
ADVANCES IN ALL-NEURAL SPEECH RECOGNITION

Geoffrey Zweig, Chengzhu Yu, Jasha Droppo and Andreas Stolcke

Microsoft Research

ABSTRACT

This paper advances the design of CTC-based all-neural (or end-to-
end) speech recognizers. We propose a novel symbol inventory, and
a novel iterated-CTC method in which a second system is used to
transform a noisy initial output into a cleaner version. We present
a number of stabilization and initialization methods we have found
useful in training these networks. We evaluate our system on the
commonly used NIST 2000 conversational telephony test set, and
significantly exceed the previously published performance of simi-
lar systems, both with and without the use of an external language
model and decoding technology.

Index Terms— recurrent neural network, CTC, speech recogni-
tion, end-to-end training.

1. INTRODUCTION

In the recent renaissance of neural network speech recognition [1, 2,
3, 4, 5], as well as in pioneering earlier work [6, 7], the networks
have been mainly used as a drop-in replacement for the acoustic
model in an HMM system. They have also been used for feature-
augmentation in a “tandem” GMM-HMM system [8], which again
relied on a standard HMM backbone. The state-of-the-art today is a
hybrid HMM/neural-net system, which uses the classical decoding
strategy

w∗ = argmax
w

P (w)P (a|w) (1)

where the prior on words P (w) is estimated with a language model
trained on text only, and the probability of the acoustics P (a|w) is
estimated with a neural network acoustic model. The acoustic model
still uses a decision tree [9] to further decompose the word sequence
into context-dependent triphone states, and a decoder to perform a
complex discrete search for the likeliest word sequence.

Recently, several research groups have begun to study whether a
neural network itself can subsume the functions of the decision tree,
and decoding search. We refer to these approaches as “all-neural,”
and they are also commonly referred to as “end-to-end.” Two main
approaches have been used, both of which attempt to leverage a re-
current neural network’s potential ability to “remember” information
for a long period of time1 and then act on it [12, 13, 14]. The first of
these approaches uses an RNN trained in the “connectionist tempo-
ral classification” (CTC) framework [15] to predict letter rather than
phonetic output [16, 17, 18, 19, 20]. At its base, this approach has
no decoder at all, with all logic related to language modeling and
decoding being implicitly done by the RNN. The output of a CTC
system can of course be consumed by a subsequent decoding pro-
cess, but it is not necessary. The second approach uses an RNN with

1The vanishing gradient problem has been sufficiently overcome by long-
short-term memory (LSTM) [10] and recurrent neural networks with rectified
linear units (ReLU-RNNs) [11] that many problems in machine translation
and language processing can be handled regardless.

an attention mechanism [21, 22, 23]. The attention mechanism pro-
vides a weighted sum of the hidden activations in a learned encoding
of the input frames as an additional input to the RNN at each time
frame. When the network learns an attention function that happens
to be unimodal with a peak that moves from left to right monoton-
ically, it is similar to a Viterbi alignment. Attention-based models
use a beam search to decode sequentially, symbol by symbol.

This paper is motivated by the desire to see to what extent the
decoding process of a standard system can be modeled by a neural
net itself, and to gauge the necessity of a pronunciation dictionary
and decision tree. We describe a CTC based system that advances
the state-of-the-art in all-neural modeling for conversational speech
recognition. We propose a two-stage CTC process, in which we first
train a system that consumes speech features and hypothesizes let-
ter sequences. Second, we re-use the CTC apparatus to train a sys-
tem that consumes this noisy letter sequence and produces a cleaner
version. Additionally, we present a careful exploration of the unit-
vocabulary, and of the training process. We find that a symbol inven-
tory that uses special word-initial characters (capital letters) rather
than spaces performs well. Finally, we explore the addition of both
character and word language models. We advance the state of the art
at every level from pure all-neural ASR through to the addition of a
word-based decoding process.

The remainder of this paper is organized as follows. Section 2
places our work in the context of previous efforts. Section 3 describe
the model we use, and 4 our standard decoding process, and exten-
sions. Section 5 proposes the novel technique of iterated CTC. In
Section 6 we describe the details of training the models. Section 7
presents experimental results, followed by conclusions in Section 8.

