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This paper presents a pragmatic approach to Chinese word segmentation. It differentiates from 
most of the previous approaches mainly in three respects. First of all, while theoretical linguists 
have defined Chinese words with various linguistic criteria, Chinese words in this study are 
defined pragmatically as segmentation units whose definition depends on how they are used 
and processed in realistic computer applications. Secondly, we propose a pragmatic mathemati-
cal framework in which segmenting known words and detecting unknown words of different 
types (i.e. morphologically derived words, factoids, named entities, and other unlisted words) 
can be performed simultaneously in a unified way. These tasks are usually conducted sepa-
rately in other systems. Finally, we do not assume the existence of a universal word segmenta-
tion standard which is application independent. Instead, we argue for the necessity of multiple 
segmentation standards due to the pragmatic fact that different NLP applications might re-
quire different granularities of Chinese words. 

These pragmatic approaches have been implemented in an adaptive Chinese word seg-
menter, called MSRSeg, which will be described in detail. It consists of two components: (1) a 
generic segmenter that is based on the framework of linear mixture models, and provides a uni-
fied approach to the five fundamental features of word-level Chinese language processing: lexi-
con word processing, morphological analysis, factoid detection, named entity recognition, and 
new word identification; and (2) a set of output adaptors for adapting the output of the former 
to different application-specific standards. Evaluation on five test sets with different standards 
shows that the adaptive system achieves state-of-the-art performance on all the test sets. 

1. Introduction 

This paper is intended to address two fundamental issues in Chinese natural language 
processing (NLP) with a unified and pragmatic approach: what is a word in Chinese, 
and how does a computer identify Chinese words automatically. Our approach is dis-
tinguished from most of the previous approaches by the following three unique com-
ponents which are integrated into a single model: a taxonomy of Chinese words, a 
unified approach to word breaking1 and unknown word detection, and a customiza-
ble display of word segmentation. We will describe each of them in turn. 
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1  In this paper, we differentiate the terms word breaking and word segmentation. Word breaking refers to the 
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process of both lexicon word segmentation and unknown word detection. 



 
 
 
 
Computational Linguistics                                                                                    Volume ??, Number ? 

 

2 
 
 
 
 
 
 
 

Chinese word segmentation is challenging partly due to the fact that it is often dif-
ficult to define what constitutes a word in Chinese. Theoretical linguists have tried to 
define Chinese words with various linguistic criteria (e.g. Packard 2000).  While each 
of those criteria provides valuable insights to the “word-hood” in Chinese, they do not 
always lead us to the same conclusions when applied to some specific cases. Fortu-
nately, this may not be a serious issue in computational linguistics where the defini-
tion of words can vary and can depend to a large degree upon how one uses and 
processes these words in computer applications (Sproat and Shih 2002). 

In this paper, we define Chinese words from the viewpoint of computational lin-
guistics.  We develop a taxonomy where Chinese words can be categorized into one of 
the following five types: lexicon words, morphologically derived words, factoids, 
named entities, and new words.2  These five types of words have different computa-
tional properties, and are processed in different ways in our system, as will be de-
scribed in detail in Section 3. Two of these five types, factoids and named entities, are 
not important to theoretical linguists but are significant in NLP. 

Chinese word segmentation involves mainly two research issues, word boundary 
disambiguation and unknown word identification. In most of the current systems, 
these two tasks are considered as separate ones and dealt with using different compo-
nents in a cascaded or consecutive manner. 

However, we believe that these two problems are not separable in nature, and are 
better solved simultaneously. In this paper, we present a unified approach to the five 
fundamental features of word-level Chinese NLP (corresponding to the five types of 
words described above): (1) word breaking, (2) morphological analysis, (3) factoid de-
tection, (4) named entity recognition (NER), and (5) new word identification (NWI). 
This approach is based on a mathematical framework of linear mixture models where 
component models are inspired by the source-channel models of Chinese sentence 
generation. There are basically two types of component models: a source model and a 
set of channel models. The source model is used to estimate the generative probability 
of a word sequence, in which each word belongs to one word type. For each word 
type, a channel model is used to estimate the likelihood of a character string given the 
word type. So there are multiple channel models. We shall show that this framework 
is flexible enough to incorporate a wide variety of linguistic knowledge and statistical 
models in a unified way. 

In computer applications, we are more concerned with segmentation units than 
words. While words are supposed to be unambiguous and static linguistic entities, 
segmentation units are expected to vary from application to application. In fact, dif-
ferent Chinese NLP-enabled applications may have different requirements that re-
quest different granularities of word segmentation. For example, automatic speech 
recognition (ASR) systems prefer “longer words” to achieve higher accuracy whereas 
information retrieval (IR) systems prefer “shorter words” to obtain higher recall rates, 
etc. (Wu 2003). 

Therefore, we do not assume that there exists a universal word segmentation 
standard which is application independent. Instead, we argue for the existence of mul-
tiple segmentation standards, each for a specific application. It is undesirable to de-
velop a set of application-specific segmenters. A better solution is to develop a generic 
segmenter with customizable output, which is able to provide alternative segmenta-
                                                           
 
2  New words in this paper refer to out-of-vocabulary words that are neither recognized as named entities 

or factoids nor derived by morphological rules. These words are mostly domain-specific and/or time-
sensitive (see Section 5.5 for details). 
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tion units according to the specification which is either pre-defined or implied in the 
application data. To achieve this, we present a Transformation-Based Learning (TBL, 
Brill 1995) method, as will be described in Section 6.  

The pragmatic approach to Chinese word segmentation, as described above, has 
been implemented in an adaptive Chinese word segmenter, called MSRSeg. It con-
sists of two components: (1) a generic segmenter that is based on the linear mixture 
model framework of word breaking and unknown word detection, and can adapt to 
domain-specific vocabularies, and (2) a set of output adaptors for adapting the output 
of the former to different application-specific standards. Evaluation on five test sets 
with different standards shows that the adaptive system achieves state-of-the-art per-
formance on all the test sets. It thus demonstrates the possibility of a single adaptive 
Chinese word segmenter that is capable of supporting multiple user applications.  

The remainder of this paper is organized as follows. Section 2 presents previous 
work in this field. Section 3 introduces the taxonomy of Chinese words, and describes 
the corpora we used in our study. Section 4 presents some theoretical background on 
which our unified approach is based. Section 5 outlines the general architecture of the 
Chinese word segmenter, MSRSeg, and describes each of the components in detail, 
presenting separate evaluation of each component where appropriate. Section 6 pre-
sents the TBL method of standards adaptation. While in Section 5 we presume the ex-
istence of an annotated training corpus, we focus in Section 7 on the methods of creat-
ing training data in an (semi-)automatic manner with minimal or no human annota-
tion. We thus demonstrate the possibilities of unsupervised learning of Chinese words. 
Section 8 presents several evaluations of the system on the different corpora, each cor-
responding to a different segmentation standard, in comparison with other state-of-
the-art systems. Finally, we conclude the paper in Section 9. 

