
Tempe: Live Scripting for Live Data

 Robert DeLine, Danyel Fisher, Badrish Chandramouli, Jonathan Goldstein,

Michael Barnett, James Terwilliger, and John Wernsing
Microsoft Research

Redmond, WA, USA

Abstract—Data scientists are increasingly working with live

streaming data, for example, business telemetry and signals

from wearable devices and the Internet of Things. Unfortu-

nately, current tools for exploratory data analysis provide poor

support for streaming data. This paper presents Tempe, a data

science environment for temporal and streaming data. Tempe’s

extensible scripting environment allows for live programming,

displays interactive, continually updating visualizations, and

provides a uniform query language for both stored and live

data. We discuss the streaming features of Tempe and evaluate

our design choices with a deployment study at Microsoft with a

product team who used Tempe continuously for six months.

Keywords—Programming environments; live program-

ming; data analysis; data mining; data science; web applica-

tions; interactive visualization; streaming data.

I. INTRODUCTION

Data scientists are increasingly interested in analyzing

streaming data in near real time, using platforms like Storm

[1] and Spark Streaming [2]. Some streaming data analysis

is behind the scenes, for example, software companies trou-

bleshooting server performance by tracking telemetry. Other

streaming data analyses form the functionality of products.

Some examples include fitness applications that process real-

time sensor signals from wearable devices and smart-home

applications that combine real-time signals from multiple de-

vices on the Internet of Things. All these examples require

the ability to analyze both historical data (for example, to

train a classifier) and real-time streaming data (for example,

to apply the classifier to a live signal) [3].

Creating such applications requires exploratory data

analysis over streaming data. For instance, a data scientist

will not know a priori which classifier works best for a given

set of signals, nor which features to use for training the clas-

sifier. Making these choices requires an exploration of the

data. Unfortunately, existing data science tools do not pro-

vide much support for exploratory data analysis over stream-

ing data, much less a combination of historical and live data.

This paper presents the design and evaluation of Tempe,

an integrated environment for analyzing streaming temporal

data. Tempe provides direct support for data exploration

across live data streams. Tempe uses the Trill streaming en-

gine [4] to provide a unified query language for both stored

data (of arbitrary size) and live data. For both types of data,

Tempe displays interactive visualizations to summarize the

results of the user’s Trill queries. Tempe also provides live

programming to keep the script contents and results mutually

consistent as the user edits [5]. To reflect changes to live

data, Tempe’s visualizations update progressively once per

second to show the latest query results. Tempe also provides

a button to turn a script’s visualizations into a live dashboard.

This paper makes two contributions. First, we describe

several design decisions we made within Tempe to support

data science on streaming data. Second, we evaluate

Tempe’s major design choices based on a deployment with

Microsoft’s 343 Industries, as they prepared to release a new

game in the Halo franchise. This deployment was a multi-

month dialog with the Tempe team to incorporate their feed-

back and to add features they needed. 343 has used Tempe

continuously for over six months to study and monitor server

performance and customer behavior. Through interviews,

343 provided feedback on the value and the downsides in

Tempe’s design.

II. BACKGROUND

Today’s data science workflows are clerical and awk-

ward. Because of data volume and velocity, a typical data

science workflow starts with collecting a snapshot of histor-

ical temporal data in a map/reduce system [6] like Hadoop,

using a relational query language like Sawzall [7] or Pig

Latin [8]. Next, a data scientist often transfers files to a

scripting environment like R or Python, for exploration and

modeling work. There may be other file transfers to data ex-

ploration software, like Tableau, or presentation software.

Figure 1. A Tempe script computing a live stream of two different Twitter

feeds. The visualization updates as new data arrives.

http://hadoop.apache.org/

Finally, deploying models or logic to a working service often

means rewriting them from a scripting notation like R to the

system’s implementation language, with potentially different

runtime environments and data organization.

Recent interviews with data scientists document the pain

points of these clerical work practices [9] [10]. Given the

lengthy waits of batch systems and the clerical work in-

volved, researchers have been working on improving its var-

ious stages. For instance, some research has focused on

avoiding the long waits of batch processing, in favor of more

interactive query processing [11] [12] [13]; others have auto-

mated the tedium of individual steps like data cleaning [14]

[15] or capturing the workflow artifacts [16].