2. RELATION TO PRIOR WORK

Letter-based or graphemic systems have been long studied [24, 25,
26, 27], and are attractive because they alleviate the need to produce
a dictionary of word pronunciations. Past work was motivated by the
need to quickly build systems in new languages without a dictionary,
and kept the rest of a standard HMM system, in particular the use of
a decision tree. In contrast to this, we follow recent work [22, 18, 23,
19] where a neural network learns context-dependence implicitly.

Our approach is most similar to the CTC methods of [20, 28, 19,
18, 17]. In contrast to [20, 28, 17], we use a ReLU-RNN rather than
an LSTM, and find it to be effective and much faster. In contrast to
[19], we use recurrent networks at every level as opposed to deep
neural nets (DNNs) in the lower levels, and an RNN at the top level
only. Also in contrast to [19], we study performance in the absence
of an external language model as well as with one.

We extend past CTC work by the use of what we term iter-
ated CTC, first operating on acoustic features, and then on letter se-
quences. This use of CTC on symbolic input is a novel alternative
to encoder-decoder models, and is described in Section 5. Interest-
ingly, the attention-based approach of [22] also introduces an extra



RNN layer with the motivation of modeling symbol/language level
phenomena.

3. THE MODEL

We adopt a multi-layer RNN trained with CTC [15]. Central to the
CTC process is the use of a “don’t care” or blank symbol, which is
allowed to optionally occur between regular symbols. The standard
alpha-beta recursions are used to compute the posterior state occu-
pancy probabilities.

Let the input consist of t acoustic frames along with a symbol se-
quence S. Denote an alignment of the t audio frames to the sequence
S by π, and the product of the state-level neural net probabilities for
the alignment as P (S|π). Let ptq be the probability the neural net as-
signs to symbol q at time t, i.e., the output after the softmax function.
The CTC objective function is given by

L =
∑
π

P (S|π)P (π) =
∑
π

P (π)
∏
t

ptSπ(t)
.

P (π) is determined by the HMM transition probabilities. We use a
self-loop probability of 0.5 for all symbols. The probability of tran-
sitioning from a non-blank symbol to the blank symbol is 0.25, and
from a non-blank symbol to the next non-blank symbol it is 0.25. In
addition, the probability of transitioning out of the blank symbol to
the next non-blank symbol is 0.25. The key input to CTC is the prob-
ability, as determined by the neural network, of a particular symbol
St at time t.

Consistent with standard notation, denote the posterior proba-
bility of being in state/symbol q at time t by γtq . Note that this is
derived from the alpha-beta computations, and is distinct from the
probability ptq that the neural network assigns to symbol q at time
t. The derivative of the CTC objective function with respect to the
activation atq for output q at time t before the softmax is

dL
datq

= γtq − ptq

This is the error signal for backpropagation into the RNN.

4. INTERPRETING THE OUTPUT

4.1. Raw CTC Output

After training, the output of the RNN can be directly converted into
a readable character sequence. There are two problems to solve:

1. Where to put spaces between words.

2. How to distinguish instances of repeated characters, for ex-
ample the ll in hello, from a sequence of frames each labeled
with the same letter, e.g., the l in help. Recall that the CTC
blank symbol is optional, so a sequence of frames labeled by
a single letter cannot be immediately distinguished from mul-
tiple occurrences of that letter.

When the symbol inventory includes a space symbol (distinct from
the blank symbol), the first problem is easily solved. Past work, e.g.
[18], solve the second problem with a search over alternatives, or
requiring a blank between letters. Instead, we propose a new symbol
inventory as described below.

4.2. Symbol Inventory

Past work [18, 19, 22] has explicitly modeled the spaces between
words in the acoustic model, e.g., with a special space symbol “ ”
distinct from the CTC blank symbol. Since words are frequently run
together, we propose an alternative representation where word-initial
characters are considered distinct from non-initial characters. A con-
venient representation of this is to use capital letters in the word-
initial position. Since the forward-backward computation in CTC
requires that the input sequence be longer than the output sequence,
this also increases the set of utterances that can be aligned. This is
also consistent with speech recognition systems that use position-
dependent phonetic variants. To identify repeated letters, we use
special double-letter units to represent repeated characters like ll.
Finally, to improve the readability of the output without any further
processing, we attach apostrophes to the following letters, creating
units like the “’d” in “we’d.” Altogether the unit inventory size is 79.

