
Swords and Shields – A Study of
Mobile Game Hacks and Existing Defenses

Yuan Tian
Carnegie Mellon University
yuan.tian@sv.cmu.edu

Eric Chen
Gridspace

eric.chen@sv.cmu.edu

Xiaojun Ma
Carnegie Mellon University

xiaojun.ma@sv.cmu.edu
Shuo Chen

Microsoft Research
shuochen@microsoft.com

Xiao Wang
Carnegie Mellon University

sean.wang@sv.cmu.edu

Patrick Tague
Carnegie Mellon University

tague@cmu.edu

ABSTRACT
The mobile game industry has been growing significantly.
Mobile games are increasingly including abilities to purchase
in-game objects with real currency, share achievements and
updates with friends, and post high scores to global leader
boards. Because of these abilities, there are new financial
and social incentives for gamers to cheat. Developers and
researchers have tried to apply various protection mecha-
nisms in games, but the degrees of effectiveness vary con-
siderably. There has not been a real-world study in this
problem space. In this work, we investigate different pro-
tections in real-world applications, and we compare these
approaches from different aspects such as security and de-
ployment efforts systematically.

We first investigate 100 popular mobile games in order to
understand how developers adopt these protection mecha-
nisms, including those for protecting memory, local files, and
network traffic, for obfuscating source code, and for main-
taining the integrity of the game state. We have confirmed
that 77 out of the 100 games can be successfully attacked,
and believe that at least five more are vulnerable. Based on
this first-hand experience, we propose an evaluation frame-
work for the security of mobile game defenses. We define
a five-level hierarchy to rate the protection mechanisms to
help developers understand how well their games are pro-
tected relative to others in the market. Additionally, our
study points out the trade-offs between security and network
limitations for mobile games and suggests potential research
directions. We also give a set of actionable recommendations
about how developers should consider the cost and effective-
ness when adopting these protection mechanisms.

1. INTRODUCTION
The mobile game industry has been booming in recent

years. In 2015, mobile games accounted for 41% of the en-
tire video game market [31]. The overall revenue of mobile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’16, December 05-09, 2016, Los Angeles, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2991079.2991119

games in 2015 has reached $34.8 billion (a 39.2% increase
from 2014), which is 85% of mobile app market revenue [11].
Popular games can be highly profitable; for example, Clash
of Clans profits $4.6 million every day [24]. It is common for
mobile games to sell game points, special powers and other
digital commodities for real money. Moreover, as games
become more social, gamers have the motivation to com-
pete with friends and show off their feats on leader boards.
Therefore, protecting against game hacking has become an
important consideration for developers. For example, Poké-
mon Go starts to take actions to ban users that take unfair
advantage of and abusing the game. Indeed, as we show in
this paper, developers have tried to apply various protection
mechanisms in their games, achieving different levels of suc-
cess against hacks. To the best of our knowledge, there is
no systematic study about the current conditions of mobile
game security. We believe that it is timely and valuable to
conduct a broad study in this problem space, specifically,
about mobile game hacks and protection mechanisms.

Compared to PC games, mobile games have unique limita-
tions with respect to security protections. First, most mobile
games have less frequent network communications because
of limited bandwidth and the cost of data traffic. They often
only communicate with servers in specific situations such as
in-app purchase, leader board loading, and communication
with friends. Second, the “barrier to entry” of mobile game
developers is significantly lower than that of PC games. In
particular, most PC games are released by large game devel-
opment companies that adhere to stricter coding and secu-
rity practices, whereas mobile games are often developed by
small companies or even individual developers with fewer
restrictions and less secure programming experience. Mo-
tivated by these differences, we approach the problem by
surveying and analyzing mobile game weaknesses leading to
successful hacks, cheating, and manipulation of game activ-
ities. We summarize our efforts as follow.

Our Work. Our study consists the following three pillars.

• We present a comprehensive view of the current land-
scape of mobile game hacks and protections.

• We compare the defenses deployed in the real world.
The comparison focuses on multiple dimensions such
as security, deployment effort, bandwidth limitation
and performance.

• We identify and discuss current research challenges and
point out future directions.

First, we study 100 popular mobile games, focusing on

their resilience against hacking techniques. Then, we dis-
cuss various hacking utility tools such as memory/file edit-
ing, traffic analysis and program analysis tools. We also
investigate many protection approaches, such as local re-
source protection and network protection, as well as more
sophisticated approaches such as code obfuscation and state-
synchronization between client and server. We present a
number of case studies to concretely explain how developers
try to protect their games and whether the adopted protec-
tions are effective. We have confirmed that 77 of 100 popular
games (such as Angry Birds) can be successfully hacked, and
believe that at least five more are vulnerable.

Our first-hand experience suggests that game hacking re-
quires very different levels of effort, ranging from using auto-
matic tools to painstakingly analyzing native code libraries.
This implies that certain protections and combinations of
protections are very effective, while others can be trivially
defeated. Accordingly, we define a five-level hierarchy to rate
the effectiveness of each combination of protections that we
observed. We envision that this hierarchy gives developers a
clear picture about how well their games are protected rela-
tive to others in the market. We also discuss the developer’s
effort and the runtime overhead due to each protection ap-
proach, which are important practical considerations when
making real-world engineering decisions. The feasibility of
a protection mechanism is also affected by the game’s genre
and its development platform. Summarize all the analyses,
we provide a number of actionable recommendations for de-
velopers who build different genres of games and who use
popular game engines/development platforms (e.g., Android
SDK/NDK, Unity3D, libGDX, Adobe Air, and AndEngine).

The remainder of our paper is organized as follows. In Sec-
tion 2, we introduce common hacking tools and techniques
for traffic and code analyses. We describe the threat model
and the approach of our study in Section 3. We present an
overview of our study results in Section 4. In Section 5, we
provide a detailed account of several case studies. Based on
our experience obtained through the study, we discuss and
compare different protection mechanisms in terms of cost
and effectiveness in Section 6. We discuss related research
in Section 7 and conclude in Section 8.

2. MOBILE GAME HACKS BACKGROUND
In this section, we provide an overview about a number

of mobile game hacking tools and techniques used in our
study. We use these tools in our study to test the games
and evaluate the effectiveness of the game protections.

2.1 Hacking Tools
There are two primary types of hacking tools that apply to

mobile games: (1) tools that can be applied broadly across
games and platforms and (2) tools that are game-specific. In
what follows, we describe these two classes of hacking tools.

