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ABSOLUTE CONTINUITY OF BERNOULLI

CONVOLUTIONS, A SIMPLE PROOF

Yuval Peres and Boris Solomyak

A bstract . The distribution νλ of the random series
∑

±λn has been
studied by many authors since the two seminal papers by Erdős in 1939
and 1940. Works of Alexander and Yorke, Przytycki and Urbański, and
Ledrappier showed the importance of these distributions in several problems
in dynamical systems and Hausdorff dimension estimation. Recently the
second author proved a conjecture made by Garsia in 1962, that νλ is
absolutely continuous for a.e. λ ∈ (1/2, 1). Here we give a considerably
simplified proof of this theorem, using differentiation of measures instead
of Fourier transform methods. This technique is better suited to analyze
more general random power series.

1. Introduction

Consider the random series

Yλ =
∞∑

n=0

±λn, for 0 < λ < 1,

where the “+” and “−” signs are chosen independently with probability
1/2. Let νλ be the distribution of Yλ:

νλ(E) = Prob{Yλ ∈ E}.
The measure νλ is the infinite convolution product of 1

2 (δ−λn + δλn) for
n ≥ 0 and is sometimes called an “infinite Bernoulli convolution”. The
Fourier transform of νλ can be represented as a convergent infinite product:
ν̂λ(u) =

∏∞
n=0 cos(λnu).

Infinite Bernoulli convolutions have been studied since the 1930’s; we
sketch some of the relevant background below. The following theorem was
recently proved by the second author, who verified a conjecture of Garsia
(1962). Our goal here is to present a self-contained simple proof of this
result.
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Theorem 1 [Solomyak (1995)]. For a.e. λ ∈ ( 1
2 , 1) the measure νλ is

absolutely continuous and has an L2-density.

The main simplification in the present proof is the replacement of the
Fourier transform estimates in Solomyak (1995) by the differentiation meth-
od used by Mattila (1990) to prove projection theorems. This method is
more powerful and yields some extensions of Theorem 1 (see Section 4).
Heuristically, the measures νλ may be viewed as “nonlinear projections” of
the uniform measure on sequence space; the nonlinearity is controlled by
establishing a transversality property of certain power series. This property
is closely related to the bounds on double zeros used in the original proof,
but is easier to verify.

Our new proof of Theorem 1 is in sections 2–3. We now describe some of
the previous work on infinite Bernoulli convolutions. Jessen and Wintner
(1935) showed that νλ is either absolutely continuous or purely singular,
depending on λ; see Breiman (1968) for a proof using Kolmogorov’s 0-
1 Law. Kershner and Wintner (1935) observed that νλ is singular for
λ ∈ (0, 1

2 ), since it is supported on a Cantor set of zero Lebesgue measure.
Wintner (1935) noted that νλ is uniform on [−2, 2] for λ = 1/2, and for
λ = 2−1/k with k ≥ 1 it is absolutely continuous, with a density having
k − 1 derivatives.

For any λ ∈ (0, 1), the closed support Kλ of νλ satisfies the equation

Kλ = (1 + λKλ) ∪ (−1 + λKλ) .

It is easy to show that there exists a unique compact set Kλ ⊂ R for which
this equation holds (see, e.g. Hutchinson (1981)). If λ ∈ ( 1

2 , 1), then the
interval [−(1 − λ)−1, (1 − λ)−1] satisfies the same equation, and therefore
it must coincide with Kλ. Thus one might surmise that νλ is absolutely
continuous for all such λ. However, by examining the Fourier Transform,
Erdős (1939) showed that νλ is singular when λ is the reciprocal of a PV
(Pisot-Vijayaraghavan) number. Recall that a PV-number is an algebraic
integer, all of whose conjugates are less than one in modulus; the golden
ratio (1+

√
5)/2 is the best known example. No other λ ∈ ( 1

2 , 1) are known
to give singular νλ.

In another direction, Erdős (1940) showed that νλ is absolutely contin-
uous for a.e. λ ∈ (a, 1) for some a < 1 (in his proof a is rather close to
1 and not given explicitly). Examples of algebraic λ ∈ ( 1

2 , 1) (other than
2−1/k) with absolutely continuous νλ were found by Garsia (1962). In the
same paper, Garsia conjectured that absolute continuity holds for a.e. λ in
the full interval (1

2 , 1). Kahane and Salem (1958) obtained a criterion for
the measure νλ to have L2-density, but until recently it was not clear how
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it could be applied. Applications of absolute continuity of νλ to dynami-
cal systems and Hausdorff dimension were given by Alexander and Yorke
(1984), Przytycki and Urbański (1989), and Ledrappier (1992).

