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Abstract—Data scientists are increasingly working with live 

streaming data, for example, business telemetry and signals 

from wearable devices and the Internet of Things. Unfortu-

nately, current tools for exploratory data analysis provide poor 

support for streaming data. This paper presents Tempe, a data 

science environment for temporal and streaming data. Tempe’s 

extensible scripting environment allows for live programming, 

displays interactive, continually updating visualizations, and 

provides a uniform query language for both stored and live 

data. We discuss the streaming features of Tempe and evaluate 

our design choices with a deployment study at Microsoft with a 

product team who used Tempe continuously for six months. 
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I. INTRODUCTION 

Data scientists are increasingly interested in analyzing 

streaming data in near real time, using platforms like Storm 

[1] and Spark Streaming [2]. Some streaming data analysis 

is behind the scenes, for example, software companies trou-

bleshooting server performance by tracking telemetry. Other 

streaming data analyses form the functionality of products. 

Some examples include fitness applications that process real-

time sensor signals from wearable devices and smart-home 

applications that combine real-time signals from multiple de-

vices on the Internet of Things. All these examples require 

the ability to analyze both historical data (for example, to 

train a classifier) and real-time streaming data (for example, 

to apply the classifier to a live signal) [3]. 

Creating such applications requires exploratory data 

analysis over streaming data. For instance, a data scientist 

will not know a priori which classifier works best for a given 

set of signals, nor which features to use for training the clas-

sifier. Making these choices requires an exploration of the 

data. Unfortunately, existing data science tools do not pro-

vide much support for exploratory data analysis over stream-

ing data, much less a combination of historical and live data.  

This paper presents the design and evaluation of Tempe, 

an integrated environment for analyzing streaming temporal 

data. Tempe provides direct support for data exploration 

across live data streams. Tempe uses the Trill streaming en-

gine [4] to provide a unified query language for both stored 

data (of arbitrary size) and live data. For both types of data, 

Tempe displays interactive visualizations to summarize the 

results of the user’s Trill queries. Tempe also provides live 

programming to keep the script contents and results mutually 

consistent as the user edits [5]. To reflect changes to live 

data, Tempe’s visualizations update progressively once per 

second to show the latest query results. Tempe also provides 

a button to turn a script’s visualizations into a live dashboard. 

This paper makes two contributions. First, we describe 

several design decisions we made within Tempe to support 

data science on streaming data. Second, we evaluate 

Tempe’s major design choices based on a deployment with 

Microsoft’s 343 Industries, as they prepared to release a new 

game in the Halo franchise. This deployment was a multi-

month dialog with the Tempe team to incorporate their feed-

back and to add features they needed. 343 has used Tempe 

continuously for over six months to study and monitor server 

performance and customer behavior. Through interviews, 

343 provided feedback on the value and the downsides in 

Tempe’s design. 

II. BACKGROUND 

Today’s data science workflows are clerical and awk-

ward. Because of data volume and velocity, a typical data 

science workflow starts with collecting a snapshot of histor-

ical temporal data in a map/reduce system [6] like Hadoop, 

using a relational query language like Sawzall [7] or Pig 

Latin [8]. Next, a data scientist often transfers files to a 

scripting environment like R or Python, for exploration and 

modeling work. There may be other file transfers to data ex-

ploration software, like Tableau, or presentation software. 

Figure 1. A Tempe script computing a live stream of two different Twitter 

feeds. The visualization updates as new data arrives. 
 

http://hadoop.apache.org/


Finally, deploying models or logic to a working service often 

means rewriting them from a scripting notation like R to the 

system’s implementation language, with potentially different 

runtime environments and data organization.  

Recent interviews with data scientists document the pain 

points of these clerical work practices [9] [10]. Given the 

lengthy waits of batch systems and the clerical work in-

volved, researchers have been working on improving its var-

ious stages. For instance, some research has focused on 

avoiding the long waits of batch processing, in favor of more 

interactive query processing [11] [12] [13]; others have auto-

mated the tedium of individual steps like data cleaning [14] 

[15] or capturing the workflow artifacts [16]. 

To support exploratory work, Tempe provides a live pro-

gramming experience. Live programming was first created 

for visual programming languages, focused on specific do-

mains like physics simulation [17] and image processing 

[18]. This domain focus continues today, e.g. live coding, in 

which a programmer-musician continuously updates a MIDI 

program to create a live music performance [19] [20]. Other 

live programming systems, such as Alvis Live [21], were de-

signed to help students learn programming and proposed 

multiple variations of the live model. Flogo II, focused on 

end-user robot programming, provides live text, in which the 

current execution behavior is reflected in the program text, 

like graying out untaken branches [22]. AgentSheets pro-

vides a live spreadsheet representation of rewrite rules that 

encode the logic of a simulation [23]. 