As an example of this, the sentence

“yes he has one”

would be rendered for training as

“YesHeHasOne”.

With this encoding, a readable decoding can then be produced very
simply:

1. Select the most likely symbol at each frame

2. Discard all occurrences of the “don’t care” symbol

3. Compress consecutive occurrences of the same letter into one
occurrence

4. Add a space in front of each capitalized letter and show the
output

4.3. Character Beam Search

Previous work [19, 18, 23] has used a character-level language model
to improve the output of a neural system. This implements the clas-
sical decoding paradigm of Eqn. 1 at the character level, with the
character language model providing P (w) or in this case P (c). The
neural network provides P (c|a), and beam search is used to find the
likeliest character sequence. We present results for this approach in
Section 7.4.

4.4. Word Beam Search

To provide a complete set of results comparable to [19], we have
also used a word-based decoder that uses a graphemic dictionary,
and uses the frame-level likelihoods in the standard way. The
decoder is the dynamic decoder as described in [29]. We used
the CUED-RNNLM toolkit [30] to train two forward- and two
backward-running RNN language models. These are interpolated
with a standard 4-gram model and used to rescore N-best lists pro-
duced by the N-gram decoder. Details can be found in a companion
paper [31].

5. ITERATED CTC (CTC2)

The output described in the previous section is of course noisy. For
example, one of the Switchboard utterances is “no white collar
crime does not exactly fall into it”, but the raw network output is



Table 1. Word error rate (%) on NIST RT-02 Switchboard-1 test set
as a function of symbol inventory, for a 512-wide 5-deep network

Explicit spaces Capital letters Initial+Final letters
38.1 36.2 36.2

Table 2. Word error rate (%) on the RT-02 test set as a function of
hidden layer size, for 5-layer networks

Hidden Dimension WER
512 36.2
1024 31.9
2048 30.4

“and now whi coler crime doen exsitally fall into it”. The classical
approach to improving this is the incorporation of a lexicon of legal
word units and a language model, as described in Section 4.

To improve the output with a purely neural network based ap-
proach, we propose using iterated CTC. Specifically, the noisy char-
acter sequences from the initial raw CTC output is represented by
one-hot feature vectors analogous to the acoustic feature vectors, and
the RNN/CTC training process is repeated. The result is a model that
transforms a noisy symbol sequence into a less noisy sequence. We
have found that this process, while producing less dramatic improve-
ments than the incorporation of a full fledged decoder, consistently
improves the output, while staying in the all-neural paradigm. This
is the case even when the original network is optimally deep.

6. TRAINING PROCESS

Our models are trained using stochastic gradient descent with mo-
mentum and L2 regularization. For all but our largest networks,
minibatches of 32 utterances are processed at once, resulting in up-
dates after several thousand speech frames. For networks of width
1024 and depth 7 or greater, we have found it necessary to process 64
utterances simultaneously to achieve accurate gradient estimates and
stable convergence. We use frame-skipping [17], where we stack
three consecutive frames into a single vector to produce an input
sequence one-third as long and three times as wide as the original
input. When we train on the 300-hour Switchboard set, we use a
per-frame learning rate of 0.5, and decrease it by a factor of 4 if 3
iterations over the data fail to produce an improvement on develop-
ment data. We randomly held out about 10 hours of training data for
use as development data. When the Fisher data is added, resulting
in about 2000 hours of training data, the rate is reduced if a single
iteration passes without increasing dev set likelihood.

We implement the model with direct calls to the CUDNN v5.0
RNN library. Training with 40-dimensional input feature vectors
(prior to skipping), a 512-dimension bi-directional ReLU-RNN with
three hidden layers is about 0.0025 times real time, i.e., 400 times
faster than real time on a Razer laptop with a NVIDIA 970M GPU.