2. Previous Work 

2.1 Approaches to Word Segmentation 
Many methods of Chinese word segmentation have been proposed: reviews include 
(Wu and Tseng 1993; Sproat and Shih 2002; Sun and Tsou 2001). These methods can be 
roughly classified into dictionary-based methods and statistical-based methods, while 
many state-of-the-art systems use hybrid approaches. 

In dictionary-based methods, given an input character string, only words that are 
stored in the dictionary can be identified. One of the most popular methods is Maxi-
mum Matching (MM), usually augmented with heuristics to deal with ambiguities in 
segmentation. Papers that use this method or minor variants include (Chen et al. 1999; 
Nie, Jin and Hannan 1994; etc.). The performance of these methods thus depends to a 
large degree upon the coverage of the dictionary, which unfortunately may never be 
complete because new words appear constantly. Therefore, in addition to the diction-
ary, many systems also contain special components for unknown word identification. 
In particular, statistical methods have been widely applied because they utilize a 
probabilistic or cost-based scoring mechanism, instead of the dictionary, to segment 
the text. These methods, however, suffer from three drawbacks. First, some of these 
methods (e.g. Lin et al. 1993; Chang and Su 1997) identify OOV (out-of-vocabulary) 
words without identifying their types. For instance, one would identify a string as a 
unit, but fail to identify whether it is a person name. This is not always sufficient. Sec-
ond, many current statistical methods suffer from the difficulty in incorporating lin-
guistic knowledge effectively into segmentation. For example, Teahan et al. (2000) and 
Dai et al. (1999) do not use any linguistic knowledge. Thus, the identified OOV words 
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are likely to be linguistically implausible, and consequently, additional manual check-
ing is needed for some subsequent tasks such as parsing. Third, in many current seg-
menters, OOV identification is considered as a separate process from segmentation 
(e.g. Chen 2003; Wu and Jiang 2000; Chen and Bai 1998). For instance, Chen (2003) as-
sumes that OOV words are usually two or more characters long and are often seg-
mented into single characters. He then uses different components to detect OOV 
words of different types in a cascaded manner after the basic word segmentation. 

We believe that the identification of OOV words should not be defined as a sepa-
rate problem from word segmentation. Integrating them would benefit both. We thus 
propose a unified approach which solves both problems simultaneously. One previ-
ous work along this line is Sproat et al. (1996), which is based on weighted finite-state 
transducers (FSTs). Our approach is motivated by the same inspiration, but is based 
on a different mechanism: linear mixture models. As we shall see, the models provide 
a more flexible framework to incorporate various kinds of lexical and statistical in-
formation. Many types of OOV words that are not covered in Sproat’s system can be 
dealt with in our system. The linear models we used are originally derived from linear 
discriminant functions widely used for pattern classification (Duda, Hart and Stork 
2001), and have been recently introduced into NLP tasks by Collins and Duffy (2001). 
Other frameworks of Chinese word segmentation, which are similar to the linear 
models, include maximum entropy models (Xue 2003) and conditional random fields 
(Peng, Feng and McCallum 2004). They also use a unified approach to word breaking 
and OOV identification. 

2.2 More on New Word Identification 
In this paper, new words refer to OOV words other than named entities, factoids and 
morphologically derived words. These words are mostly domain-specific terms (e.g. 
蜂窝式 ‘cellular’) and time-sensitive political, social or cultural terms (e.g. 三通‘Three 
Links’, 非典 ‘SARS’). There have been two general approaches to NWI. The first is to 
acquire new words from large corpora in an off-line manner and put them into a dic-
tionary before word segmentation starts (e.g. Fung and Wu 1994; Nie, Jin and Hannan 
1994; Chien 1997; Gao et al. 2002). The other is to detect new words online, i.e. to spot 
new words in a sentence on the fly during the process of word segmentation (e.g. 
Chen 2003; Wu and Jiang 2000). These two approaches complement each other, and 
we use both of them in our system. 

There have been quite a few methods proposed for the off-line approach. The basic 
assumption is that a Chinese word should appear as a stable sequence in the corpus. 
So these methods use metrics that are based on statistical features such as mutual in-
formation, term frequency or their variants. They require a reasonably large training 
corpus. The new words detected are mostly proper nouns and other relatively fre-
quent words. Unfortunately, new words in our definition may not be frequent. 

There has been less previous work on the latter, and this is the focus of our re-
search reported in this paper. Some recent advances on online NWI explore the use of 
machine learning approaches. For example, Li et al. (2003) define NWI as a binary 
classification problem, and use Support Vector Machines (SVM) to combine various 
linguistically-motivated features to determine whether a Chinese character sequence 
is a word. Our method is an extension of Li et al.’s in that NWI is not a stand-alone 
process in our system, but an integral part of word segmentation. We shall show ex-
perimentally the benefit of the integration in Section 5.5. 
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2.3 Standards Adaptation 
As described earlier, while Chinese words are supposed to be well-defined, unambi-
guous and static linguistic entities, we are more concerned with segmentation units 
which are expected to vary among different computer applications. This inspires the 
development of an adaptive Chinese word segmenter.  

However, most of the previous segmenters have been developed according to 
some standard that assumes a single correct segmentation. The only adaptive system3, 
to the best of our knowledge, is the customizable segmenter described in (Wu 2003), 
where the display of the segmentation output can be customized by users. The adap-
tation method we will describe in Section 6 can be viewed as an improved version in 
that the adaptation rules (or transformations) are acquired automatically from appli-
cation data via the TBL method (Gao et al. 2004). Though the use of TBL for Chinese 
word segmentation is not new i.e. see (Palmer 1997; Hockenmaier and Brew 1998), 
none of them is aimed at standards adaptation. 