III. DESIGN AND RATIONALE 

The Tempe prototype is the result of a two-year develop-

ment effort from a multidisciplinary team spanning HCI, in-

formation visualization, software engineering, programming 

languages, machine learning and databases. Although we re-

used major components where possible, we also designed the 

technology stack “from disk to pixels,” allowing us to coor-

dinate implementation choices. In particular, the members of 

the Trill team, who created the underlying streaming engine, 

were also members of the Tempe team. 

A. Scripting in a Notebook Model 

Our goal was to design an environment for open-ended 

data cleaning, shaping, and exploration, for which scripting 

is a good fit. Data exploration tools based on direct manipu-

lation, like Tableau, provide a large, but nonetheless fixed, 

space of operations. Given the popularity of scripting lan-

guages for data science—R, MATLAB, Python, and most re-

cently Scala—C# would seem like an odd choice. However, 

a key goal is to allow a user to explore data in the context of 

a deployed system, a workflow called monitor-manage-mine 

(M3) [3]. That is, the user could brainstorm new logic in 

Tempe, then directly copy/paste the resulting code into the 

deployed system; or, dually, a Tempe script could reuse logic 

from the deployed system, either by copy/paste or by linking. 

This goal is easiest to achieve when the scripting language is 

the same as the programming language of the deployed sys-

tem. Further, C# offers several other advantages: (1) famili-

arity to our user community; (2) C#’s LINQ feature [24] 

which embeds SQL-like queries in C# code; and (3) lan-

guage safety, for running scripts on a server. 

We implemented Tempe as a web-based notebook, where 

a central service executes the scripts. This allows clients to 

close local windows while keeping a dashboard script run-

ning and to share in-progress results with each other. Tempe 

uses a distinct URL for each script; thus, sharing a script can 

be as simple as sending a URL to a collaborator. 

One aspect of combining a scripting experience with a 

notebook model is the need to show the current state of a 

script’s computation. A notebook page always shows its 

most recent results, even if they were produced in some long-

ago run. This allows notebook pages to be shared as reports, 

even after the script finishes. The user may click the Restart 

button to re-run a script, which is always possible because a 

script’s complete context (necessary data and libraries) are 

stored as part of the notebook page, along with the script’s 

content. A stripe next to the script shows the current state of 

the computation: green, for successfully finished; orange, for 

finished with errors; striped gray, for in progress; and blank 

for not running. 

B. Visualizations and Dashboards 

Tempe creates inline visualizations as the user writes 

code. The choice of visualization for a value depends on its 

runtime type, for example, timelines for Trill streams, tables 

for generic collections, and print strings for scalars. These 

interactive visualizations allow the user to explore their 

query results. Figure 1 shows a script whose last result is vis-

ualized as a timeline. The user collapsed the visualizations 

for the previous four results. 

When a script analyzes live data, its visualizations (typi-

cally, timelines) continually update as the queries produce 

new results. This means that a script can be used to monitor 

data in real-time. To better support this task, we provide a 

Dashboard button at the top of a notebook page. Clicking the 

button produces a dashboard version of the notebook page, 

with its own URL for sharing.  The dashboard page shows 

every non-collapsed visualization from the corresponding 

notebook page, tiled to fill the screen. 

C. Streaming query language 

In order to express these scripts, the user needs a lan-

guage that makes writing streaming code straightforward. 

We designed Tempe to work with the Trill streaming engine 

[4]. Trill’s query language is designed for temporal data, but 

its notion of time is abstract. This allows us to use the same 

query language for stored data by choosing a suitable notion 

of time, e.g. row number. This also allows the user to write 

queries that combine (join) live and stored data. For example, 

a live Twitter stream can have tweets with GPS coordinates; 

a stored table can have mappings from GPS coordinates to 



country names. Joining these data streams allows the user to 

group tweets by country.  

Trill’s query language is based on LINQ [24], but sup-

plements it with temporal constructs like windowed aggre-

gates. Trill queries use a publish/subscribe pattern and push 

new results to query subscribers. Because Trill is much faster 

than previous streaming systems [4], these pushes typically 

occur at a much faster frequency than the one-second interval 

at which Tempe updates its visualizations.  