2.1.1 General Hacking Tools
General hacking tools are usually apps that are designed

to hack mobile games on gamers’ devices. The hacking ap-
proaches are not designed to be game-specific. We categorize
them into two classes: memory editing tools and local file
editing tools. Memory editing tools, such as GameKiller [16],
GameCIH [14], and GameGuardian [15], search for the ad-
dresses of sensitive variables and modify them during game
play. More specifically, the gamer provides the value of a

sensitive variable, e.g., the number of coins, into such a tool
to locate all candidate addresses in memory that contains
the value. The gamer then continues the game for a while,
and repeats the aforementioned steps. Usually, after several
iterations, the tool is able to identify the memory address
of the sensitive variable. Thus the gamer can modify it ar-
bitrarily by editing the value in the memory address. An-
other class of tools is local file editing tools, such as Cheat-
Droid [13], which allow a gamer to check the local files for
sensitive values.

2.1.2 Specific Hacking Tools
Different from the general tools, there are hacking tools

designed for specific games. One example is Xmodgames [35]
that provides “mods” to 32 popular games. These mods are
repackaged mobile games with protections removed. There-
fore, gamers can install these repackaged games on their de-
vices and enjoy the benefits that they do not have otherwise.
The mods require detailed analyses done by skillful hackers
and need to be updated when the games are updated.

2.2 Analysis Techniques
Techniques such as traffic analysis and program analysis

can also be used to construct game hacks. Using these tech-
niques requires deeper knowledge about technical details and
configurations.

2.2.1 Traffic Analysis
Traffic analysis is useful for hacking games that send sen-

sitive game status updates such as scores and coins over a
network. Attackers can utilize traffic analysis to identify
and modify sensitive parameters for in-game benefit. The
attack is often done through a network proxy. In practice,
there are three situations where a hacker needs extra efforts
to do traffic analysis. First, Android apps can bypass the
global proxy settings so that the traffic might not be cap-
tured by the proxy. The hacker needs to force the game to
use the proxy. Second, the traffic may be encoded, so the
hacker needs to understand the format well enough to de-
code it. Third, the game traffic combines advertisement and
analytics traffic and the gamer needs to filter the traffic.

2.2.2 Decompilers and Debugging Tools
Decompilers, debugging tools and hooking tools can be

applied to understand the logic of the games, for the pur-
pose of bypassing protections. Decompiling tools, such as
dex2jar [6], ILSpy [22] and JD-GUI [23], enable the hacker to
decompile the code and analyze the logic. Debugging tools
such as GDB and hooking tools such as Android SSL Trustkiller
help the hacker analyze the game’s logic at runtime. At-
tackers might infer the protections deployed in a game by
analyzing the game’s executable and use the information to
bypass the protections.

3. EVALUATION FRAMEWORK FOR MO-
BILE GAME DEFENSES

We developed a framework to evaluate protections in mo-
bile games from different aspects such as security, deploy-
ment effort, bandwidth consumption, and performance.

3.1 Dimensions of Evaluation
We select the following dimensions to evaluate mobile

game defenses systematically.

• Security
When we analyze the security aspect of protections, we
take the hacker’s perspective to study a set of popular
games. For each game, we try to understand what pro-
tection mechanisms it deploys, then explore different
levels of hacking techniques to evaluate the effective-
ness of these mechanisms.

• Deployment effort
Deployment effort is also very important to evaluate a
mobile game defense, because developers tend to adopt
approaches that are easy to design and implement. We
evaluate this aspect by analyzing whether the defense
is specific to the logic of the games, whether develop-
ers need to change a lot of the code, and whether the
developer need to use new technology/framework.

• Bandwidth consumption
Mobile games have specific limitations about band-
width consumption. Most of mobile games are de-
signed to be light-weight for network traffic. We eval-
uate the network usage of each defense to see whether
it is suitable for different types of mobile games.

• Performance
We also evaluate the performance overhead introduced
by each defense technique.

3.2 Threat Model
When comparing the security of the mobile game defenses,

we consider the situation where the attacker is the per-
son playing the game, namely the game hacker. The game
hacker uses various hacking techniques in an attempt to de-
feat the protections employed by the game developers. Be-
cause the game hacker is also the owner of the mobile device,
it is feasible, when necessary, for the gamer to obtain root
privilege on the device. Rooting the device allows hacking
tools to get access to local resources such as memory, decom-
piled source code, local files, and network traffic. Our threat
model is standard for studying security problems pertaining
to game hacks (and other digital content protection issues).
We consider two levels of hackers: the first level are ama-
teurs, who only use available hacking tools such as memory
modification tools (e.g., GameKiller) and local file modifi-
cation tools (e.g., cheatDroid), whereas the second level are
professional hackers who also conduct program analysis and
traffic analysis to hack deeper into the games.

3.3 Approach
For each game, we test it with a set of increasingly sophis-

ticated hacking tools, described as follows.
First, we use the most general hacking tools to modify

local files and memory. These tools are easily available to
gamers, and they are simple to install and use. We consider
these tools as amateur level.

If the general hacking tools are not effective for the game,
we check the network traffic to see if the game has weak-
nesses that can be exploited through traffic manipulations.
We use network sniffers and web proxies in this step. These
tools are also easily available to gamers, but they require the
effort of configurations, as well as certain basic skills for an-
alyzing and understanding the traffic. As mentioned earlier,
traffic analysis may not be trivial; a game hacker may need
to use tools such as proxydroid [27] to force an Android app
to use the global proxy.

If the above hacking techniques are still ineffective, we

use more sophisticated tools to analyze the game to study
its specific protection mechanisms. We first decompile and
analyze the app to investigate its protection logic. Usually,
the expertise and effort required by these techniques are
beyond what amateur game hackers possess.

If the source code of the game app is heavily obfuscated
or written in native code, we apply debugging tools to inves-
tigate the logic and use hooking tools to bypass protections.
This level of analysis is often time-consuming even for expe-
rienced hackers.

Our study does not include game mods for two reasons:
(1) the techniques to develop game mods are essentially the
same as the ones we studied ; (2) game mods are often only
available for a few popular games and not up-to-date.

4. OVERVIEW OF OUR STUDY
In this section, we provide an overview of our study about

attacks and defenses in mobile games. We first describe the
apps we investigated and then summarize the protections we
observed.

4.1 Dataset Overview
Our study covers a set of 100 popular mobile games in

Google Play, shown in Table 1 with an index assigned to
each game for easy reference (e.g., game 43 is Angry Birds).
We tried to be unbiased when selecting these games – they
are all among the top 120 games in Google Play, from which
we removed 20 games that do not present a financial or so-
cial incentive to cheat. The games are built with different
development platforms such as Unity3D (C#) [33], Android
SDK (Java) [18] and NDK (C++) [17], Adobe Air (Action-
Script) [1], and cocos2d-x (C++) [10]. Android SDK/NDK,
Unity3D, and cocos2d-x are three leading development plat-
forms. The other platforms have fewer than 10 applications
in our game set. This set of games also cover most game gen-
res such as action, strategy, and sports [2]. The game devel-
opers range from big companies (e.g., King Digital, Zygna,
and Tencent to individual developers. In addition, these
games exhibit diversified network access patterns.