6.1. Stabilization Methods

In initial experiments, we found it useful to introduce several stabi-
lization techniques. Most importantly, we use gradient clipping to
prevent “exploding gradients” during the RNN training. The mag-
nitude of the gradients are clipped at 1 prior to the momentum up-
date. Secondarily, we have noticed that when rare units are present

Table 3. Word error rate (%) as a function of the number of layers
and dimensions on the RT-02 test set

Number of layers 512 width 1024 width
3 48.5 38.1
4 38.3 34.6
5 36.2 31.9
6 34.5 30.3
7 32.5 30.6
8 31.0 31.3
9 31.4 29.4

10 31.5 29.4

(e.g., the “ii” in “Hawaii,” the training process tends to push their
probabilities close to 0 between occurrences, which leads to poor
performance and sometimes instability when the unit is eventually
seen. To avoid this, we interpolate the gradient with a small gradi-
ent tending towards the uniform distribution. This is implemented
by interpolating the γ values from the alpha-beta computation with
a uniform distribution. We reserve 1% of the total probability mass
for this uniform distribution. Finally, we have also found it impor-
tant to compute the gradient over a large number of utterances (32 or
64) before doing a parameter update.

6.2. Model Initialization

Weight matrices are initialized with small random weights uniformly
distributed and inversely proportional to the square root of the fan-
in, with one exception. In the output layer, which maps from the
RNN hidden dimension (typically 1024) down to the size of the sym-
bol inventory (79 in our case), we assign explicit responsibility for
each output symbol to a specific RNN activation. This is done by
using an identity matrix for the first 79 dimensions, and zeros else-
where. In the case of bidirectional networks, this is done symmet-
rically so both forward and backward portions of the network con-
tribute equally. While we have not performed an exhaustive evalu-
ation of this scheme, in initial experiments we observed consistent
small gains. Concurrent with this work, a similar scheme was very
recently proposed in [32] for standard neural net systems.

6.3. Polishing with In-domain Data

Our training process begins and ends with a focus on the in-domain
300 hour switchboard-only dataset. We start by training on the 300
hour set mainly for convenience in showing results with both the
300 hour (Switchboard) and 2000 hour (Switchboard + Fisher) data-
sets. The 2000 hour models presented here were initialized with the
output of 300 hour training. While training from scratch with 2000
hours of data works about as well, we have found it consistently
useful to finish all training runs by executing a few more iterations of
training on the in-domain Switchboard-only data. We do this starting
from a very low learning rate (one-tenth the normal rate), and most
of the gain is observed in the first iteration of training.

7. EXPERIMENTS

7.1. Corpus

For comparability with [18, 19, 23, 22], we present results on the
NIST 2000 conversational telephone speech (CTS) evaluation set.



Table 4. Word error rate (%) as a function of post-processing for the
RT-02 test set, using a 9-layer 1024-wide network

None Iterated CTC Character-Beam Word-Beam
29.4 27.9 23.3 19.2

Table 5. Comparative performance: word error rates (%) on the
NIST 2000 Switchboard and CallHome test sets (models trained on
300 hours of Switchboard data only). All systems are use graphemic
targets.

Reference Lexicon LM CH SW
[18] N N 56.1 38.0
[22] N N 48.2 27.3
Current N N 38.8 25.9
Current+CTC2 N N 37.1 24.7
[18] N Char NG 43.8 27.8
[18] N Char RNN 40.2 21.4
Current N Char NG 32.1 19.8
[22] Y Word NG 46.0 25.8
[19] Y Word NG 31.8 20.0
Current Y Word NG 26.3 15.1
Current Y Word RNN 25.3 14.0

Model selection uses the RT-02 CTS evaluation set for development.
The input features are 40-dimensional log-Mel-filterbank energies,
extracted every 10 milliseconds. The feature vectors are normalized
to zero mean on a per-utterance level. Since the logarithmic com-
pression already limits the dynamic range to reasonable levels, we
do not perform variance normalization.

7.2. Network Architecture and Symbol Inventory

For computational efficiency, we restricted ourselves to the mod-
els directly supported by the CUDNN v5.0 library. This encom-
passes multi-layer uni- and bidirectional RNNs. Support is provided
for LSTMs, Gated Recurrent Units, standard sigmoid RNNs, and
ReLU-RNNs. In initial experiments, we found that ReLU-RNNs are
as good as LSTMs for this task, and many times faster. Therefore
we use them exclusively in the experiments. We further focus on
bi-directional networks for improved performance.

Table 1 shows the effect of our choice of symbol inventory. We
see that the use of special word-initial characters improves perfor-
mance over the use of explicit blanks. Redundantly modeling word-
final characters does not provide a further improvement. For ease of
interpretability, all models use explicit double-character symbols.