2.4 Evaluation 
Performance of Chinese word segmenters is generally reported in terms of precision 
and recall. However, a comparison across systems could be very difficult due to the 
following two reasons. First of all, the “correct” segmentation is not clearly defined. It 
is common that for a given sentence, there are multiple plausible word segmentations. 
As shown in (Sproat et al. 1996), the rate of agreement between two human judges is 
less than 80%. To deal with this problem, Fung and Wu (1994) suggest a procedure 
called nk-blind that uses n blind judges’ standards. If we set k = 1, it is sufficient for a 
segmentation to be considered correct if it agrees with at least one of the n judges. If k 
= n, all judges must agree. Therefore, nk-blind gives a more representative perform-
ance measure by taking into account multiple judges. Similarly, Sproat et al. (1996) 
also uses multiple human judges. In Section 8.2, we will present our method for cross-
system comparison. We do not use multiple human judges. Instead, we only consider 
a set of measures that are lexicon-independent and less ambiguous among different 
human judges and systems. 

The second concerns the use of different test sets and ground-rules by many re-
search papers. For example, some papers report precision and recall rates of 98% or 
99%. But they either count only the words that are stored in the dictionary, or use un-
realistically simple data with a very low OOV rate. Recently, the ACL-SIGHAN-
sponsored First International Chinese Word Segmentation Bakeoff alleviates the situa-
tion to some degree (Sproat and Emerson 2003).  The Bakeoff releases four datasets, 
each corresponding to a different standard, and consistent train-test splits. We shall 
evaluate our segmenter on the four datasets in Sections 6.2 and 8.3. 

3. Chinese Words 

This section defines Chinese words at three levels. We begin with a taxonomy, where 
Chinese words are categorized into five main types according to the way they are 
processed and used in realistic systems. Second, we develop the MSR standard, which 
is a set of specific rules to guide human annotators in segmenting Chinese sentences. 
Finally, we describe the development of a gold test set and how we evaluate Chinese 
word segmenters. Below, we use the term “gold test set” to represent the manually  
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Table 1 
Taxonomy of Chinese words used in developing MSRSeg. 

LW  Lexical Word 教授, 朋友, 高兴, 吃饭 
MDW (see Figure 1 for details) Morphologically Derived Word  
 MP_*, MS_* Affixation (Prefix, Suffix) 朋友们 
 MR_* Reduplication 高高兴兴 
 ML_* Splitting 吃了饭 
 MM_* Merging 上下班 
 MHP_* Head + Particle 走出去 
FT  Factoid word  
 Dat Date 10月 11日 
 Dur Duration 20多分钟 
 Tim Time 十二点三十分 
 Per Percent and fraction 60%, 1/8 
 Mon Money 25000美元 
 NUMBER Frequency, integer, decimal, ordi-

nal, rate, etc. 
三次, 三个, 12.2亿, 第二个 

 MEASURE Age, weight, length, area, capacity, 
speed, temperature, angle, etc. 

78岁,700公斤, 2亿公里, 1.8亿
公顷, 78亿立方米, 每秒 2.89米, 
9摄氏度,5度 

 Ema E-mail jfgao@microsoft.com 
 Pho Phone, fax, telex 62617711 
 www WWW www.microsoft.com 
NE  Named Entity  
 P Person name 李俊生, 亚历山大 
 L Location name 蒙特利尔, 圣海伦岛公园 
 O Organization name 中央民族乐团,毕加索博物馆 
NW 
 

 New Word 三通, 非典 

(a) 朋友们/十二点三十分/高高兴兴/地/到/李俊生/教授/家/吃饭 
(Friends happily go to professor Li Junsheng’s home for lunch at twelve thirty.) 

(b) [朋友+们 MA_S] [十二点三十分 12:30 tim] [高兴MR_AABB] [地][到] [李俊生 P] [教授] 
[家] [吃饭] 

Figure 1  
A Chinese sentence is in (a), where slashes indicating word boundaries. An output of our 
word segmentation system is in (b), where square brackets indicate word boundaries. + indi-
cates a morpheme boundary. 

annotated corpus, according to the MSR standard, on top of the “test corpus” which is 
the raw text corpus. 

3.1 Taxonomy 
The taxonomy of Chinese words is summarized in Table 1, where Chinese words are 
categorized into the five types: entries in a lexicon (or lexicon words, LW), morpho-
logically derived words (MDW), factoids (FT), named entities (NE), and new words 
(NW). These five types of words have different functions in Chinese NLP, and are 
processed in different ways in our system. For example, a plausible word segmenta-
tion for the sentence in Figure 1(a) is shown in the same figure. Figure 1(b) is the out-
put of our system, where words of different types are processed in different ways: 

• For LW, word boundaries are detected such as 教授 ‘professor’. 
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• For MDW, their morphological patterns and stems are detected, e.g. 朋友们 
‘friend+s’ is derived by affixation of the plural affix 们 to the noun (stem) 朋友 
(MA_S indicates a suffixation pattern), and 高高兴兴 ‘happily’ is a reduplication 
of the stem 高兴 ‘happy’ (MR_AABB indicates an AABB reduplication pattern). 

• For FT, their types and normalized forms are detected, e.g. 12:30 is the normal-
ized form of the time expression 十二点三十分 (“tim” indicates a time expres-
sion). 

• For NE, their types are detected, e.g. 李俊生 ‘Li Junsheng’ is a person name. 

As one of the reviewers pointed out, the five types of words cannot be defined by 
any consistent classification criteria (e.g. the relation between MDW and LW depends 
on the lexicon being used), the taxonomy therefore does not give a clear definition of 
Chinese words. In this paper, we do not intent to give a standard definition of Chinese 
words. Instead, we treat Chinese word segmentation as a preprocessing where the 
best segmentation units depend on how they are used in the consequential applications. 
The five word types are not the definition of Chinese words. They represent five typi-
cal processes of Chinese words in most applications. This is one of the reasons that we 
title this paper “a pragmatic approach”. We focus on two tasks in the approach: how 
to achieve different Chinese words processing (of the five types) using a unified 
framework that can be jointly optimized (Sections 4 and 5); and how to adapt our sys-
tem to different applications (Section 6). Now, we describe each of the five word types 
in Table 1 in detail. 

LW (lexicon words): While some previous research suggested Chinese word seg-
mentation without the use of dictionaries (e.g.: Sproat and Shih 1990; Sun, Shen and 
Tsou 1998), we believe that a dictionary is an essential component of many applica-
tions. For example, in a machine translation system, it is desirable to segment a sen-
tence into LW as much as possible so that the candidate translations of these words 
can be looked up from a bilingual dictionary. Similarly, we would also like to segment 
a sentence into LW in a Chinese text-to-speech (TTS) system because the pronuncia-
tions stored in the dictionary are usually much more precise than those generated dy-
namically (for instance by character-to-sound rules). In our system, we used a lexicon 
containing 98,668 words, including 22,996 Chinese characters stored as single-
character words. This lexicon is a combination of several dictionaries that are defined 
by Chinese linguists and used in different Microsoft applications. Thus, all LW in the-
ory are similar to those described in Packard (2000), i.e. linguistic units that are “sali-
ent and highly relevant to the operation of the language processor”. 