4.2 Summary of Results
Most mobile games expose two types of resources to hack-

ers: local resources (e.g., memory and local files) and net-
work traffic. Accordingly, developers try to protect these
resources using various mechanisms. To protect against
malicious modifications of local resources, developers adopt
memory protections and file protections. To protect network
traffic against modification and injection, techniques such as
encoding, encryption and signing are applied to the commu-
nication between the mobile device and the game server.

We also observed developers adopting different approaches
to protect the logic of their games, such as applying code
obfuscation and compiling critical components into native
code. These mechanisms try to discourage hackers from un-
derstanding how the games behave internally. In addition,
some developers implement mechanisms for synchronizing
client-side state with servers. Such client-server synchro-
nization ensures that malicious modification of the client-
side state cannot persist, instead reverting back to the server-
side value during subsequent synchronization.

In the following sections, we explain the aforementioned
mechanisms: local resource protection, network protection,
code obfuscation, native code implementation, and client-
server sync.

Index Game Index Game Index Game Index Game Index Game
1 Subway Surf 2 AA 3 Temple Run 2 4 Crossy Road 5 Trivia Crack
6 Agent Alice 7 ZigZag 8 Clash of Clans 9 Coin Dozer 10 Mary Knots:

Garden
11 Kill Shot 12 Witchy World 13 Minion Rush 14 AdVenture Cap-

italist
15 94%

16 Video Poker 17 Coin Trip 18 Journey of
Magic HD+

19 Castle Clash 20 Prize Claw 2

21 Sniper 3D 22 Tank League 23 Quiz Battle 24 Jelly Jump 25 Empire : Rome
Rising

26 Poker Deluxe 27 Clash of Lords 2 28 Shipwrecked:
Volcano

29 3 Pyramid Tri-
peaks

30 Elemental King-
doms

31 Flow Free 32 Fruit Ninja Free 33 Word Search 34 PAC-MAN 35 MARVEL War
of Heroes

36 blood & glory:
immortals

37 Fruit Land 38 Hill Climb Rac-
ing

39 Solitaire vegas
free card game

40 Dumb Ways to
Die 2

41 My Talking An-
gela

42 Legend of
EmpireKingdom
War

43 Angry Birds 44 Bingo crushfree
bingo game

45 Solitaire

46 Farm Heroes
Saga

47 My Talking Tom 48 Don’t Tap The
White Tile

49 Five nights at
Freddy’s 3 demo

50 TETRIS

51 Marvel Contest
of Champions

52 Panda Pop 53 Racing Rivals 54 SimCity BuildIt 55 Bounce

56 Geometry Dash
Lite

57 Spring Ninja 58 Hungry Shark
Evolution

59 11+ 60 Westbound:
Gold Rush

61 DEER
HUNTER
2014

62 Winter Craft 3:
Mine Build

63 Pou 64 Fashion Story:
Daring Red

65 Rock Hero

66 Boom Beach 67 Maternity Doc-
tor

68 Cookie Jam 69 Sonic Dash 70 Madden NFL
Mobile

71 Bad Piggies 72 Bubble witches
saga 2

73 MiniCraft 2 74 Looney Tunes
Dash!

75 Candy Crush
Soda Saga

76 Candy Crush
Saga

77 War of Nations 78 Need A Hero 79 Pharaoh’s War 80 Brave Trials

81 Angry Birds
Stella POP!

82 Plants vs. Zom-
bies

83 King of Thieves 84 Hay Day 85 Hardest Game
Ever 2

86 Dawn of the
Dragons

87 Bike Race Free 88 Call of Duty:
Heroes

89 Transformers:
Battle Tactics

90 Gods Rush

91 Surgery Simula-
tor

92 8 Ball Pool 93 Cinderella Free
Fall

94 Army of Toys 95 Pet Rescue Saga

96 Ninja go go go 97 Galaxy Online 3 98 Racing Fever 99 YAHTZEE
With Buddies

100 Dragon city

Table 1: We tabulate and index the representative set of games included in our study.

Protections

Game Engines
Unity3D Android SDK/NDK Adobe AIR Cocos2d-x libGDX AndEngine

Local resources pro-
tection

1 7 14 17 20 24
30 53 58 98

11 13 18 25 34 42 43 46 63
73 76 78 79 81 85

10 37 19 27 31 91 28 60 2

Network protection 1 4 6 7 17 24 30
26 39 51 53 89
93 94 96 98

5 8 11 13 15 25 26 32 33 34
42 43 54 55 64 66 70 74 75 77
78 79 80 81 82 83 92 95 97

12 37 40 86 27 38 44 56 57
59 90 100

28 60 65 2

Code obfuscation 53 88 5 8 11 13 18 23 25 33 35 43
63 66 74 77 83 84 87

12 22 67 90 65

Compilation to na-
tive code

8 11 13 18 23 25 32 34 42 43
46 50 54 55 63 64 66 70 72
73 74 75 76 77 78 79 80 81
82 83 84 85 95 97

19 22 27 31 38
44 48 56 57 59
67 90 91 100

Client-server sync 30 36 51 89 94 5 8 23 25 35 42 64 66 70 77
80 83 84 97 99

19 27 100 28 60

Table 2: Summary of protections in mobile games

4.2.1 Local Resource Protection
Local resource protection prevents hackers from editing

local resources. To protect against memory editing tools
(e.g., GameKiller), developers use different approaches such
as encrypting the sensitive variables and detecting memory

editing operations. To protect against file editing tools (e.g.,
CheatDroid), developers often encrypt sensitive values be-
fore writing them into files. Overall, we observe that 34%
of the studied games have local resource protection in place.
For games with proper local resource protections, it is hard

to use the general hacking tools to modify memory or lo-
cal files because these tools can effectively get correct values
from the memory. Attackers need to use more advanced
analyses such as traffic analysis to modify traffic or decom-
pilation to figure out the protections.

4.2.2 Network Protections
Although mobile games only generate a small amount of

network traffic, developers do want to protect the traffic
from hackers, because it often carries sensitive data, which,
if controlled by the hacker, would void the effort of local
resource protection. The most basic protection is using
standard HTTPS for network communication, which we ob-
served in 26% of the studied games. While HTTPS provides
some protection, it is not effective against an attacker using
a web proxy with a fake certificate to decrypt the HTTPS
traffic. A more effective approach is to make the traffic
obscure for the hacker. For example, some studied games
use non-public encoding or encryption, do certificate pin-
ning or maintain a list of approved certificates. There are
also games whose traffic cannot be captured by the proxy
and games that sign their packets.