2. Beginning of the proof

Let Br(x) = [x − r, x + r]. Consider the lower derivative of νλ:

D(νλ, x) = lim inf
r↓0

(2r)−1νλ[Br(x)].

A standard application of the Vitali covering theorem shows that νλ is
absolutely continuous if and only if D(νλ, x) < ∞ for νλ almost all x ∈ R

(see, e.g. Mattila (1995) §2.12). If we show that

(1) S :=
∫

I

∫
R

D(νλ, x) dνλ(x) dλ < ∞,

then this criterion yields that νλ is absolutely continuous for a.e. λ ∈ I.
The interval I will be specified later; see the last section for measurability.
Notice that for λ such that νλ is absolutely continuous, D(νλ, x) is a version
of the Radon-Nikodym derivative dνλ(x)

dx , so
∫

R
D(νλ, x)dνλ(x) < ∞ implies

that dνλ(x)
dx ∈ L2(R). By Fatou’s Lemma,

(2) S ≤ lim inf
r↓0

(2r)−1

∫
I

∫
R

νλ[Br(x)] dνλ(x) dλ.

We need to restate the definition of νλ as the distribution of the random
series Yλ. Let Ω = {−1, 1}Z+ be the sequence space equipped with the
product topology. Let µ be the Bernoulli measure on Ω with the weights
(1/2, 1/2). There is a natural map Πλ : Ω → R, given by

Πλ(ω) =
∞∑

n=0

ωnλn.

A moment’s reflection gives

(3) νλ = µ ◦ Π−1
λ .

Now Πλ is continuous so we can change variables in (2):

(4) S ≤ lim inf
r↓0

(2r)−1

∫
I

∫
Ω

νλ[Br(Πλ(ω))] dµ(ω) dλ.
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Next, denote by 1A the characteristic function of a set A and use (3) again:

νλ[Br(Πλ(ω))] =
∫

R

1Br(Πλ(ω)) dνλ =
∫

Ω

1{τ∈Ω: |Πλ(τ)−Πλ(ω)|≤r} dµ(τ).

Substitute this into (4), exchange the order of integration, and integrate
with respect to λ to obtain

(5) S ≤ lim inf
r↓0

(2r)−1

∫
Ω

∫
Ω

L
{

λ ∈ I : |Πλ(τ)−Πλ(ω)| ≤ r
}

dµ(τ) dµ(ω) ,

where L is Lebesgue measure. Let

φτ,ω(λ) = Πλ(τ) − Πλ(ω) =
∞∑

n=0

(τn − ωn)λn.

Notice that τn−ωn ∈ {−2, 0, 2}. We need to estimate L{λ ∈ I : |φτ,ω(λ)| ≤
r}. We can write

(6) φτ,ω(λ) = 2λkg(λ),

where k = |ω∧τ | = min{n : ωn �= τn} and g is a power series with constant
term ±1. Without loss of generality, ωk < τk so that

(7) g(x) = 1 +
∞∑

n=1

bnxn, with bn ∈ {−1, 0, 1} .

In order to estimate the integrand in (5), assume that on the interval I =
[λ0, λ1] the following δ-transversality condition holds for some δ > 0 :

(8) For any g of the form (7) and any x ∈ I, if g(x) < δ then g′(x) < −δ.

The assumption means that the graph of each g as in (7) crosses transver-
sally, with slope at most −δ, all horizontal lines below height δ that it
meets. In the next section we will find intervals where (8) holds. We claim
that this assumption implies that for all g of the form (7) and all ρ > 0,

(9) L{λ ∈ I : |g(λ)| ≤ ρ} ≤ 2δ−1ρ.

This is obvious if ρ ≥ δ; otherwise, g′(λ) < −δ whenever |g(λ)| ≤ ρ by
δ-transversality. Thus g is monotone decreasing on the set in (9) with
|g′| > δ, so the inequality (9) is proved.
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By (6), |φτ,ω(λ)| ≤ r implies that |g(λ)| ≤ λ−k
0 r/2 for λ ∈ I = [λ0, λ1].