To support exploratory work, Tempe provides a live pro-

gramming experience. Live programming was first created

for visual programming languages, focused on specific do-

mains like physics simulation [17] and image processing

[18]. This domain focus continues today, e.g. live coding, in

which a programmer-musician continuously updates a MIDI

program to create a live music performance [19] [20]. Other

live programming systems, such as Alvis Live [21], were de-

signed to help students learn programming and proposed

multiple variations of the live model. Flogo II, focused on

end-user robot programming, provides live text, in which the

current execution behavior is reflected in the program text,

like graying out untaken branches [22]. AgentSheets pro-

vides a live spreadsheet representation of rewrite rules that

encode the logic of a simulation [23].

III. DESIGN AND RATIONALE

The Tempe prototype is the result of a two-year develop-

ment effort from a multidisciplinary team spanning HCI, in-

formation visualization, software engineering, programming

languages, machine learning and databases. Although we re-

used major components where possible, we also designed the

technology stack “from disk to pixels,” allowing us to coor-

dinate implementation choices. In particular, the members of

the Trill team, who created the underlying streaming engine,

were also members of the Tempe team.

A. Scripting in a Notebook Model

Our goal was to design an environment for open-ended

data cleaning, shaping, and exploration, for which scripting

is a good fit. Data exploration tools based on direct manipu-

lation, like Tableau, provide a large, but nonetheless fixed,

space of operations. Given the popularity of scripting lan-

guages for data science—R, MATLAB, Python, and most re-

cently Scala—C# would seem like an odd choice. However,

a key goal is to allow a user to explore data in the context of

a deployed system, a workflow called monitor-manage-mine

(M3) [3]. That is, the user could brainstorm new logic in

Tempe, then directly copy/paste the resulting code into the

deployed system; or, dually, a Tempe script could reuse logic

from the deployed system, either by copy/paste or by linking.

This goal is easiest to achieve when the scripting language is

the same as the programming language of the deployed sys-

tem. Further, C# offers several other advantages: (1) famili-

arity to our user community; (2) C#’s LINQ feature [24]

which embeds SQL-like queries in C# code; and (3) lan-

guage safety, for running scripts on a server.

We implemented Tempe as a web-based notebook, where

a central service executes the scripts. This allows clients to

close local windows while keeping a dashboard script run-

ning and to share in-progress results with each other. Tempe

uses a distinct URL for each script; thus, sharing a script can

be as simple as sending a URL to a collaborator.

One aspect of combining a scripting experience with a

notebook model is the need to show the current state of a

script’s computation. A notebook page always shows its

most recent results, even if they were produced in some long-

ago run. This allows notebook pages to be shared as reports,

even after the script finishes. The user may click the Restart

button to re-run a script, which is always possible because a

script’s complete context (necessary data and libraries) are

stored as part of the notebook page, along with the script’s

content. A stripe next to the script shows the current state of

the computation: green, for successfully finished; orange, for

finished with errors; striped gray, for in progress; and blank

for not running.

B. Visualizations and Dashboards

Tempe creates inline visualizations as the user writes

code. The choice of visualization for a value depends on its

runtime type, for example, timelines for Trill streams, tables

for generic collections, and print strings for scalars. These

interactive visualizations allow the user to explore their

query results. Figure 1 shows a script whose last result is vis-

ualized as a timeline. The user collapsed the visualizations

for the previous four results.

When a script analyzes live data, its visualizations (typi-

cally, timelines) continually update as the queries produce

new results. This means that a script can be used to monitor

data in real-time. To better support this task, we provide a

Dashboard button at the top of a notebook page. Clicking the

button produces a dashboard version of the notebook page,

with its own URL for sharing. The dashboard page shows

every non-collapsed visualization from the corresponding

notebook page, tiled to fill the screen.

C. Streaming query language

In order to express these scripts, the user needs a lan-

guage that makes writing streaming code straightforward.

We designed Tempe to work with the Trill streaming engine

[4]. Trill’s query language is designed for temporal data, but

its notion of time is abstract. This allows us to use the same

query language for stored data by choosing a suitable notion

of time, e.g. row number. This also allows the user to write

queries that combine (join) live and stored data. For example,

a live Twitter stream can have tweets with GPS coordinates;

a stored table can have mappings from GPS coordinates to

country names. Joining these data streams allows the user to

group tweets by country.