4.2.3 Code Obfuscation and Hiding
The goal of code obfuscation and hiding is to increase the

barrier for the hacker to reverse-engineer the game’s internal
logic. Our study shows that 24% of games use code obfusca-
tion or hiding at different sophistication levels, ranging from
obfuscating class names and variable games to dynamic li-
brary downloading.

4.2.4 Compilation into Native Code
We also observed 48% of studied games contain compo-

nents that are compiled into native code as opposed to Java
byte-code. This approach creates barriers for hackers be-
cause decompiling native code is much harder than Java
byte-code. Although there are existing decompilers for na-
tive code, the decompilation quality is usually far from sat-
isfactory, thus reverse-engineering the logic is still very time-
consuming.

4.2.5 Client-Server Sync
The goal of client-server sync is to keep the client-side

state in sync with that of the server. We only found 25
games that implement this protection . Client-server sync, if
effectively implemented, is considerably secure against most
hacks that we are aware of. However, a correct implementa-
tion requires an insightful design consideration about how to
partition the game logic between the client and the server,
so that important computations are not solely performed on
the client side. We found several examples of games that
attempt client-server sync but are still vulnerable, including
Trivia Crack and Dragon City.

4.3 Real-world deployments of the protections
Table 2 shows the 100 games in a grid, in which each row is

one of the five protection mechanisms discussed above, and
each column is one of the popular game engines. Note that
it is fairly common for a game to deploy multiple protection
mechanisms, so an index may appear in multiple cells in a
column. From the table, we can see that games developed
using different game engines have different tendencies of ap-
plying the protection mechanisms. For example, games de-

veloped using Android SDK/NDK tend to apply obfuscation
more often due to native support in the development envi-
ronments. Conversely, games developed using Unity3D do
not deploy code obfuscation very often, because developers
have to implement their own techniques. We also observed
that client-server sync is most often applied on multi-player
games that have frequent network communications.

The deployments of the protections are also related to the
vendors of the games. For example, large vendors tend to
adopt better protections. Out of the 100 apps we studied,
ten vendors such as EA games, Supercell develop more than
one app (32 apps in total). These games from larger vendors
are more likely to deploy full client-server sync (34.4%) than
games from smaller vendors (10.3%). These larger vendors
also tend to use one developing platform over their games.
Six companies utilize the same platform for their 17 games.
Using the same platform makes it easier for the vendor to
share the same protection techniques across games. How-
ever, the protections adopted are still different because of
other factors. Since the majority of games (68%) are from
small vendors that do not have good resources for security
development, we envision the analysis of protection tech-
niques and suggestions for best practices would benefit them
tremendously.

It is worth noting that even for games adopting the same
set of protections, resilience against hacking still varies con-
siderably across games. Understanding how effectively the
games implement their protections requires a much deeper
investigation about individual games. In the next section,
we present several representative cases, including games that
are trivial to hack and ones that are much more secure.

5. CASE STUDIES OF REAL-WORLD PRO-
TECTIONS IN MOBILE GAMES

In order to obtain a deeper understanding about how ef-
fectively developers implement protection mechanisms, we
conducted a number of case studies, in which we took the
game hacker’s perspective and used hacking tools with dif-
ferent levels of sophistication. Our analysis uses the catego-
rization introduced in Section 4.

5.1 Local Resources Protection
We observed different approaches for local resource pro-

tections. Most of them aim at protecting the memory, but
there are a few approaches for local file protection. Exam-
ples of local file protection techniques include encrypting or
encoding local files. Note that it only makes sense to protect
both local files and memory, because protecting one with-
out the other would be too trivial to break. Unfortunately,
this mistake was made by a number of games. For example,
Jelly Jump and 94% only protect memory, while AdVenture
Capitalist and ZigZag only protect local files.

5.1.1 Basic Memory Protection
We observed several games that encrypt sensitive values

before storing them . An example is Subway Surfers, a pop-
ular game with over 100,000,000 downloads. In the game,
the main character runs on railways to collect coins while
avoiding incoming trains. Gamers can buy equipments with
coins, which are, therefore, an important resource that the
game developers want to protect. We used general memory
editing tools attempting to modify the number of coins but

public int amountOfCoins
{
get
{
return Utils.XORValue(this._xoredAmount);

}
set
{
int num = Utils.XORValue(this._xoredAmount);
if (num != value)
{
this._xoredAmount= Utils.XORValue(value);
Action action = this.onCoinsChanged;

}
}

}
public static int XORValue(int value)
{
return value ^ Utils.GetXorRandomValue();

}

Figure 1: Subway surfers computes the XOR of the coin
number with a random number when updating the coin
number (code is simplified for display purpose).

did not succeed. We then decompiled the game with ILSpy
to analyze the coin counting logic, and we eventually realized
that the developers XOR the coin number with a random
number so that a hacker cannot simply search for the coin
value in memory. The details are shown in Figure 1.

5.1.2 Local File Protection
We also used decompliers such as dex2jar, ILSpy, and JD-

GUI to identify games that protect sensitive values in lo-
cal files . ZigZag is a game in which the gamer tries to
move balls forward and still keeps balls on the pathway by
changing the directions of balls. It enables in-app purchases
for more balls. ZigZag stores level number in SharedRefer-
ences (a common local file for storing values), but we can-
not modify it directly. By studying its decompiled code,
we found that ZigZag used CryptoPlayerPrefs (XOR or
Rijndael) before saving values to SharedPreferences. We
decompile the app and track the function for storing val-
ues locally to identify the encryption key. Then we realized
that the key is hashed from a variable name. Even without
the encryption key, a game hacker can still modify scores
because ZigZag does not implement memory protection for
updating two sensitive variables GameController.score and
GameController.bestScore. Attackers can just search the
score number in the memory and modify the score.

5.2 Network Protections
A majority of mobile games allow the gamer to play mostly

offline and only communicate with servers in specific situa-
tions such as updating high scores, purchasing equipment,
sending awards, and socializing with friends. These opera-
tions are essential to the games, so the traffic should be well
protected. We observed different approaches of protecting
traffic with different levels of effectiveness. Following are
our case studies to explain what developers implement in
the real world.

5.2.1 Basic HTTPS
The first level of network protection is using HTTPS alone.

It is not effective against game hacks, because the hacker can

Score update (tampered)
0 is changed to 9223372036854775807

Server accepts the fake score

9223372036854775807

Google
Server

Figure 2: Modifying traffic in Rock Hero to rank high in the
leader board.

use a standard HTTPS proxy to decrypt the traffic. Note
that the attacker would intentionally ignore and bypass any
certificate errors.