In Table 2, we show the effect of network width, keeping the
depth constant at 5. While the widest network is the best, for com-
putational reasons we restrict our further experiments to networks of
width 1024 or less.

In Table 3, we present the effect of network depth, for hidden
layer sizes of 512 and 1024. Note that since we use a bidirectional
network, the total number of activations in a layer is double this.
We find that relatively deep networks perform well. Based on these
results, the remainder of the experiments use a 1024 width 9 layer
bidirectional network. Including weight matrices and biases, the to-
tal number of parameters in the 9 layer 1024 wise network is about
53 million parameters.

Table 6. Comparative performance: word error rate (%) on the NIST
2000 Switchboard and CallHome test sets (models trained on 2000
hours of combined Fisher & Switchboard data)

Reference Lexicon LM CH SW
Current N N 26.4 17.2
Current N Char NG 21.8 13.8
[19] (ensemble) Y Word NG 19.3 12.6
Current Y Word NG 18.7 11.3
Current Y Word RNN 17.7 10.2

7.3. Iterated CTC and Beam Search

We evaluate the post-processing methods in Table 4. Clearly, the
RNN is not yet learning all the logic of a beam-search decoder, and
the effectiveness of a character-based beam search is midway be-
tween using the raw output, and a full word-based search. We see
that iterated CTC can produce a significant improvement, though
not as much as a complete beam search, while remaining in the all-
neural framework. When character or word N-grams are used, the
utility decreases. An examination of the iterated CTC errors indi-
cates that it mostly reduces the substitution rates, as the global shifts
created by insertions and deletions seem difficult for the RNN to
compensate.

7.4. Comparison to Previously Published Results

We summarize our results on the NIST 2000 CTS test set and com-
pare them with past work in Tables 5 and 6. The systems are cate-
gorized according to whether they use a lexicon to enforce the out-
put of legal words, and in their use of a language model. We see
an improvement over previous results with our RNN based system.
In [28], a LSTM-CTC system using phonemic rather than graphemic
targets is presented, and achieves an error rate of 15% on the Switch-
board portion of eval 2000; that system still uses a phonetic dic-
tionary. Note that the authors in [28] did not report an error rate
on Switchboard tasks with characters as target. The only reported
number for a CTC-based system with character output is from [19],
where the error rate is 20.0%. This is much higher than the 15%
error rate we obtained in this work under the same evaluation condi-
tions. Compared to a standard system, such as [33], which achieves
9.6% and 13% on Switchboard and CallHome respectively with con-
ventional 300-hour training, we see that current neural-only sys-
tems cannot yet mimic all the logic in a conventional system. How-
ever, our ReLU-RNN system does set a new state of the art for an
all-neural system, and we see that performance of such systems is
rapidly improving.

8. CONCLUSIONS

We advance the state of the art with an all-neural speech recognizer,
principally by employing a novel symbol encoding, and optimized
training process. We further present an iterated CTC approach for
use without any decoding process. In this framework, a network
first maps from audio to symbols, followed by a second symbol-
to-symbol mapping network. Both using raw network output and
search-based post-processing, we systematically improve on previ-
ously published results in the end-to-end neural speech recognition
paradigm.



9. REFERENCES

[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Large vocabulary con-
tinuous speech recognition with context-dependent DBN-HMMs”, in
ICASSP, pp. 4688–4691. IEEE, 2011.

[2] A.-r. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for
phone recognition”, in NIPS Workshop on Deep Learning for Speech
Recognition and Related Applications, p. 39, 2009.

[3] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-dependent deep neural networks”, in Interspeech, pp. 437–440,
2011.

[4] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic modeling”,
in Interspeech, pp. 338–342, 2014.

[5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural net-
works for acoustic modeling in speech recognition: The shared views
of four research groups”, IEEE Signal Processing Magazine, vol. 29,
pp. 82–97, 2012.

[6] H. A. Bourlard and N. Morgan, Connectionist speech recognition: a
hybrid approach, Springer Science & Business Media, 1993.

[7] T. Robinson and F. Fallside, “A recurrent error propagation network
speech recognition system”, Computer Speech & Language, vol. 5, pp.
259–274, 1991.

[8] H. Hermansky, D. P. Ellis, and S. Sharma, “Tandem connectionist
feature extraction for conventional HMM systems”, in ICASSP 2000,
vol. 3, pp. 1635–1638. IEEE, 2000.