Trill’s query language is based on LINQ [24], but sup-

plements it with temporal constructs like windowed aggre-

gates. Trill queries use a publish/subscribe pattern and push

new results to query subscribers. Because Trill is much faster

than previous streaming systems [4], these pushes typically

occur at a much faster frequency than the one-second interval

at which Tempe updates its visualizations.

D. Live Programming

According to Tanimoto’s liveness taxonomy [18], a pro-

gramming environment can offer four levels of liveness:

(level 1) a user’s edits have no effect on the computation (e.g.

a typical text editor); (level 2) a user explicitly submits edits

to cause updates to the computation (e.g. a command loop);

(level 3) a user’s edits automatically trigger any necessary

re-computation (e.g. a spreadsheet); and (level 4) a user’s ed-

its trigger updates to ongoing computations. Tempe imple-

ments level-3 liveness for stored data and level-4 liveness for

live. That is, a user’s edits cause the scripting service to com-

pute deltas and re-run any effected queries data [5]. When

running a query on stored data, we choose to run the query

again from “the beginning”, that is, from the first row. With

live data, there is no “beginning”: running a query on live

data runs the query on the next row, whenever it arrives.

With a live programming experience, script execution is

asynchronous with respect to scripting editing. When the

user’s editing forms a correct and complete query, Tempe’s

scripting service starts executing it. If the query runs on live

data, then the query runs indefinitely, until the user stops the

script or overwrites the query’s content.

Despite the similar names, live programming and live

data interact subtly to create the potential for confusion. Con-

sider the following script pseudocode:

var x = Data.Count();
var y = Data.Where(e => e.Action=="Open").Count();

Logically, one would expect the progressive value of x al-

ways to exceed the value of y, since y counts a subset of

events that x counts (those whose Action field is “Open”).

This expectation holds if both queries start at the same time

on the same live data stream. However, if the user edits the

first line after the script is already running, our live program-

ming algorithm restarts that query (to keep its result up-to-

date). This means that x’s query starts later in the live stream

than y’s query. Hence, x could have a smaller value than y.

To support live scripting on live data, there is a tradeoff

between maintaining consistency and retaining valuable live

results. Because Tempe builds a dependency graph for each

script, it could restart a whole dependency graph whenever

any statement in the graph changes. This would keep query

results mutually consistent, but would throw away results

from ongoing queries. Unfortunately, previous query results

over live streams cannot be recomputed—the past has

passed. We currently handle this tradeoff by allowing incon-

sistency, but providing a Restart button that forces all queries

on a page to re-execute at the same time.

IV. DEPLOYMENT CASE STUDY

To understand the extent to which our design choices

help software teams accomplish their data science goals, we

wanted to engage with teams as they first adopted Tempe. To

recruit teams, we released Tempe across Microsoft in March

2014. Since then, we have engaged with several teams, one

of which agreed to be a case study for this paper. The team

continues to use Tempe and provides ongoing feedback to

improve its design.

343 Industries is a Microsoft game studio that produces

the computer game series Halo. Their team has hundreds of

engineers producing games played by tens of millions of

players worldwide. Halo games run on consumer game con-

soles, but communicate with a backend service for achieve-

ments, game updates, and network play. Members of 343

have used Tempe for over six months to understand both the

performance of their backend service as well as customer be-

havior. “Mark” and “Brad” (pseudonyms) are both software

developers on the team responsible for the backend service.

Mark’s primary responsibility is gameplay data; Brad fo-

cuses on performance data. Because the backend data reveal

insights about customer usage, Mark often shares infor-

mation with both the product’s Business Intelligence team

and several of its project managers. As Mark put it, “We're

this bridge between being a source of truth for the data that's

been returned to us from the [product] and also being a

source of analysis for what's come through the [product],

and we kind of split that task with our BI team. We do it more

in real-time, and they do it more in the background and over

larger portions of data.” Mark and Brad are good examples

of our intended Tempe user: they are trained as developers,

but because they work on a data platform, they often fill the

role of data scientist.

343’s use of Tempe focused around their two live sources

of data. The Tempe team created two new types of data in-

gress for their performance and gameplay data sources.