The game Rock Heroes uses Google’s leader board – it
sends the high score to Google’s server to update the leader
board using HTTPS. However, the gamer can use a proxy
to modify the traffic and set an arbitrary high score on the
leader board, as shown in Figure 2. Although Google claims
that they have protections for fake high score [20], we did
not observe the effects of such protections. Instead, we were
able to confirm at least three gamers who are hackers in the
leader board, as their scores are impossibly high. According
to our analysis, the variable for the in-game score is of type
Int32. However, Google’s submitScore API for their leader
board takes a score of type Int64. We have confirmed that
the traffic was modified so that arbitrary scores under 263−1
can be successfully set. Most notably, and somewhat to
our surprise, the leader board already showed three other
instances of high scores equal to 263 − 1.

5.2.2 HTTPS with Additional Protections
A few game developers attempt to place additional barri-

ers so that gamers cannot use a proxy to hack them easily.
These techniques include certificate pinning to block unau-
thorized certificates and encrypting inside HTTPS payload
to block hackers from decrypting their HTTPS traffic. Cer-
tain games, such as Game of War, have their predefined
valid certificate list hardcoded in the apk. If the signer of
a server certificate is not in this list, the game will refuse
to communicate. This approach can be somewhat effective,
because it forces the hacker to investigate how to bypass
the certificate verification. However, a knowledgeable and
more persistent hacker can still succeed. For example, we
were able to hook and override certain Java and Apache SSL
libraries to bypass these certificate verifications.

5.2.3 Message Signing
Besides using HTTPS (or SSL), some games sign their

messages in order to protect the integrity and authenticity
of the communication. The effectiveness depends on how
well the signing key is protected. Typically for a multi-

HMAC Key

Figure 3: Debugging Dragon City to identify the HMAC
key.

Change the Gold number

Sign the packet with the recovered key

Figure 4: We change the gold quantity and sign the modified
packet with the recovered key in Dragon City.

player battle game such as Dragon City, an update from the
client to the server contains only the start state of the battle
state and the end result. The update message is protected
by an HMAC, such as SHA-256 HMAC. In other words, the
gold collecting result or battle result is computed exclu-
sively on the client side, so the server has no way to detect
a hack if the signature is faked. We decompiled the code
by dex2jar, but found that the important logic was inside
the native libraries. We tried to debug the native libraries
as follows. We first used the command ‘ndk-which nm’ -

D -demangle libgame.so to list the memory addresses of
functions, then we identified the function for computing
packet signatures. Among the four libraries (libcocs2d.so,
libdc.so, libgnustl_shared.so and libhydra.so), we found
the hmac_sha256 function inside libhydra.so to be a strong
candidate. We verified our estimation by setting a stop point
at hmac_sha256 and recovered the parameters, as shown in
Figure 3. R0 and R1 are the static HMAC keys, R2 is the
request content, and R3 is the length of the packet. After
recovering the key, we tried to modify the coin number from
209 to 500 and signed the modified packet with the HMAC
key. As the signature was valid, the server sent a success
response and we updated a fake coin number. Similarly, we
can modify the game result with the recovered key, as is
shown in Figure 4.

5.2.4 Communicating using Customized Protocol
Besides HTTP/HTTPS, some apps also use customized

protocol to send data. Such traffic is harder to analyze than
that HTTP/HTTPS traffic because it is more flexible; for
example, message format and encoding can be defined by
the game developer. Moreover, games that send customized
encoded traffic usually use client-server sync as well, which
we will discuss in Section 5.5.

2: Coin collection response

1: Coin collection request

3: Building information request

4: Building information response

133601 Coins

149601 Coins

Figure 5: Army of Toys exchanges messages between server
and client to update the coin collection event. Developers
compute how many coins the gamer can collect in the server
and sends to the client to update the coins. Client also
updates building information from the server.

total length: 68
msgId: 0
session:
1c5dde16c5c4dde241c5eb611f
43460a
messages.Count: 1
message type:
Msg_C2G_GatherResource
payload length: 4
payload: 08cc9818

total length: 44
compressed: False
msgId: 0
num: 1
message type:
Msg_G2C_UpdateItem
payload length: 15
payload:
0802120b089bee1a10904e18e
19009

1: 396364

1: 2 type- update
2 {
 1: 440091
 2: 10000
 3: 149601
}

Money number

Message 1: Coin collection request

Message 2: Coin collection response

Building ID

TCP payload
decoding

Protocolbuf
payload decoding

Figure 6: Decoding traffic of Army of Toys: message 1 and 2.
We analyzed the decompiled code to figure out the encoding
protocols of two layers. Here we zoom in the message 1 and
2 in Figure 5 to explain how the server maintains the coins
the gamer can collect and how the server informs the client
about the coins update.

As a concrete example, we describe our observations about
Army of Toys, which is a multi-player strategy game. The
game uses a special message format, and we managed to
reverse engineer its encoding protocols by decompiling the
code. It took us a considerable amount of effort to under-
stand the message format of their communication. As shown
in Figure 6, we observed from the decompiled source code
that Army of Toys uses two layers of encoding. We first de-
code the TCP payload (the left textbox). According to the
decoding protocol we found from the decompiled code, we
obtain the content in the middle textbox. We see that even
this decoded content still constains an encoded payload. Af-
ter further investigation, we found that the second encoding
is in protobuf format [21], and we were able to further de-
code the payload to obtain the content in the right textbox.
This multi-step analysis and decoding process allows us to
understand the traffic, but with significant effort.

5.3 Code Obfuscation and Hiding
Code obfuscation and hiding are commonly used by games

developed with the Google SDK, which provides obfuscation
functionality. As we discussed earlier, our hacking effort suc-
ceeded in many of the studied cases because we were able
to figure out the program logic. If done effectively, code ob-
fuscation and hiding can be a sufficient (though not perfect)
deterrent to game hackers who try to reverse engineer the
game.

5.3.1 Code Obfuscation
Kill Shot is a shooting game developed using Android

SDK and NDK. We did not succeed in hacking the game
by local resource editing or traffic analysis, so we attempted
to decompile the code. We found that class names and vari-
able names of the program are obfuscated, which makes it
very difficult to figure out how to take control of sensitive
data that attackers want to manipulate.

5.3.2 Code Hiding
A number of games try to hide the existence of important

code components, rather than obfuscate them. For exam-
ple, Army of Toys mentioned earlier does not load certain
important libraries when the game starts. Instead, it down-
loads these compressed libraries at certain points during the
game.