MDW (morphologically derived words): Chinese words of this type have the fol-
lowing two characteristics. First, MDW can be generated from one or more LW (called 
stems) via a productive morphological process. For example, in Figure 2, the MDW 高
高兴兴 ‘happily’ is generated from a stem 高兴 ‘happy’ via an AABB reduplication 
process. As shown in Table 1, there are five main categories of morphological proc-
esses, each of which has several subcategories, as detailed in Figure 2 (see Wu (2003) 
for a detailed description): 

• Affixation (MP and MS): 朋友们 (friend - plural) ‘friends’;  

• Reduplication (MR): 高兴 ‘happy’  高高兴兴 ‘happily’;  

• Splitting (MS) (i.e. a set of expressions that are separate words at the syntac-
tic level but single words at the semantic level): 吃了饭 ‘already ate’, where 
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Figure 2 
Taxonomy of morphologically derived words (MDW) in MSRSeg. 

the bi-character word 吃饭 ‘eat’ is split by the particle 了 ‘already’; 

• Merging (MM): 上班 ‘on duty’ + 下班 ‘off duty’ 上下班 ‘on-off duty’; and 

• Head Particle (MHP) (i.e. expressions that are verb + comp): 走 ‘walk’ + 出去 
‘out’  走出去 ‘walk out’. 

Second, MDW form stable Chinese character sequences in the corpus. That is, the 
components within the MDW are strongly correlated (of high co-occurrence fre-
quency), while the components at both ends have low correlations with words outside 
the sequence. We shall describe in Section 5.2 how the ‘stability’ of a Chinese sequence 
is measured qualitatively, and how to construct a morph-lexicon for Chinese mor-
phology analysis. 

FT (factoids): There are ten categories of factoid words, such as time and date ex-
pressions, as shown in Table 1. All FT can be represented as regular expressions. 
Therefore, the detection and normalization of FT can be achieved by Finite State Ma-
chines. 

NE (named entities): They refer to those frequently-used Chinese names, includ-
ing person names, location names and organization names. One cannot develop a 
regular grammar that rejects or accepts the constructions of NE with a high accuracy, 
as we can do with most FT. In Section 5.3, we shall describe how we use both heuris-
tics and statistical models for NER. 

NW (new words): They refer to OOV words that are neither recognized as named 
entities or factoids nor derived by morphological rules. In particular, we are focusing 
on low-frequency new words in this paper. They are newly coined words, occasional 
words, and mostly time-sensitive words (Wu and Jiang 2000). Many current segment-
ers simply ignore those new words, assuming that they are often of little significance 
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in most of applications. However, we argue that the identification of those words is 
critical because a single unidentified word can cause segmentation errors in the sur-
rounding words. For those NLP applications that require full-parsing, this is even 
more critical because a single error would cause a whole sentence to fail. 

3.2 MSR Standard 
The above taxonomy has been specified in detail in the MSR standard. There are two 
general guidelines for the development of the standard:  

1. The standard should be applicable to a wide variety of NLP tasks, of which 
some representative examples are Chinese text input, IR, TTS, ASR, and MT.  

2. The standard should be compatible with existing standards, of which repre-
sentative examples are the Chinese NE standards in ET/ER-994, the Mainland 
standard (GB/T), the Taiwan’s ROCLING standard (CNS14366, Huang et al. 
1997), and the UPenn Chinese Treebank (Xia 1999), as much as possible. 

We are seeking a standard that is “linguistically felicitous, computationally feasi-
ble, and must ensure data uniformity” (Huang et al. 1997; Sproat and Shih 2002). The 
MSR standard consists of a set of specific rules that aims at unambiguously determin-
ing the word segmentation of a Chinese sentence, given a reference lexicon. The de-
velopment of the standard is an iterative procedure, interacting with the development 
of a gold test set (which we will describe in the next section). We began with an initial 
set of segmentation rules, based on which four human annotators label a test corpus. 
Whenever an inter-annotator conflict is detected (automatically), we resolve it by re-
vising the standard (e.g. mostly by adding more specific rules). The process is iterated 
until no conflict is detected. For example, we begin with the rule of detecting MDW: 
“if a character sequence can be derived from a LW via a morphological process, then 
the sequence is treated as a MDW candidate.” We then observe that both 吃了饭 ‘al-
ready ate’ and 吃了一顿饭 ‘already had a meal’ are derived from the LW 吃饭 ‘eat’ via 
the morphological process of splitting. While 吃了饭 is a reasonable MDW, 吃了一顿
饭 is debatable. We then add a rule: “MDW candidate with complex internal struc-
tures should be segmented.” We also add a set of specific rules to define what a com-
plex internal structure is. An example of those rules is “for MDW candidate of the 
type MS, we only consider sequences that are less than four characters long.”  

One drawback of the approach is that the standard would become very compli-
cated as we continue to add such specific rules, and people would start making cleri-
cal errors. We do not have any systematic solution currently. The complexity has to be 
controlled manually. That is, all new added rules are recompiled by a linguist so that 
the total number of rules is manageable. 

3.3 MSR Gold Test Set and Training Set 
There were several questions to be answered when we were developing the gold test 
set for evaluation.  

1. How to construct a test corpus for reliable evaluation? 
2. Does the segmentation in the gold test set depend on a particular lexicon? 

                                                           
 
4  MET is a Chinese named entity standard defined in the MUC (message understanding conference, 

http://www.itl.nist.gov/iaui/894.02/related_projects/muc/). ER99 is an extension of MET though it is 
not as universally used as MET (http://www.nist.gov/speech/tests/ie-er/er_99/er_99.htm). 
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Table 2  
Domain/style distribution in the MSR test corpus. 

Domain \ Style 
(MB) 

Descriptive 
writing 

Expository 
writing 

Narrative 
writing 

Practical5 
writing 

Spoken Total (%) 

Culture  2.2 49.6 12.2 64 (6) 
Economic  10.6 102.6 55.1 12.7 181 (17) 
Literature 33.1 13.2 6.3  52.6 (5) 
Military   42.1  42.1 (4) 
Politics  36.2 102.9 88.8 100.8 328.7 (31) 
Science&Tech. 7.3 14.7 85.8 2.1 9.4 119.3 (11) 
Society 4.5 6.2 56.9 23.9 91.5 (8) 
Sport  10.5 33.7  8.3 52.5 (5) 
Computer  24.8 65.6  90.4 (9) 
Law  2.1 26.3  28.4 (3) 
Total (%) 44.9 (4) 120.5 (12) 571.8 (54) 182.1 (17) 131.2 (13) 1,051 (100) 

 

 

Figure 3 
Fragments of the MSR gold test set. 