(These data sources are not specific to their product and are

useful to other Tempe users.) Brad wrote temporal queries

over the performance data to show timelines of metrics like

memory usage, CPU usage and other counters. At 343’s re-

quest, we also created the Dashboard button, so that these

real-time timelines could be monitored without the clutter of

the script text. 343 then built a dedicated kiosk to show these

dashboards in their team room where the team members

could monitor them.

During the same period as the performance monitoring,

Mark issued many ad-hoc queries over the real-time cus-

tomer data, some queries based on his own curiosity, some

at the request of the BI team or project managers (PMs).

Mark’s queries were typically temporal, like Brad’s, for ex-

ample, windowed averages of gameplay actions. In one in-

stance, they looked for actions that they predicted would be

rare—game achievements that were difficult to get—and

found that one of the achievements was surprisingly fre-

quent. The root cause was a bug that had previously been

undetected.

URL-based sharing of analyses proved to be a useful fea-

ture.

I know during testing when we were trying to find out

what's our service acting like right now, it was very con-

venient to be able to just say here's a query I just ran, I'll

link it to you, you can take a look at what it's doing right

now. ... Usually I'd share with project managers or people

that maybe weren't the ones who could actually find this

out themselves. I also share with my lead and my lead's

lead to give them some insights.

For communicating with stakeholders, both visualiza-

tions and real-time update were important.

They were PMs [Program Managers] of PMs and they

were concerned more about the overall health of our ser-

vice and how we were doing especially when we were test-

ing things in a live environment...The questions they were

asking were more like how many events are we seeing in

our system right now, how many active [customers] right

now, and they wanted to see the charts on that and see that

it lined up with their estimates...We'd create a visual chart

using Tempe—the line graph would be the most common

one—and we'd chart over our day what our population

looked like...They wanted to see it happening in real

time....Anyone could go in and take a look at where we are

right now.

Tempe also provided easy transitions between monitor-

ing and ad-hoc data explorations.

Being able to know with some level of confidence that

everything is okay is good. And we have multiple ways of

monitoring that, but this is ...a more reactive tool in our

bag, because we can dig in our code and look for different

things when we see an issue.

On the downside, Tempe’s focus on scripting and ad-

vanced query APIs limited team participation.

 We had originally we took the PMs and said here's a

quick way to do this. They sort of tried to use it, but they

weren't able to, so it fell back to me. It was probably [lack

of] familiarity with how to do temporal-type queries...It’s

not unexpected.

Mark also found the live programming to be distracting

and would prefer a mode switch.

Normally I don't care that something immediately

starts populating. I much prefer to say when I press a but-

ton that says Start it then starts running and in between the

states, like when I hit Stop, ... it should wait until I'm done,

and then I'll hit start. I don't really care about generating

that in-between data. If I had an idea in mind that I have

to create multiple variables to get there because I want to

go stepwise into what I'm doing, having it start generating

the data and popping open graphs while I'm doing it is a

little disruptive. ... It was kind of a hindrance.

He also noted that a mode switch could clear up potential

confusion for how live programming interacts with live data.

My mental model is that I expect it to start at wherever

point it is in the stream. I don't expect to see any past

events. I know it's a live stream. … If the model is [the

script] will immediately evaluate as I hit enter, then I ex-

pect that the later queries won't have seen what the previ-

ous ones saw. I don't expect it to go back and replay the

events that the previous ones saw.... In my ideal world

where I hit Start and Stop, then I don't have to worry about

that at all. Then I know that when I hit Start the data came

in at the top and went all the way through to the bottom.

Finally, Mark validated the utility of moving logic be-

tween Tempe and the production system.

It allows us to have a low barrier to testing things be-

fore we implement them. Seeing it against live data is also

helpful. ... How we can tune [the logic] while it's in pro-

duction, just to see, maybe if we flip these bits over here,

this might be better [logic], without affecting any actual

users.

V. CONCLUSIONS

This paper presents the major design choices behind a

novel integrated environment for data science. Based on

long-term engagement with several teams, some of our de-

sign choices clearly fit our users’ needs:

 A cloud-hosted environment allows easy sharing via

URLs, although read-only sharing would likely suffice.

 Providing visualizations throughout the interface allows

users to spot errors, share insights, and monitor behav-

iors.

 A scripting environment allows developers to fill the

role of data scientists, but makes them data gatekeepers

by excluding non-programming teammates.