5.4 Compilation into Native Code
Implementing important game logic in native code is an-

other approach to increase the difficulty of reverse engineer-
ing. Once compiled into native code, a program has lost
most compile-time information, such as variable names and
type information. Moreover, native code instructions are
much harder to be reverted to their source code statements.
If compiler optimizations are applied, then the code is even
harder to understand. For this reason, developers can take
advantage of this feature of native code compilation to de-
fend against game hacking attempts. This approach can be
further combined with code obfuscation techniques.

For example, the game Angry Birds hides the local stor-
age protection inside a native code library libAngryBird-

sClassic.so. We did not get sufficient information from
decompilation to recover the logic. However, we found an
encrypted file named highscores.lua and used a debug-
ging tool to analyze it. We recovered the symbol table for
function names and then tried to use the GDB debugger to
follow the interesting functions for the game logic. Angry
Birds is time-consuming to analyze because the game has
many functions related to security. We had to debug many
encryption functions to get their parameters and test if each
parameter is the right key for decrypting highscore.lua.
After much effort, we were able to get the right key from
the function AES::StartEncryption. This step is shown in
Figure 7. Using the key, we were able to decrypt, modify,
and re-encrypt the highscore.lua file, which resulted in a
modified in-game score.

5.5 Client-Server Sync
A small number of games implement client-server sync.

The effectiveness of protection comes from the fact that the
computation is performed on the server-side, and the client
is forced to synchronize state with the server. We explained
in Section 5.2.4 that the client-server sync can be effective
if the client side code is basically a “renderer”, whereas all
the game states are computed and maintained by the server.

Figure 7: Debugging Angry Birds for recovering the keys.
We try many functions for encryptions to recover the key,
and finally get it in AES:StartEncryption from libAngry-

BirdsClassic.so. The figure is a screenshot when the game
hits the breakpoint in AES:StartEncryption and R1 stores
the key as is shown in the red box.

https://docs.
google.
com/presentati
on/u/1/?
authuser=1&u
sp=slides_web

Figure 8: Developers of Trivia Crack try to maintain player
status on the server side and sync with client side, but they
fail because they still trust the client to compute important
logic such as whether gamers have enough coins or when the
gamers use power-ups. Therefore, we can modify message
2 to increase coins and use the coins locally, also tamper
message 3 not to report using powder-ups.

However, some games still depend on the client side to do
sensitive computations, such as those about coins and battle
results. These games are vulnerable to hacks. Below are the
details about some of these games.

5.5.1 Partial Client-Server Sync
Trivia Crack is a game in which a gamer competes with

friends in answering multiple-choice questions. The gamer
can purchase coins using in-app purchases and use “power-
ups” to eliminate some wrong options. We use traffic anal-
ysis to get a rough understanding of the program’s logic.
When one gamer answers a question, Trivia Crack sends a
message to its server, including question id, the chosen op-
tion, and the power-ups that the gamer uses for this ques-
tion; the process is shown in Figure 8. Trivia crack com-
putes the score on the server side according to the mes-
sage. A direct memory modification would fail to change
the score because the authoritative copy of the score is not
in the client’s memory. However, Trivia Crack still depends
on the client to do important computations such as decid-
ing whether the gamer has enough coins to use power-ups
and whether power-ups have been used to remove incorrect
options. Therefore, the server to client message can be mod-

ified to trick the client to believe that the gamer has more
coins (message 2 in Figure 8). Similarly, the client-to-server
message can be modified to persuade the server that the
gamer did not use power-ups (message 3 in Figure 8). There
are several other weaknesses of this nature in Trivia Crack.
For example, it judges whether the gamer is right on the
client side, so a hacker can just switch the device to the of-
fline mode after the question is loaded and answer it many
times until he gets the correct answer. Then, he can switch
the device back to the online mode to update the result.

5.5.2 Full Client-Server Sync
Unlike the partial client-server sync, if the game does not

depend on the client side to do any important computa-
tion, the program will be very robust against hacks. We
only see a few examples of such games, all in the multi-
player game category. Army of Toys uses encoded traffic
as a protection, as we discussed previously. It also uti-
lizes encoded communication for synchronizing client states
with the server. All the game logic is maintained on the
server side, which only exposes the display interfaces to the
client-side code. Every action the gamer performs triggers
a number of messages exchanged between the server and
the client. For example, as shown in Figure 5, when a
gamer collects coins from a factory, the client sends a packet
“Msg C2G GatherResource” to inform the server that the
gamer wants to collect resources from the factory build-
ing. Server replies with “Msg G2C UpdateItem” to update
the coins that the gamer should be able to collect. The
server also sends building information to control the display
of buildings, such as what time will the gamer be able to
collect coins again, in packet “Msg G2C AskBuildingInfo”.
Because the server performs all the sensitive logic compu-
tations, gamers cannot hack the client or traffic to fool the
server. Although we spent efforts to decode two layers of
payload and understand every fields in its traffic (see Fig-
ure 6), our efforts to hack this game were unsuccessful.

6. SUGGESTIONS TO MOBILE GAME DE-
VELOPERS

The previous sections focused on understanding various
protection mechanisms. Following the understanding, a prac-
tical question to ask is how game developers should consider
adopting these protections. The consideration is a judge-
ment about the cost of each mechanism and the protection
strength.

6.1 Cost of Protection
The cost of each protection mechanism includes the de-

veloper’s effort and the runtime cost, which are the two di-
mensions shown in Figure 9. Based on our studied cases, we
place the protection mechanisms in this space.

Local resource protection is easy to implement because
it does not affect the game’s logic. A developer just de-
cides which sensitive variables need protection, and applies
encryption or encoding on them. The runtime cost is also
low.

Code obfuscation is easy on Android SDK/NDK – the
developers only need to configure the project to enable Pro-
Guard [19]. However, if the platform does not support ob-
fuscation, developers’ effort will be significantly higher. Sim-
ilarly, the developer’s effort for native code compilation also

Client-‐server	 sync	

Obfusca3on	 (other	
pla8orms)	

Customized	 traffic	
protec3on	

Na3ve	 code	 (other	
pla8orms)	

Ru
n3

m
e	
co
st
	

Developer	 effort	

Local	 resource	
protec3on	 Basic	

HTTPS	

Na3ve	 code	
(Android	 NDK	 or	
cocos2d-‐x)	 high	

high	

Obfusca3on	
(Android,	 PC)	

Monitoring	
process	

Secure	
upda3ng	

Figure 9: Protection cost comparison.

depends on the platform support. It is easier for games de-
veloped using Android SDK/NDK or cocos2d-x(a game de-
velopment engine in C++) to include native code libraries
than those using other platforms. Usually, compilation to
native code does not incur much runtime cost. In fact, the
code might run even slightly faster as a result.