Table 3 
Words in the MSR gold test set. 

Word type N 
LW  205,162 
MDW  3,746 
FT  6,630 
NE Person name 4,347 
 Location name 5,311 
 Organization name 3,850 

3. Should we assume a single correct segmentation for a sentence? 
4. What are the evaluation criteria? 
5. How to perform a fair comparison across different systems using the gold test 

set? 
                                                           
 
5  Chinese writing is normally divided into the first three: descriptive, expository, and narrative. Practical 

writing is just an umbrella term for all the writing for practical purposes such as notes, letters, emails, 
marriage announcements, etc. 
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Table 4  
Standards and corpora. 

Corpora (standards) Abbrev. # Tr. Word # Te. Word OOV 

MSR standard  MSR 20M 226K .002 
Beijing University PK 1.1M 17K .069 
U. Penn Chinese Treebank CTB 250K 40K .181 
Hong Kong City U. HK 240K 35K .071 
Academia Sinica AS 5.8M 12K .021 

We answer the first three questions in this section, and leave the rest for Section 
3.5. First of all, to conduct a reliable evaluation, we select a test corpus that contains 
approximately half a million Chinese characters that have been proofread and bal-
anced in terms of domains and styles. The distributions are shown in Table 2. The 
gold test set is developed by annotating the test corpus according to the MSR standard 
via the iterative procedure, described in Section 3.2. The statistics are shown in Table 3. 
Some fragments of the gold test set are shown in Figure 3, where the notation is pre-
sented in Tables 1.  

As discussed in Section 3.1, we believe that the lexicon is a critical component of 
many applications. The segmentation of the gold test set depends upon a reference 
lexicon, which is the combination of several lexicons that are used in Microsoft appli-
cations, including Chinese text input system (Gao et al. 2002), ASR (Chang et al. 2001), 
TTS (Chu et al. 2003) and the MSR-NLP Chinese parser  (Wu and Jiang 2000).  The 
lexicon consists of 98,668 entries. On the basis of this, we also developed a morph-
lexicon, which contains 50,963 high-frequency MDW. We will describe how the 
morph-lexicon was constructed in Section 5.2.  

Regarding the third question, though it is common that there are multiple plausi-
ble segmentations for a given Chinese sentence, we keep only a single gold segmenta-
tion for each sentence for two reasons. The first is its simplicity. The second is due to 
the fact that we currently do not know any effective way of using multiple segmenta-
tions in the above-mentioned applications. In particular, we segment each sentence as 
much as possible into words that are stored in the reference lexicon. When there are 
multiple segmentations for a sentence, we keep the one that contains the fewest num-
ber of words. 

We have also manually developed a training set according to the MSR standard. It 
contains approximately 40 million Chinese characters from various domains of text 
such as newspapers, novels, magazines etc. In our experiments, 90% of the training set 
is used for model parameter estimation, and the remaining 10% is a held-out set for 
tuning. 

3.4 SIGHAN’s Bakeoff Standards and Corpora 
As mentioned in Section 1, MSRSeg is designed as an adaptive segmenter that con-
sists of two components: (1) a generic segmenter that can adapt to different domain 
vocabularies, and (2) a set of output adaptors, learned from application data, for 
adapting to different application-specific standards. 

Therefore, we evaluate MSRSeg using five corpora, each corresponding to a dif-
ferent standard, and consistent train-test splits, as shown in Table 4. MSR is described 
in previous sections, and the other four are standards used in SIGHAN’s First Interna-
tional Chinese Word Segmentation Bakeoff (or Bakeoff for brevity, (Sproat and Emer-
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son 2003). In the Bakeoff corpora, OOV is defined as the set of words in the test  cor-
pus not occurring in the training corpus. 

In experiments, we always consider the following adaptation paradigm. Suppose 
we have a “general” pre-defined standard, according to which we create a large 
amount of training data. We then develop a generic word segmenter. Whenever we 
deploy the segmenter for any application, we customize the output of the segmenter 
according to an application-specific standard, which can be partially acquired from a 
given small amount of application data (called adaptation data).  

MSR is used as the general standard in our experiments, on which the generic 
segmenter has been developed. The four Bakeoff standards are used as “specific” 
standards into which we wish to adapt the general standard. We notice in Table 4 that 
the adaptation data sets (i.e. training corpora for the four Bakeoff standards) are much 
smaller than the MSR training set. Thus, the experimental setting is a good simulation 
of the adaptation paradigm described above. In the rest of the paper, we shall by de-
fault report results on the MSR dataset unless otherwise stated. 

3.5 Evaluation Methodology 
As described earlier, we argue that Chinese words (or segmentation units) cannot be 
defined independently of the applications, and hence a more flexible system (i.e. an 
adaptive segmenter such as MSRSeg) should be adopted. However, we are faced with 
the challenge of how to perform an objective and rigorous evaluation of such a system.  

The evaluation of NLP systems in general concerns two issues: the criteria and the 
standard data sets. In this paper we argue that MSRSeg is a better system in two as-
pects. First, the generic segmenter provides not only word segmentation but also 
word-internal structures (e.g. the tree structures of MDW, FT and NE, as will be de-
scribed in Section 6) which cover all possible segmentations. Ideally, such a segmenter 
provides a “superset” of segmentation units where each different application can find 
the “subset” it needs. Second, the output adaptors of MSRSeg can automatically pick 
different subsets (i.e. segmentation units) from the superset according to different ap-
plications. Therefore, there are two criteria for evaluating an adaptive segmenter: how 
complete the superset is, and how effective the adaptation is. The real evaluation will 
require some application data sets (i.e. segmented texts used by different applications). 
However, such application data is not available yet and no other system has under-
gone such evaluation, so there is no way to compare our system against others in this 
fashion. The evaluation methodology we adopted in this paper is a simulation. On the 
one hand, we developed a generic standard and a corresponding gold test set which 
simulates the generic superset that attempts to cover as many applications as possible. 
We then evaluate on the data set the completeness of the generic segmenter. On the 
other hand, we will show that we can effectively adapt the generic segmenter to the 
four different bakeoff data sets, each of which simulates an application subset.   