[9] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying
for high accuracy acoustic modelling”, in Proceedings of the work-
shop on Human Language Technology, pp. 307–312. Association for
Computational Linguistics, 1994.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
computation, vol. 9, pp. 1735–1780, 1997.

[11] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to ini-
tialize recurrent networks of rectified linear units”, arXiv preprint
arXiv:1504.00941, 2015.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks”, in Advances in neural information processing
systems, pp. 3104–3112, 2014.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate”, arXiv preprint arXiv:1409.0473,
2014.

[14] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
“Grammar as a foreign language”, in Advances in Neural Information
Processing Systems, pp. 2773–2781, 2015.

[15] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks”, in Proc. of the 23rd Intl. Conf. on Machine
learning, pp. 369–376. ACM, 2006.

[16] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks”, in ICML, vol. 14, pp. 1764–1772, 2014.

[17] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate re-
current neural network acoustic models for speech recognition”, in
Interspeech, pp. 1468–1472, 2015.

[18] A. L. Maas, Z. Xie, D. Jurafsky, and A. Y. Ng, “Lexicon-free conversa-
tional speech recognition with neural networks”, in Proc. NAACL, pp.
345–354, 2015.

[19] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al., “Deep
speech: Scaling up end-to-end speech recognition”, arXiv preprint
arXiv:1412.5567, 2014.

[20] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end speech
recognition using deep rnn models and wfst-based decoding”, in IEEE
ASRU Workshop, pp. 167–174. IEEE, 2015.

[21] D. Bahdanau, J. Chorowski, D. Serdyuk, Y. Bengio, et al., “End-to-end
attention-based large vocabulary speech recognition”, in ICASSP, pp.
4945–4949. IEEE, 2016.

[22] L. Lu, X. Zhang, and S. Renals, “On training the recurrent neural net-
work encoder-decoder for large vocabulary end-to-end speech recogni-
tion”, in ICASSP, pp. 5060–5064. IEEE, 2016.

[23] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell:
A neural network for large vocabulary conversational speech recogni-
tion”, in ICASSP, pp. 4960–4964. IEEE, 2016.

[24] E. G. Schukat-Talamazzini, H. Niemann, W. Eckert, T. Kuhn, and
S. Rieck, “Automatic speech recognition without phonemes”, in Eu-
rospeech, pp. 129–132, 1993.

[25] C. Schillo, G. A. Fink, and F. Kummert, “Grapheme based speech
recognition for large vocabularies”, in Interspeech, pp. 584–587, 2000.

[26] S. Kanthak and H. Ney, “Context-dependent acoustic modeling using
graphemes for large vocabulary speech recognition”, in ICASSP, vol. 2,
pp. 845–848, 2002.

[27] M. Killer, S. Stüker, and T. Schultz, “Grapheme based speech recogni-
tion”, in Interspeech, pp. 3141–3144, 2003.

[28] Y. Miao, M. Gowayyed, X. Na, T. Ko, F. Metze, and A. Waibel, “An
empirical exploration of ctc acoustic models”, in ICASSP, pp. 2623–
2627. IEEE, 2016.

[29] C. Mendis, J. Droppo, S. Maleki, M. Musuvathi, T. Mytkowicz, and
G. Zweig, “Parallelizing wfst speech decoders”, in ICASSP, pp. 5325–
5329. IEEE, 2016.

[30] X. Chen, X. Liu, Y. Qian, M. Gales, and P. Woodland, “CUED-
RNNLM: An open-source toolkit for efficient training and evaluation
of recurrent neural network language models”, in ICASSP, pp. 6000–
6004. IEEE, 2016.

[31] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu,
and G. Zweig, “The Microsoft 2016 conversational speech recognition
system”, in ICASSP, 2017.

[32] G. Kurata and B. Kingsbury, “Improved neural network initialization
by grouping context-dependent targets for acoustic modeling”, in In-
terspeech, pp. 27–31, 2016.

[33] D. Povey, V. Peddinti, D. Galvez, P. Ghahrmani, V. Manohar, X. Na,
Y. Wang, and S. Khudanpur, “Purely sequence-trained neural networks
for ASR based on lattice-free MMI”, in Interspeech, pp. 2751–2755,
2016.