Traffic protection can be an easy job if it uses standard
protocols, such as basic HTTPS. However, developing a cus-
tomized traffic protection requires much more effort.

Client-server sync is most difficult because it is game spe-
cific. Developers need to consider carefully about the game
logic so that they can make sure all important logic are com-
puted correctly in the server side. The runtime cost is also
high, because it incurs a large amount of traffic for synchro-
nizing the game states. For light-traffic games, this protec-
tion is not a reasonable choice. Only multi-player games that
already have frequent network communications are suitable
for client-server sync.

6.2 Strength of Protection
Software development involves many aspects of consider-

ation, such as the go-to-market schedule, the available man-
power, and the budget constraints. We believe that mobile
game development is no exception. Every game is devel-
oped under a specific set of time pressures and financial con-
straints. It would be biased for us, as security researchers, to
suggest that protecting against game-hacks is of paramount
importance over all other considerations. Nevertheless, the
knowledge obtained through our study can help developers
make more informed decisions about which mechanisms to
adopt.

Specifically, Table 3 shows all combinations of protections
that we observe in the studied games. We rank their pro-
tection strengths using a 5-level rating. Level 1 is weakest.
The hacker can use general tools to hack the game. Level
2 can resists the general tools, but is vulnerable to traffic
analysis. Level 3 forces the hacker to do decompilation to
understand the game’s logic. Level 4 requires even manual
debugging effort. Level 5 is assigned to those that we have
not found vulnerabilities in the principles of their protec-
tion approaches. Levels 1 - 4 consist of sub-levels indicated
by letters in an ascending order of strength. The right-most
two columns show the number of games in each sub-level and
how many of them we have successfully hacked. In total, we
have succeeded in 77 cases, including every game below the
4B rating and 7 games with 4B - 4D ratings. There are 18
games that we do not think vulnerable (i.e., with rating 5)in

Level

Protection

Local resource
protection

Code obfusca-
tion

Compilation
into native
code

Network pro-
tection

Client-server
sync

No. of
games

No. of
games
hacked

1A NA * * * NA 48 48
1B Partial * * * NA 4 4
2A Full * * NA NA 9 9
2B Full * * HTTPS NA 3 3
2C NA * * NA Partial 1 1
3A Full NA NA Customized NA 3 3
3B NA NA NA Customized Partial 1 1
4A Full Yes NA Customized NA 1 1
4B Full NA Yes Customized NA 5 1
4C Full Yes Yes Customized NA 2 1
4D NA + + Customized Partial 5 5
5 * * * * Full 18 0

Table 3: Levels of protection strength. “Partial” in the local resources protection column means that developers protect
memory or local resources, but not both. “*” means that the protection does not matter at this level. “+” means that the
game either has code obfuscation or compilation into native code. “Partial” in the client-server sync column means that
developers partially rely on the client to compute sensitive logic.

our current threat model. The practical value of this table
is that it gives developers an estimate about how well their
games are protected relative to others in the market. For ex-
ample, if a game implements local resource protection and
customized traffic protection, and its important libraries are
compiled into native code, then the game has a 4B rating,
which means that its developer probably has done a better
job than 70% of others.

A game’s genre and its development platform should also
be taken into consideration. For a multi-player game, we
suggest implementing client-server sync, because it gives the
strongest protection, and the traffic overhead is reasonable
given that the game has already generating heavy traffic.
For a game of another genre, its development platform be-
comes the main consideration. Generally speaking, we sug-
gest a combination of local resource protection, network pro-
tection, and code obfuscation/native code implementation,
if the platform provides support of them. For example, if a
game is developed on Android SDK/NDK, all these mecha-
nisms can be implemented without significant effort. Among
other development platforms, we suggest local resource pro-
tection, network protection, and native code for cocos2d-x
because it is a C++ game engine. For the other development
platforms covered in our study (Unity3D, libGDX, Adobe
Air, and AndEngine), it is reasonable to use a combination
of local resource protection, network protection, and code
obfuscation, because it would require significant developer’s
effort to build native code libraries, and frequently invoca-
tions of native code functions from high-level languages of
these frameworks, such as Java, or C#, or ActionScript,
would incur high runtime overhead. We also suggest devel-
opers to consider strengthening their protections by deploy-
ing per-device keys and periodically updating keys, which
would make it difficult for professional hackers to share their
results with other gamers.

7. RELATED WORK

Attacks and Defenses in Games. About online multi-
player PC games, researchers have investigated specific threats
and categorized different attacks. Specific threats have been

discussed in [26, 7] about state exposure and general map
hacking techniques by analyzing the memory respectively.
Yan et al. provide an overview of different cheating meth-
ods and the security problems behind these methods [37].
Another review paper [34] covers known attacks and gives a
few real world examples in multi-player games. The authors
focused on comparing the attacks and defenses in Clien-
t/Server architectures and P2P architectures of online mo-
bile games, while our study has a much wider coverage about
different types of games and also we have first-hand experi-
ences about the efforts of hackers to break these games.

Researchers have proposed defenses against these attacks.
Most of these proposals design protocols to sync client-server
states and verify game status on the server side. For exam-
ple, Baughman et al. propose a protocol for cheat proof for
online games [3]. Researchers also implement approaches to
verify client behavior observed in the server side to figure out
abnormal behaviors [4, 9, 25, 32]. Minimizing information
disclosed to the client is discussed in [28, 36].

A few client-side protection approaches are proposed in
the research literature: Monch et al. try to protect games
from attacks by creating a trustworthy client [29]. Their
approach is to check the integrity of the client, mask sensi-
tive functions, and update these protections overtime. Re-
searchers propose the use of trust computing platforms as
hosts for game consoles [2]. Comparing with these papers,
we study the defenses in real mobile games systematically
and provide practical suggestions.

Security Issues Due to Untrusted Client. The prob-
lem that we discuss in this paper about mobile games is a
special and critical case of a more general security prob-
lem in many client-server systems. For example, web devel-
opers often make mistakes by placing some sensitive data
in browser cookies or doing some critical computations in
client-side javascript. Bisht et al. described several such
logic bugs in real-world websites [5] and proposed a client-
side detection approach to find these bugs. Felmetsger et al.
also studied this type of vulnerabilities, but their proposed
approach is based on program analysis of web application
(i.e., server-side) [12]. Related work can also be extended

to studies about protocol implementation bugs. For exam-
ple, Chen et al. described many incorrect implementations
of the OAuth protocol, which allow an untrusted client to
victim users’ accounts without knowing the passwords [8].
Researchers also describe an attack against Google’s In-App
purchase service [30].