D. Live Programming 

According to Tanimoto’s liveness taxonomy [18], a pro-

gramming environment can offer four levels of liveness: 

(level 1) a user’s edits have no effect on the computation (e.g. 

a typical text editor); (level 2) a user explicitly submits edits 

to cause updates to the computation (e.g. a command loop); 

(level 3) a user’s edits automatically trigger any necessary 

re-computation (e.g. a spreadsheet); and (level 4) a user’s ed-

its trigger updates to ongoing computations. Tempe imple-

ments level-3 liveness for stored data and level-4 liveness for 

live. That is, a user’s edits cause the scripting service to com-

pute deltas and re-run any effected queries data [5]. When 

running a query on stored data, we choose to run the query 

again from “the beginning”, that is, from the first row. With 

live data, there is no “beginning”: running a query on live 

data runs the query on the next row, whenever it arrives. 

With a live programming experience, script execution is 

asynchronous with respect to scripting editing. When the 

user’s editing forms a correct and complete query, Tempe’s 

scripting service starts executing it. If the query runs on live 

data, then the query runs indefinitely, until the user stops the 

script or overwrites the query’s content. 

Despite the similar names, live programming and live 

data interact subtly to create the potential for confusion. Con-

sider the following script pseudocode: 

var x = Data.Count(); 
var y = Data.Where(e => e.Action=="Open").Count(); 

Logically, one would expect the progressive value of x al-

ways to exceed the value of y, since y counts a subset of 

events that x counts (those whose Action field is “Open”). 

This expectation holds if both queries start at the same time 

on the same live data stream. However, if the user edits the 

first line after the script is already running, our live program-

ming algorithm restarts that query (to keep its result up-to-

date). This means that x’s query starts later in the live stream 

than y’s query. Hence, x could have a smaller value than y. 

To support live scripting on live data, there is a tradeoff 

between maintaining consistency and retaining valuable live 

results. Because Tempe builds a dependency graph for each 

script, it could restart a whole dependency graph whenever 

any statement in the graph changes. This would keep query 

results mutually consistent, but would throw away results 

from ongoing queries. Unfortunately, previous query results 

over live streams cannot be recomputed—the past has 

passed. We currently handle this tradeoff by allowing incon-

sistency, but providing a Restart button that forces all queries 

on a page to re-execute at the same time. 

IV. DEPLOYMENT CASE STUDY 

To understand the extent to which our design choices 

help software teams accomplish their data science goals, we 

wanted to engage with teams as they first adopted Tempe. To 

recruit teams, we released Tempe across Microsoft in March 

2014. Since then, we have engaged with several teams, one 

of which agreed to be a case study for this paper. The team 

continues to use Tempe and provides ongoing feedback to 

improve its design.  

343 Industries is a Microsoft game studio that produces 

the computer game series Halo. Their team has hundreds of 

engineers producing games played by tens of millions of 

players worldwide. Halo games run on consumer game con-

soles, but communicate with a backend service for achieve-

ments, game updates, and network play. Members of 343 

have used Tempe for over six months to understand both the 

performance of their backend service as well as customer be-

havior. “Mark” and “Brad” (pseudonyms) are both software 

developers on the team responsible for the backend service. 

Mark’s primary responsibility is gameplay data; Brad fo-

cuses on performance data. Because the backend data reveal 

insights about customer usage, Mark often shares infor-

mation with both the product’s Business Intelligence team 

and several of its project managers. As Mark put it, “We're 

this bridge between being a source of truth for the data that's 

been returned to us from the [product] and also being a 

source of analysis for what's come through the [product], 

and we kind of split that task with our BI team. We do it more 

in real-time, and they do it more in the background and over 

larger portions of data.” Mark and Brad are good examples 

of our intended Tempe user: they are trained as developers, 

but because they work on a data platform, they often fill the 

role of data scientist. 

343’s use of Tempe focused around their two live sources 

of data. The Tempe team created two new types of data in-

gress for their performance and gameplay data sources. 

(These data sources are not specific to their product and are 

useful to other Tempe users.) Brad wrote temporal queries 

over the performance data to show timelines of metrics like 

memory usage, CPU usage and other counters. At 343’s re-

quest, we also created the Dashboard button, so that these 

real-time timelines could be monitored without the clutter of 

the script text. 343 then built a dedicated kiosk to show these 

dashboards in their team room where the team members 

could monitor them. 