The evaluation measures we use in this study are summarized in Table 5. The per-
formance of MSRSeg is measured through multiple precision-recall (P/R) pairs, and 
F-measures (defined as 2PR/(P+R)), each for one word type. Riv is the recall of in-
vocabulary words. Roov is the recall of OOV words. They are used to measure the 
segmenter’s performances in resolving ambiguities in word segmentation and detect-
ing unknown words, respectively. We also test the statistical significance of results, 
using the criterion proposed by Sproat and Emerson (2003).  
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Table 5  
Evaluation measures for Chinese word segmenter. 

Measures Remarks 
P/R/F Multiple pairs, each for one type of words (i.e. LW, MDW, FT, NE); P/R/F 

of NER are used for cross-system comparison 
Roov Test the performance of detecting unknown words 
Riv Test the performance of resolving ambiguities in word segmentation 
# OAS errors Similar to cross-bracketing, used for cross-system comparison 
# CAS errors Test on a set of 70 high-frequency CASs in our study 
Significant test  See (Sproat and Emerson 2003). 

In addition to Riv, the number of OAS (overlap ambiguity string) and CAS (com-
bination ambiguity string) errors are used to measure the segmenter’s performance of 
resolving ambiguities in word segmentation in more detail. Liang (1987) defines OAS 
and CAS as follows.  

Definition 1 A character string ABC is called an overlap ambiguity string (OAS) if it 
can be segmented into two words either as AB/C or A/BC (not both) depending on different 
context. 
Definition 2 A character string AB is called a combination ambiguity string (CAS), 
if A, B, and AB are words.  

Liang (1987) reports that the relative frequency of OAS is 1.2 per 100 characters in 
Chinese text, and the relative frequency of CAS is 12 times lower than that of OAS. 
However, according to the above definition, the relative frequency of CAS can be 
much higher because most single characters in Chinese can be words by themselves, 
and as a result, almost all bi-character words can be CASs. However, this is not desir-
able. Consider the word 高度 ‘altitude’. Though both 高 ‘high’ and 度 ‘degree’ are 
words by themselves, the segmentation 高/度 almost never occurs in reality. To rem-
edy this problem, Sun and Tsou (2001) revise the definition as follows: 

Definition 3 A character string AB is called a combination ambiguity string (CAS), 
if A, B, and AB are words, and there is at least one context under which the segmentation 
A/B is plausible both semantically and syntactically. 

Though the revision clarifies the definition in principle, it requires a judgment of 
the syntactic and semantic sense of the segmentation – a task where an agreement 
cannot be reached easily among different human annotators. Therefore, we only use 
the measure of CAS in a pilot study. As will be described in Section 7, the number of 
CAS errors is estimated by counting the wrong segmentations of the pre-defined 70 
high-frequency CASs.   

While all measures in Table 5 can be used in evaluating MSRSeg, most of them 
cannot be used in cross-system comparisons. For example, since the MSR gold test set 
is based on a reference lexicon, some of the measures are meaningless when we com-
pare our system to other segmenters that use different lexicons. So in comparing dif-
ferent systems, we consider only the P/R/F of NER and the number of OAS errors (i.e. 
crossing brackets), because these measures are lexicon independent and there is al-
ways a single unambiguous answer.  
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Table 6  
Context model, word classes, class models and feature functions. 

Word class Model Feature functions, f(s, w) 

Context model Word class trigram, P(w). log(P(w)) 
LW Lexicon TRIE Number of LW in w. 
MDW Morph-lexicon TRIE Number of MDW in w. 
NE Character/word bigram, each for 

one type, P(s’|NE), where s’ is a 
substring of s, and forms an NE. 

∑ s’∈A log(P(s’ | NE)), where A is the set of sub-
strings that are NE of a particular type in w. 

FT FSA, each for one type Number of FT (of a particular type) in w. 
NW SVM classifier Score of SVM classifier 

4. Theoretical Background 

This section provides some theoretical background on the basis of which MSRSeg has 
been developed. We first present in Section 4.1 a Chinese word segmentation frame-
work that uses source-channel models of Chinese sentence generation. Then, in sec-
tion 4.2, we generalize source-channel models as linear mixture models in which a 
wide variety of linguistic knowledge and statistical models can be incorporated in a 
unified way. These models are constructed via two basic modeling tools: (1) n-gram 
language models (LM, Chen and Goodman 1999), and (2) finite state automata (FSA, 
Roche and Schabes 1997). More specifically, the LM we used are bigram and trigram 
backoff models, where the parameters are estimated using maximum-likelihood esti-
mation (MLE) with a particular smoothing method, called Modified Absolute Dis-
counting described in (Gao, Goodman and Miao 2001). LM are used to capture statis-
tical information, such as the likelihood of word or character sequence. FSA are used 
to represent (1) the lexicon, (2) the rules for detecting FT, and (3) the rules for generat-
ing NE candidates. 

4.1 Source-Channel Models 
The task of MSRSeg is to detect not only word boundaries but also word types so that 
words of different types can be processed accordingly, as shown in Figure 1. There-
fore, following the Chinese word taxonomy in Table 1, we define a Chinese word class 
as a group of words that are supposed to be generated according to the same distribu-
tion (or processed in the same manner) as follows:  

1. Each LW is defined as a class; 
2. Each MDW is defined as a class;  
3. Each type of FT (e.g. time expression) is defined as a class;  
4. Each type of NE (e.g. person names) is defined as a class; and 
5. All NW belong to a class. 

Notice that both LW and MDW are open sets, and we need to assign a floor-value 
to those words that are not stored in the lexicons. In particular, we define six un-
known word classes as follows. One class is used to represent all unknown LW and all 
unknown MDW whose type cannot be detected. The other five classes are used to rep-
resent unknown MDW, one for each of the five types listed in Table 1, i.e. MP/MS, 
MR, MS, MM and MHP. The probabilities of these unknown word classes are esti-
mated using the Good-Turing method. 
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Let w = w1w2…wn be a word class sequence, and s be a Chinese sentence which is 
character sequence. A segmenter’s job is to choose the most likely word class sequence 
w* among all possible candidates into which s could have been segmented: 

)|()(maxarg=)|(maxarg=
)(∈)(∈

* wswsww
sGENwsGENw

PPP  (1) 

 where GEN(s) denotes the candidate set given s. 
Equation (1) is the basic form of source-channel models for Chinese word segmen-

tation. The models assume that a Chinese sentence s is generated as follows: First, a 
person chooses a sequence of concepts (i.e., word classes w) to be output, according to 
the probability distribution P(w); then the person attempts to express each concept by 
choosing a sequence of characters, according to the probability distribution P(s|w).  