8. CONCLUSIONS
Our study tries to understand the effectiveness of exist-

ing defense techniques against mobile-game hacking. These
techniques are designed to protect various elements in mobile
games, including memory, local files, network traffic, source
code, and game states. The result of our study suggests that
many developers (over 50% in our dataset) have attempted
to implement some of these protections, which is encourag-
ing. However, the effectiveness varies. Some protections can
be trivially defeated by automatic tools, some others need
significant manual effort to bypass, and some are perhaps
not vulnerable in the principles of their approaches. We pro-
vide a reference framework to help developers understand
how effective their implementations are relative to others.
Besides the effectiveness, an important consideration is cost,
including developer’s effort and runtime overhead. Many
protection mechanisms need developers to make a trade-off
between effectiveness and cost. For example, client-server
sync is a very effective protection, but the cost is so high
that it is not suitable for most game genres; basic HTTPS
traffic protection is very inexpensive, but it is trivially break-
able. We did observe that platform support is an important
factor. It makes developers more willing to adopt these pro-
tection mechanisms, and presents a better value proposition
in terms of cost-effectiveness.

9. ACKNOWLEDGEMENTS
We thank Harshit Agarwal, Sohil Habib, Kenny Sung,

Xiaofeng Wang, and anonymous reviewers for valuable com-
ments.

10. REFERENCES
[1] Adobe. Adobe air.

http://www.adobe.com/products/air.html.

[2] S. Balfe and A. Mohammed. Final fantasy–securing
on-line gaming with trusted computing. In Autonomic
and Trusted Computing, pages 123–134. Springer,
2007.

[3] N. E. Baughman and B. N. Levine. Cheat-proof
playout for centralized and distributed online games.
In INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE,
volume 1, pages 104–113. IEEE, 2001.

[4] D. Bethea, R. A. Cochran, and M. K. Reiter.
Server-side verification of client behavior in online
games. ACM Transactions on Information and System
Security (TISSEC), 14(4):32, 2011.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and
V. Venkatakrishnan. Notamper: Automatically
detecting parameter tampering vulnerabilities in web
applications. In ACM Conf. on Computer and
Communications Security, 2010.

[6] Bob Pan. Dex2jar.
https://github.com/pxb1988/dex2jar.

[7] E. Bursztein, M. Hamburg, J. Lagarenne, and
D. Boneh. Openconflict: Preventing real time map
hacks in online games. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 506–520. IEEE,
2011.

[8] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and
P. Tague. Oauth demystified for mobile application
developers. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, pages 892–903. ACM, 2014.

[9] R. A. Cochran and M. K. Reiter. Toward online
verification of client behavior in distributed
applications. In NDSS, 2013.

[10] Cocos2d-x. Cocos2d-x. http://www.cocos2d-x.org/.

[11] Dean Takahashi. Mobile games hit 34.8B in 2015.
http://venturebeat.com/2016/02/10/
mobile-games-hit-34-8b-in-2015-taking-85-of-all-app-revenues/.

[12] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna.
Toward automated detection of logic vulnerabilities in
web applications. In USENIX Security Symposium,
pages 143–160, 2010.

[13] FLX App. Cheatdroid. https://play.google.com/store/
apps/details?id=com.felixheller.sharedprefseditor.

[14] GameCIH. Gamecih. www.cih.com.tw/gamecih.html.

[15] GameGuardian. Gameguardian.
http://gameguardian.net/forum/.

[16] GameKiller. Game killer. http://game-killer.com/.

[17] Google Inc. Android ndk. https:
//developer.android.com/tools/sdk/ndk/index.html.

[18] Google Inc. Android sdk.
https://developer.android.com/sdk/index.html.

[19] Google Inc. Hiding leaderboard scores. https:
//developers.google.com/games/services/common/
concepts/leaderboards#hiding leaderboard scores.

[20] Google Inc. Proguard. http:
//developer.android.com/tools/help/proguard.html.

[21] Google Inc. Protobuf.
https://github.com/google/protobuf.

[22] ICSharpCode. Dex2jar. http://ilspy.net/.

[23] Java Decompiler. Jd-gui. http://jd.benow.ca/.

[24] Joshua Brustein. Finland’s new tech power: Game
maker supercell. http://goo.gl/9woZTj.

[25] P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers.
A novel approach to the detection of cheating in
multiplayer online games. In Engineering Complex
Computer Systems, 2007. 12th IEEE International
Conference on, pages 97–106. IEEE, 2007.

[26] K. Li, S. Ding, D. McCreary, and S. Webb. Analysis of
state exposure control to prevent cheating in online
games. In Proceedings of the 14th international
workshop on Network and operating systems support
for digital audio and video, pages 140–145. ACM, 2004.

[27] Max Lv. Proxydroid.
https://github.com/madeye/proxydroid.

[28] S. Moffatt, A. Dua, and W.-c. Feng. Spotcheck: an
efficient defense against information exposure cheats.
In Proceedings of the 10th Annual Workshop on
Network and Systems Support for Games, page 8.
IEEE Press, 2011.

[29] C. Mönch, G. Grimen, and R. Midtstraum. Protecting
online games against cheating. In Proceedings of 5th

ACM SIGCOMM workshop on Network and system
support for games, page 20. ACM, 2006.

[30] C. Mulliner, W. Robertson, and E. Kirda.
Virtualswindle: an automated attack against in-app
billing on android. In Proceedings of the 9th ACM
symposium on Information, computer and
communications security, pages 459–470. ACM, 2014.

[31] SuperData Research. Worldwide digital games market.
https://www.superdataresearch.com/blog/
us-digital-games-market/.

[32] H. Tian, P. J. Brooke, and A.-G. Bosser.
Behaviour-based cheat detection in multiplayer games
with event-b. In Integrated Formal Methods, pages
206–220. Springer, 2012.

[33] Unity3D. Unity3d. https://unity3d.com/.

[34] S. D. Webb and S. Soh. Cheating in networked

computer games: a review. In Proceedings of the 2nd
international conference on Digital interactive media
in entertainment and arts, pages 105–112. ACM, 2007.

[35] Xmodgames. Xmodgames.
http://www.xmodgames.com/.

[36] A. Yahyavi, K. Huguenin, J. Gascon-Samson,
J. Kienzle, and B. Kemme. Watchmen: Scalable
cheat-resistant support for distributed multi-player
online games. In Distributed Computing Systems
(ICDCS), 2013 IEEE 33rd International Conference
on, pages 134–144. IEEE, 2013.

[37] J. Yan and B. Randell. A systematic classification of
cheating in online games. In Proceedings of 4th ACM
SIGCOMM workshop on Network and system support
for games, pages 1–9. ACM, 2005.