During the same period as the performance monitoring, 

Mark issued many ad-hoc queries over the real-time cus-

tomer data, some queries based on his own curiosity, some 

at the request of the BI team or project managers (PMs). 

Mark’s queries were typically temporal, like Brad’s, for ex-



ample, windowed averages of gameplay actions. In one in-

stance, they looked for actions that they predicted would be 

rare—game achievements that were difficult to get—and 

found that one of the achievements was surprisingly fre-

quent. The root cause was a bug that had previously been 

undetected. 

URL-based sharing of analyses proved to be a useful fea-

ture.  

I know during testing when we were trying to find out 

what's our service acting like right now, it was very con-

venient to be able to just say here's a query I just ran, I'll 

link it to you, you can take a look at what it's doing right 

now. ... Usually I'd share with project managers or people 

that maybe weren't the ones who could actually find this 

out themselves. I also share with my lead and my lead's 

lead to give them some insights. 

For communicating with stakeholders, both visualiza-

tions and real-time update were important. 

They were PMs [Program Managers] of PMs and they 

were concerned more about the overall health of our ser-

vice and how we were doing especially when we were test-

ing things in a live environment...The questions they were 

asking were more like how many events are we seeing in 

our system right now, how many active [customers] right 

now, and they wanted to see the charts on that and see that 

it lined up with their estimates...We'd create a visual chart 

using Tempe—the line graph would be the most common 

one—and we'd chart over our day what our population 

looked like...They wanted to see it happening in real 

time....Anyone could go in and take a look at where we are 

right now. 

Tempe also provided easy transitions between monitor-

ing and ad-hoc data explorations. 

Being able to know with some level of confidence that 

everything is okay is good. And we have multiple ways of 

monitoring that, but this is ...a more reactive tool in our 

bag, because we can dig in our code and look for different 

things when we see an issue. 

On the downside, Tempe’s focus on scripting and ad-

vanced query APIs limited team participation. 

 We had originally we took the PMs and said here's a 

quick way to do this. They sort of tried to use it, but they 

weren't able to, so it fell back to me. It was probably [lack 

of] familiarity with how to do temporal-type queries...It’s 

not unexpected. 

Mark also found the live programming to be distracting 

and would prefer a mode switch. 

Normally I don't care that something immediately 

starts populating. I much prefer to say when I press a but-

ton that says Start it then starts running and in between the 

states, like when I hit Stop, ... it should wait until I'm done, 

and then I'll hit start. I don't really care about generating 

that in-between data. If I had an idea in mind that I have 

to create multiple variables to get there because I want to 

go stepwise into what I'm doing, having it start generating 

the data and popping open graphs while I'm doing it is a 

little disruptive. ... It was kind of a hindrance. 

He also noted that a mode switch could clear up potential 

confusion for how live programming interacts with live data. 

My mental model is that I expect it to start at wherever 

point it is in the stream. I don't expect to see any past 

events. I know it's a live stream. … If the model is [the 

script] will immediately evaluate as I hit enter, then I ex-

pect that the later queries won't have seen what the previ-

ous ones saw. I don't expect it to go back and replay the 

events that the previous ones saw.... In my ideal world 

where I hit Start and Stop, then I don't have to worry about 

that at all. Then I know that when I hit Start the data came 

in at the top and went all the way through to the bottom. 

Finally, Mark validated the utility of moving logic be-

tween Tempe and the production system. 

It allows us to have a low barrier to testing things be-

fore we implement them. Seeing it against live data is also 

helpful. ... How we can tune [the logic] while it's in pro-

duction, just to see, maybe if we flip these bits over here, 

this might be better [logic], without affecting any actual 

users. 

V. CONCLUSIONS 

This paper presents the major design choices behind a 

novel integrated environment for data science. Based on 

long-term engagement with several teams, some of our de-

sign choices clearly fit our users’ needs: 

 A cloud-hosted environment allows easy sharing via 

URLs, although read-only sharing would likely suffice. 

 Providing visualizations throughout the interface allows 

users to spot errors, share insights, and monitor behav-

iors. 

 A scripting environment allows developers to fill the 

role of data scientists, but makes them data gatekeepers 

by excluding non-programming teammates. 

 Users appreciate flexibility of moving logic between 

historical and live data and between exploration and de-

ployment. 

 The value of live programming varies between users and 

tasks, so the environment should be flexibility about the 

triggering gesture and update rate. 
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