Applying (9) with ρ = λ−k
0 r/2, we obtain

L{λ ∈ I : |φτ,ω(λ)| ≤ r} ≤ δ−1λ−k
0 r .

Substituting this in (5) yields

S ≤ δ−1 lim inf
r↓0

(2r)−1

∫
Ω

∫
Ω

λ
−|ω∧τ |
0 r dµ(τ) dµ(ω)

= (2δ)−1
∞∑

k=0

λ−k
0 (µ × µ){(ω, τ) : |ω ∧ τ | = k} (10)

= (2δ)−1
∞∑

k=0

λ−k
0 2−k−1 < ∞,

where the last step requires that λ0 > 1
2 . This proves (1), so we have shown

the absolute continuity of νλ for a.e. λ ∈ I assuming δ-transversality.

3. Establishing transversality, and conclusion of the proof

Definition. A power series h(x) is called a (∗)-function if for some k ≥ 1
and ak ∈ [−1, 1],

h(x) = 1 −
k−1∑
i=1

xi + akxk +
∞∑

i=k+1

xi.

In Solomyak (1995) it was shown that among all convex combinations of se-
ries of the form (7), the power series with the smallest double zero must be a
(∗)-function. Here we bypass this optimization argument and prove directly
that an estimate on a (∗)-function and its derivative yield δ-transversality.

Lemma. Suppose that a (∗)-function h satisfies

(11) h(x0) > δ and h′(x0) < −δ

for some x0 ∈ (0, 1) and δ ∈ (0, 1). Then the transversality condition (8)
holds on [0, x0].

Proof. First observe that h(x) > δ and h′(x) < −δ for all x ∈ [0, x0].
Indeed, h′′ has at most one zero on (0, 1) being a power series with at most
one coefficient sign change. We have h′(0) = −1 if k > 1 and h′(0) = a1

otherwise. Thus h′(0) < −δ (if k = 1 this follows from h′(x0) < −δ). Since
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h′(1−) = +∞, we must have h′(x) < −δ for all x ∈ (0, x0), otherwise
h′′ would have at least two zeros. Now obviously, h(x) > h(x0) > δ for
x ∈ (0, x0).

Let g(x) be a power series of the form (7). Consider f(x) = g(x)−h(x).
Then (7) and the definition of a (∗)-function imply that f(x) =

∑l
i=1 cix

i−∑∞
i=l+1 cix

i, where ci ≥ 0 and l = k−1 or l = k. We have for any x ∈ [0, x0],
by the claim proved above:

g(x) < δ ⇒ f(x) < 0 ⇒ f ′(x) < 0 ⇒ g′(x) < −δ.

The middle implication is a consequence of one coefficient sign change:

f(x) < 0 ⇒
l∑

i=1

cix
i <

∞∑
i=l+1

cix
i ⇒

l∑
i=1

ciix
i−1 <

∞∑
i=l+1

ciix
i−1 ⇒ f ′(x) < 0. �

Proof of Theorem 1 concluded: Observe that if νλ2 is absolutely continuous,
then so is νλ, since it is a convolution of νλ2 with some other measure. Thus,
it is enough to prove absolute continuity of νλ for a.e. λ ∈ [ 12 , 2−1/2]. First
we establish that δ-transversality holds in the smaller interval [12 , 2−2/3],
and then indicate how to cover [2−2/3, 2−1/2].

In order to apply the lemma, it remains to find an appropriate (∗)-
function. Let

h(x) = 1 − x − x2 − x3 + 0.5x4 +
∞∑

i=5

xi

(found by a simple computer search). This is a (∗)-function, satisfying
h(2−2/3) > 0.07 and h′(2−2/3) < −0.09, so δ-transversality is verified for
the interval [0, 2−2/3]. The argument in Section 2 can be applied in I =
[λ0, 2−2/3] for any λ0 > 1

2 , and this establishes absolute continuity for a.e.
λ ∈ [ 12 , 2−2/3].

Unfortunately, in this way we cannot cover [12 , 2−1/2] since there is a
power series of the form (7) with a double zero around 0.68 (see Solomyak
(1995)), and having a double zero obviously contradicts δ-transversality.
In order to cover the interval [2−2/3, 2−1/2] consider the “thinned” random
series Zλ =

∑
i �=2+3j ±λi, with every third term removed. If the distribu-

tion of Zλ is absolutely continuous, then so is νλ. Replacing the series Yλ
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by Zλ is equivalent to replacing the uniform measure µ on Ω by a measure
µ̃ on {−1, 0, 1}Z+ according to which every third symbol is forced to be 0
and all other symbols are −1 or 1 with probability 1/2.