The source-channel models can be interpreted in another way as follows: P(w) is a 
stochastic model estimating the probability of word class sequence. It indicates, given 
a context, how likely a word class occurs. For example, person names are more likely 
to occur before a title such as 教授 ‘professor’. Consequently, we also refer to P(w) as a 
context model afterwards. P(s|w) is a generative model estimating how likely a charac-
ter string is generated given a word class. For example, the character string 李俊生 is 
more likely to be a person name than 里俊生 ‘Li Junsheng’ because 李 is a common 
family name in China while 里 is not. So P(s|w) is also referred to as class model after-
wards. In our system, we use only one context model (i.e., a trigram language model) 
and a set of class models of different types, each of which is for one class of words, as 
shown in Table 6. 

It should be noted that different class models are constructed in different ways (e.g. 
NE models are n-gram models trained on corpora whereas FT models use derivation 
rules and have binary values). The dynamic value ranges of different class model 
probabilities can be so different (some are not probabilities but scores) that it is inappro-
priate to combine all models through simple multiplication as in Equation (1). One 
way to balance these score quantities is to introduce for each class model (i.e. channel 
model) a model weight λ to adjust the class model score P(s|w) to P(s|w)λ. In our ex-
periments, these weights are optimized so as to minimize the number of word seg-
mentation errors on training data under the framework of linear models, as described 
in Section 4.2. It is worth noticing that the source-channel models are the rationale 
framework behind our system, e.g. the decoding process described in Section 5.6 fol-
lows the framework. Linear models are just another representation based on which we 
describe the optimization algorithm of class model weights. 

4.2 Linear Models 
The framework of linear models is derived from linear discriminant functions widely 
used for pattern classification (Duda, Hart and Stork 2001), and has been recently in-
troduced into NLP tasks by Collins and Duffy (2001). It is also related to (log-)linear 
models described in (Berger, Della Pietra and Della Pietra 1996; Xue 2003; Och 2003; 
Peng, Feng and McCallum 2004). 

We use the following notation in the rest of the paper. 

• Training data is a set of example input/output pairs. In Chinese word segmenta-
tion we have training samples {si, wiR}, for i = 1…M, where each si is an input 
Chinese character sequence and each wiR is the reference segmentation (i.e. word 
class sequence) of si. 
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• We assume a set of D + 1features fd(s, w), for d = 0…D. The features are arbitrary 
functions that map (s, w) to real values. Using vector notation, we have f(s,w) 
∈ℜD+1, where f(s, w) = {f0(s, w), f1(s, w), …, fD(s, w)}. As shown in Table 6, f0(w) is 
called the base feature and is defined as the logarithm probability of the context 
model (i.e. word class trigram model). fd(s, w), for d = 1…D, are defined for D 
word classes, respectively (i.e., they are basically derived from class models). 
Their values are either the summation of the logarithm of the probabilities of the 
corresponding probabilistic models, or assigned heuristically. Below, for those 
features that are only defined on w, we will omit s and denote them as f(w). 

• Finally, the parameters of the model are a vector of D + 1 parameters, each for 
one feature function, λ= {λ0, λ1, …, λD}. λ1, …, λD are in fact class model weights 
described in Section 4.1. The likelihood score of a word class sequence w can be 
written as  

∑
D

d
dd fλScore

0=
),(=),(=),,( swswλfλsw . (2) 

We see that Equation (2) is yet another representation of the source-channel mod-
els described in Section 4.1 by introducing class weights (i.e. adjust P(s|w) to P(s|w)λ) 
and taking logarithm of all probabilities. The decision rule of Equation (1) can then be 
rewritten as 

In what follows, we will describe the way of estimating λ under the framework of 
gradient descent: an iterative procedure of adjusting the parameters λ in the direction 
that minimizes the segmentation errors with respect to a loss function. We will present 
in turn the loss function and the optimization algorithm. 

4.2.1 Loss Function. Assume that we can measure the number of segmentation errors 
in w by comparing it with a reference segmentation wR using an error function 
Er(wR,w) (i.e. editing distance in our case). The training criterion that directly mini-
mizes the segmentation errors over the training data is 

∑
Mi

i
R
iEr

...1=

* )),(,(minarg= λswwλ
λ

, (4) 

where w(si, λ) is the segmentation determined by Equation (3) where it is denoted as 
w*. Equation (4) is referred to as the Minimum Sample Risk (MSR, Gao et al. 2005) cri-
terion afterwards. Notice that without knowing the “true” distribution of the data, the 
best λ can be chosen approximately based on training samples – known as the princi-
ple of Empirical Risk Minimization (ERM, Vapnik 1998): If the segmenter were trained 
using exactly the MSR criterion, it would converge to a Bayes risk performance 
(minimal error rate) as the training size goes to infinity.  

However, Er(.) is a piecewise constant function of the model parameter λ, and thus 
a poor candidate for optimization by any simple gradient-type numerical search. For 
example, the gradient cannot be computed explicitly because Er(.) is not differentiable 
with respect to λ, and there are many local minima on the error surface. Therefore, we 
use an alternative loss function, minimum squared error (MSE) in Equation (5), where 
Score(.) is defined in Equation (2) where s has been suppressed for simplicity 
MSELoss(λ) is simply the squared difference between the score of the correct segmen-
tation and the score of the incorrect one, summing over all training samples.  

),,(maxarg=
)(

* λsww
sGENw

Score
∈

. (3) 



 
 
 
 
Gao et al.                                                           Chinese Word Segmentation: A Pragmatic Approach 

 

17 
 
 
 
 
 
 
 

ALGORITHM: PERCEPTON-TRAINING 
Input: Training samples {si, wiR}, for i = 1…M, with feature vectors f(s, wR). # of iteration round T. 
Initialization: λi=1, i = 0, 1, …,M. 
1. for t  1 to T 
2.    for i  1 to M 
3. wi = argmaxw∈GEN(si) λt-1f(s, w) 
4. for d  1 to D 
5.  λdt  λdt-1 - ηG(λdt-1), where G(λdt-1) is calculated by Equation (8), and η = 0.001. 
Output: Final parameter setting λT 

Figure 4  
The perceptron training algorithm for Chinese word segmentation. 

∑ -
Mi

i
R
i ScoreScore

...1

2)),(),(()MSELoss(
=

= λwλwλ . (5) 

It is useful to note that the MSE solution, under certain conditions, leads to ap-
proximations to maximum likelihood solution. The quality of the approximation de-
pends upon the form of the linear discriminant functions (e.g. Equation (2)). Due to its 
appealing theoretical properties, the MSE criterion has received considerable attention 
in the literature, and there are many solution procedures available (Duda, Hart and 
Stork 2001). 