 Users appreciate flexibility of moving logic between

historical and live data and between exploration and de-

ployment.

 The value of live programming varies between users and

tasks, so the environment should be flexibility about the

triggering gesture and update rate.

VI. REFERENCES

[1] A. Toshniwal et al., "Storm @Twitter," Proc. SIGMOD, pp.
147-156, 2014.

[2] M. Zaharia et al., "Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing," In
Proc. of the 9th USENIX conference on Networked Systems
Design and Implementation.

[3] B. Chandramouli, M. Ali, J. Goldstein, B. Sezgin, and S.B.
Raman, "Data Stream Management Systems for
Computational Finance," IEEE Computer, no. December, pp.
45--52, 2010.

[4] B. Chandramouli et al., "Trill: A High-Performance
Incremental Query Processor for Diverse Analytics," VLDB,
2015.

[5] R. DeLine and D. Fisher, "Supporting Exploratory Data
Analysis with Live Programming," Proc. of the IEEE Symp.
on Visual Languages and Human-Centric Computing, 2015.

[6] J. Dean and G. Ghemawat, "MapReduce: simplified data
processing on large clusters," Proc. OSDI, 2004.

[7] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan,
"Interpreting the data: Parallel analysis with Sawzall," Sci.
Program., vol. 13, no. 4, 2005.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.
Tomkins, "Pig Latin: a not-so-foreign language for data
processing," Proc. ACM SIGMOD Intl. Conf. on
Management of Data, 2008.

[9] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, "Enterprise
Data Analysis and Visualization: An Interview Study," in
IEEE Visual Analytics Science & Technology (VAST), 2012.

[10] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker,
"Interactions with big data analytics," interactions, vol. 19,
no. 3, pp. 50-59, May/June 2012.

[11] M. Barnett et al., "Stat! - An Interactive Analytics
Environment for Big Data," in Proceedings of the ACM
SIGMOD International Conference on Management of Data,
2013.

[12] T. Condie et al., "MapReduce Online," in 7th USENIX
Symposium on Networked Systems Design and
Implementation, 2010.

[13] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra, "Scalable
approximate query processing with the DBO engine," in
Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2007, pp. 725-736.

[14] P.J. Guo, S. Kandel, J. Hellerstein, and J. Heer, "Proactive
Wrangling: Mixed-Initiative End-User Programming of Data

Transformation Scripts," in ACM User Interface Software &
Technology (UIST), 2011.

[15] S. Gulwani, W. Harris, and R. Singh, "Spreadsheet Data
Manipulation using Examples," Communications of the
ACM, vol. 55, no. 8, pp. 97-105, August 2012.

[16] J. Guo and M. Seltzer, "BURRITO: Wrapping Your Lab
Notebook in Computational Infrastructure," Proceedings of
the 4th USENIX Workshop on the Theory and Practice of
Provenance, 2012.

[17] R.B. Smith, "The Alternate Reality Kit: An animated
environment for creating interactive simulations," in IEEE
Computer Society Workshop on Visual Languages, 1986.

[18] S.L. Tanimoto, "VIVA: A visual language for image
processing," Journal of Visual Languages and Computing,
vol. 1, no. 2, pp. 127–139, June 1990.

[19] A.R. Brown and A. Sorensen, "Interacting with Generative
Music through Live Coding," Contemporary Music Review,
vol. 28, no. 1, pp. 17-29, February 2009.

[20] S. Aaron, A.F. Blackwell, R. Hoadley, and T. Regan, "A
principled approach to developing new languages for live
coding," in Proceedings of New Interfaces for Musical
Expression, 2011, pp. 381-386.

[21] C.D. Hundhausen and J.L. Brown, "What You See Is What
You Code: A “Live” Algorithm Development and
Visualization Environment for Novice Learners," Journal of
Visual Languages and Computing, vol. 18, no. 1, pp. 22-47,
2007.

[22] C.M. Hancock, Real-Time Programming and the Big Ideas
of Computational Literacy.: Massachusetts Institute of
Technology, 2003.

[23] A. Repenning, "AgentSheets: An interactive simulation
environment with end-user programmble agents,"
Interactions, 2000.

[24] E. Meijer, B. Beckman, and G. Bierman, "LINQ: reconciling
object, relations and XML in the.NET framework," in
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, 2006.