The analogue of (10) with µ̃ instead of µ goes through provided that
λ0 > 2−2/3, since the µ̃ × µ̃ probability of having two sequences coincide
up to the k-th term is ∼ 2−2k/3. Again, δ-transversality is needed but for
a smaller class, namely, for power series of the form (7) that satisfy either
b3j+1 = 0 for all j ≥ 0, or b3j+2 = 0 for all j ≥ 0. We claim that in both
cases δ-transversality holds on (0, 2−1/2). Indeed, the lemma has an obvious
“thinned” version, and it suffices to check that the following two thinned
(∗)-functions

h1(x) = 1 − x − x3 − x4 +
∞∑

j=2

(x3j + x3j+1),

h2(x) = 1 − x2 − x3 − x5 − x6 +
∞∑

j=3

(x3j−1 + x3j),

satisfy the condition (11) at x0 = 2−1/2. �

4. Concluding remarks

1. Strictly speaking, one needs to verify that the inner integral in (1) is
measurable as a function of λ, before applying Fatou’s Lemma. Using (3)
this inner integral can be written as∫

Ω

lim inf
r↓0

(2r)−1

∫
Ω

1{τ∈Ω: |Πλ(τ)−Πλ(ω)|≤r} dµ(τ) dµ(ω) ,

and checking measurability in λ of the last expression is routine.
2. In the first part of the proof of Theorem 1, the criterion of Kahane

and Salem (1958) could be used instead of Mattila’s approach used here.
3. We learned the idea of using transversality from Pollicot and Simon

(1995).
4. It is natural to ask about the distribution of the random sum Yλ

when the signs are governed by a nonuniform probability measure µ̃ on
the sequence space Ω, instead of the uniform measure µ. The argument in
section 2 is quite general, and shows that if the series (10) (with µ̃ in place of
µ) converges, then the corresponding distribution ν̃λ has L2-density for a.e.
λ in any interval I = [λ0, λ1] where the δ-transversality condition holds.
This result is sharp in the sense that if the series (10) with µ̃ diverges, then
for all λ < λ0 the measure ν̃λ cannot have an L2-density. In Peres and
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Solomyak (1995), analogous conditions are given for ν̃λ to have a density
in Lq, with q ∈ (1, 2). In general, the critical λ for different q are distinct,
and depend on the multifractal spectrum of µ̃. We illustrate these results
in the case where µ̃ is Bernoulli, which corresponds to the random series
Yλ with the signs chosen independently with probabilities (p, 1 − p). Let
νp

λ be its distribution.

Theorem 2. Let I be an interval where the δ-transversality condition
holds.
(a) νp

λ is singular for all λ < pp(1 − p)1−p and absolutely continuous for
a.e. λ > pp(1 − p)1−p in the interval I.
(b) Let q ∈ (1, 2]. The measure νp

λ does not have a density in Lq for all
λ < (pq+(1−p)q)

1
q−1 , and has a density in Lq for a.e. λ > (pq+(1−p)q)

1
q−1

in the interval I.

Mark Pollicott has informed us that Charmaine Leech, a graduate stu-
dent at Warwick, has also been working in this direction.

5. As noted in Solomyak (1995), Theorem 1 immediately implies that for
a.e. λ ∈ [2−1/2, 1], the density of νλ is continuous. It is unknown whether
this also holds for a.e. λ ∈ [ 12 , 2−1/2].

6. The absolute continuity of νλ in Theorem 1 is proven for a.e. λ ∈
[ 12 , 1]. What can be said about the exceptional set? The known exceptions,
the reciprocals of PV-numbers, form a countable set which is known to be
closed and have the maximal (isolated) point ≈ 0.7548777. Salem (1943)
proved the following converse to a result of Erdős (1939): If 1/λ is not a
PV-number then ν̂λ(u) → 0 as u → ∞. As shown by Kahane (1971),
the argument of Erdős (1940) implies that the Hausdorff dimension of the
exceptional set in (a, 1] tends to 0 as a → 1. Perhaps a modification of our
methods can give a bound on this Hausdorff dimension for all a, by analogy
with a projection theorem of Falconer (1982).
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