithm, each feature is assigned
a profit score, which is the ratio between feature weight
and time cost. Features are sorted by profit scores; then
top features are selected until the time cost upper bound is
reached, which makes it a greedy selection. Different from
L1-RankSVM, this is a cost aware feature selection method.

For both Alg. 2 and Wang’s method, we use the same cost
upper bounds as U = λ

∑
f∈Ft uf as explained earlier, where

we adjust λ to different values such as {1, 1
2
, 1
4
, ...} to get all

the nodes along the curves in Figure 3. For L1-RankSVM,
each node represents a different G value, which is tuned on
training set so that different time costs are obtained.

Overall Results. In Figure 3 we illustrate the curves of
the three methods on all corpora. These curves represent
the retrieval effectiveness when various feature extraction
time is spent (excluding any retrieval time). The purple tri-
angles at the left end of curves represent UQE algorithm,
i.e. no term feature is extracted. The blue rectangles at the
right end of curves represent SQE algorithm with all avail-
able term features. In the middle, various feature selection
methods show different effectiveness-cost tradeoff. We can
clearly observe that more features can produce higher re-
trieval accuracy, but this inevitably takes more time thus
decreasing the efficiency.

CCFS performs best, particularly at low time cost.
Comparing the three feature selection methods, we can see
that our CCFS algorithm outperforms the others, especially
when the feature cost is low. L1-RankSVM penalizes the
number of selected features. That means, each feature is
treated equally, ignoring the cost difference among differ-
ent features. Since expensive features can be included, to
reach a certain time cost, usually L1-RankSVM will over-
penalizes the number of selected features, which deteriorates
the retrieval effectiveness. Wang’s method greedily selects
features based on their profit scores, i.e. the ratio between
feature weight and cost. Here the feature weights are the
ones derived when all features are available. However, this
selection process is suboptimal, because for a single feature,
its weight will become different when fewer other features are
available. Therefore, the profit score may not accurately re-
flect the importance of individual features, particularly when

7http://www.cs.ubc.ca/∼schmidtm/Software/L1General.html
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Figure 4: Experiments for AED. Red curves correspond to the SQEβ curves in Figure 3. The UQE nodes (with zero

term feature cost) are shown separately for better illustration. The horizontal axis is the overall retrieval time. The

blue vertical line is the time cost of OrigRet, which is plotted as reference.

few features exist (i.e. time cost is low). In comparison, our
CCFS algorithm iteratively updates learning objective, and
decreases the cost upper bound smoothly. Therefore, CCFS
performs better, particularly when time cost is low.

4.6 Adaptive Expansion Decision
Now we will examine how AED affects the effectiveness

and efficiency of UQE and SQE retrieval. We show the
performance in Figure 4, where UQE, SQE and SQEβ al-
gorithms are all examined before and after applying AED.
For SQEβ , the CCFS curves from Figure 3 are utilized.

For both SQE and SQEβ , their performance is left-shifted
after applying AED. Moreover, the SQEβ curves shrink after
AED. This means, the process of term feature extraction
and second retrieval (reranking) are skipped for some of the
queries (i.e. SQE-unsuitable), which makes the averaged
time costs over all queries become smaller.

For UQE, the time costs of UQEα is slightly higher. This
has been explained in Sec. 4.4, which are due to the fast
process of reranking and UQE expansion term generation,
as well as the existence of AED overhead cost.

The extent of efficiency improvement of AED depends on
the number of skipped queries. In Table 10 we give the
detailed number of skipped queries on each corpus for SQE.

From the perspective of effectiveness, we can observe that
on all corpora, for all of UQE, SQE and SQEβ , their effec-
tiveness after applying AED is improved or at least main-
tained than before applying AED. This is particularly help-
ful in achieving a good balance between effectiveness and
efficiency.

Table 10: Number of skipped queries in AED for SQE.
Dataset #Test Query #Skipped Query Percentage

Robust04 125 8 6.4%
Cw09BNS 75 32 42.67%

Cw12BNSLD 25 8 32%
Industry 1000 361 36.1%

4.7 More on Step-wise Time Cost
In Figure 1 we have shown the step-wise time costs on

Cw09BNS for UQE, SQE and their speedup improvements.
There for CCFS we adopt the same upper bound as in Ta-
ble 7 (i.e. U = 1

4

∑
f∈Ft uf ). This is a non Pseudo Rele-

vance Feedback (PRF) scenario where S is Wikipedia and C
is Cw09BNS. In this case, the time cost of second retrieval
will be large because in second retrieval we need to firstly
search query q on C then apply the reranking.

Now we further show the step-wise time costs for PRF
scenario on Robust04 in Figure 5(a). In this case, S = C =
Robust04, so we only need to retrieve q once in first retrieval,
and the second retrieval only needs to rerank the results of

first retrieval. In this case, the cost of second retrieval will
be much smaller than in non PRF scenario.

4.8 The Effect of Number of Expansion Terms
Now let’s see how different number of expansion terms

m affects the retrieval effectiveness and efficiency. In Fig-
ure 5(b), we show the effectiveness-cost curves when m =
{10, 20, 30} for SQEαβ on Industry corpus. We can see the
effectiveness of m = 20, 30 is similar, while that of m = 10
is quite degraded. The time cost gap between OrigRet and
SQEαβ curves includes the cost of first retrieval (i.e. search-
ing S), applying AED, extracting term features, etc. Also
notice the overall time cost is not obviously affected as more
expansion terms are utilized. This phenomenon is mainly
due to the application of reranking. Otherwise if a full sec-
ond retrieval is applied, the time cost of second retrieval will
be (approximately) linear with the number of m, which can
be very huge in practice (see Sec. 4.9).

4.9 Reranking vs Full Second Retrieval
Finally, for the SQE retrieval process, we compare the two

strategies for second retrieval: reranking vs full second re-
trieval. Although we have argued the validity of reranking
and have utilized it throughout the above experiments, we
still feel it necessary to present a formal comparison with
full second retrieval due to the following two reasons. First,
as reviewed in Sec. 2.2, we find most of existing QE effi-
ciency works [3, 35] only focused on indexing or document
optimization, while ignored the value of reranking. It is only
very recent that Diaz [11] pointed this out. Here we’d like
to add more proof to support reranking. Second, in the
above experiments for UQE and UQEα, we observed that
pure AED may not result in substantial speedup, and point
out that the application of reranking is the major reason
for that. By further showing the time costs of full second
retrieval, we can justify the value of AED.

In Figure 5(c) and (d), we show the performance of rerank-
ing top 1000 documents for expanded queries qe with 20 ex-
pansion terms. We can see that for both the case of UQE
and SQE, reranking does not incur obvious effectiveness loss,
yet results in substantial efficiency improvement. Particu-
larly for the UQE case, the speedup becomes obvious when
full second retrieval is utilized on Cw09BNS. These observa-
tions verify our adoption of reranking instead of full second
retrieval, as well as the usefulness of AED on efficiency.

5. CONCLUSION & FUTURE WORK
Supervised query expansion (SQE) has recently become

the state-of-the-art in the QE literature, which usually out-
performs the unsupervised counterparts. To obtain good
retrieval effectiveness, SQE usually extracts many term fea-
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Figure 5: (a) Step-wise costs on Robust04, which is under PRF scenario. (b) Performance of SQEαβ on Industry

with different number of expansion terms. (c) Reranking vs full second retrieval for UQE and UQEα on Cw09BNS.

(d) Reranking vs full second retrieval for SQEβ and SQEαβ on Industry.

tures to predict the quality of expansion terms. However,
this can seriously decrease its efficiency. This issue has not
been studied before, nor can it be handled by previous data-
level QE efficiency methods such as indexing or documents
optimization. To address this problem, in this paper we pro-
pose a Two-stage Feature Selection (TFS) framework, which
includes Adaptive Expansion Decision and Cost Constrained
Feature Selection. Extensive experiments on four corpora
show that the proposed TFS framework can significantly
improve the efficiency of SQE algorithm, while maintaining
its good effectiveness.
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