4.2.2 Optimization Algorithm. This section discusses the delta rule, a training algo-
rithm of an unthresholded perceptron, following the description in (Mitchell 1997). 
The delta rule in its component form is 

)(= ddd λGηλλ - , (6) 

where η is the step size6, and G is the gradient of MSELoss. G can be estimated by dif-
ferentiating the loss function of Equation (7) with respect to λd as 

∑ --
Mi

id
R
idi

R
i

d
d ffScoreScore

λ
λG

...1

))()())(,(),(()MSELoss()(
=

=
∂

∂
= wwλwλwλ . (7) 

However, the objective function of Equation (5) in the context of our task (i.e. Chinese 
word segmentation) has many local minima, and thus gradient descent cannot guar-
antee finding the global minimum. We therefore use a stochastic approximation to gra-
dient descent. Whereas the gradient descent computes parameter updates after sum-
ming over all training samples as shown in Equation (7), the stochastic approximation  
method updates parameters incrementally, following the calculation of the error for 
each individual training sample, as shown in Equation (8). 

))()())(,(),(()( id
R
idi

R
id ffScoreScoreλG wwλwλw --=  (8) 

The stochastic approximation method can be viewed as optimizing a distinct loss 
function MSELossi(λ) defined for each individual training sample i as follows 

2)),(),((=)(MSELoss λwλwλ i
R
ii ScoreScore - . (9) 

                                                           
 
6  η is usually taken as a time-decreasing function (e.g. Su and Lee 1994) to have a fast convergence-speed in 

the beginning and a small variance in final iterations. We have tested this approach in our study, result-
ing in very limited improvement. 
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The optimization algorithm we used in our experiments is shown in Figure 4. It 
takes T passes over the training set. All parameters are initially set to be 1. The context 
model parameter λ0 does change during training. Class model parameters are updated 
in a simple additive fashion: parameters are altered according to the gradient with 
respect to MSELossi(λ).  

In our implementation, we approximate wR as the w in GEN(s) with the fewest er-
rors, so Score(λ, s, wR) - Score(λ, s, w) ≤ 0, where the equality holds only when wR=w. 
That is, the model parameters are updated when the sentence is wrongly segmented. 
The update rule increases the parameter values for word classes whose models were 
“underestimated” (i.e. expected feature value f(s, w) is less than observed feature 
value f(s, wR)), and decreases the parameter values whose models were “overesti-
mated” (i.e. f(s, w) is larger than f(s, wR)).  Empirically, the sequence of these updates, 
when iterated over all training samples, provides a reasonable approximation to de-
scending the gradient with respect to the original loss function of Equation (5). Al-
though this method cannot guarantee a globally optimal solution, it is chosen for our 
modeling because of its efficiency and because it achieved the best results in our ex-
periments. 

The algorithm is similar to the perceptron algorithm described in (Collins 2002). 
The key difference is that, instead of using the delta rule of (8) (as shown in Line 5 of 
Figure 4), Collins (2002) updates parameters using the rule: λdt+1 λdt + fd(wiR) - fd(wi). 
Our pilot study shows that our algorithm achieves slightly better results. 

4.3 Discussions on Robustness 
The training methods described in Section 4.2 aims at minimizing errors in a training 
set. But test sets can be different. The robustness issue concerns how well the minimal 
error rate in the training set preserves in the test set. According to (Dudewicz and 
Mishra 1988), the MSE function in general is not very robust because it is not bounded, 
and can be contaminated from those training samples far away from the decision 
boundary. One of many possible solutions of improving the robustness is to introduce 
margin in the training procedure of Figure 4. The basic idea is to enlarge the score dif-
ference (or score margin) between a correct segmentation (i.e. wR) and its competing 
incorrect segmentations (i.e. {w; w∈GEN(s), w≠wR}). According to Equation (8), the 
perceptron training algorithm of Figure 4 does not adjust parameters if the sentence is 
segmented correctly. The robustness could be improved if we continued to enlarge the 
score margin between the correct segmentation and the top competing candidate even 
if the input sentence had been correctly segmented, until the margin has exceeded a 
preset threshold. More specially, we can modify Equation (8) as follows 

))()()(),(),((=)( id
R
idi

R
id ffδScoreScoreλG wwλwλw ---  (10) 

where δ is the desired margin which can either be an absolute value or a quantity pro-
portional to the score of the correct segmentation (Su and Lee 1994). The modified 
training algorithm is similar to the perceptron algorithm with margins, proposed by 
Krauth and Mèzard (1987). We leave the evaluation of the algorithm to future work. 
Readers can also refer to (Duda, Hart and Stork 2001) for a detailed description of 
margin-based learning algorithms.  
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Figure 5  
Overall architecture of MSRSeg. 

5. System Description 

5.1 Architecture Overview 
MSRSeg consists of two components: a generic segmenter and a set of output adap-
tors. We describe the first component in this section, and leave the second to Section 6. 
The generic segmenter has been developed on the basis of the mathematical models 
described in Section 4. It consists of several components as shown in Figure 5. 

(1) Sentence Segmenter: to detect sentence boundaries using punctuation clues 
such as 。? !.  

(2) Word Candidate Generator: given an input string s, to generate all word can-
didates and store them in a word lattice. Each candidate is assigned to its word 
class and the class model score, e.g. logP(s’|w) where s’ is any substring of s. 

(3) Decoder: to select the best (or the N best) word segmentation (i.e. word class 
sequence w*) from the lattice according to Equations (4) and (5), using the 
Viterbi (or A*) search algorithm. 

(4) Wrapper: to output segmentation results using some pre-defined canonic 
forms, e.g. MDW and FT are of their normalized form, as described in Section 
3.1. 

Below, we will describe candidate generators for different word classes. They are 
(1) the lexicon (and morph lexicon) TRIEs to generate LW (or MDW) candidates, (2) 
the NE class models to generate NE candidates, (3) the finite-state automaton (FSA) to 
generate FT candidates, and (4) the classifier to generate NW candidates. 

Sentence Segmenter 

Word Candidate Generator 
 
 
 
 

TRIEs: LW or MDW 

Class models: NE 

FSA: FT 

Classifier: NW 

Decoder 

Wrapper 

Chinese Sentence: 
朋友们十二点三十分高高兴兴地到李俊生教授家吃饭。 

Chinese Text 

Word Lattice:  
朋友, 1, 2, LW, 1.0 
朋友们, 1, 3, MDW, 1.0 
十二,  4, 2, FT, 1.0 
十二点三十分,  4, 6, FT, 1.0 
高, 10, 1, LW, 1.0 
高高, 10, 2, PN, 1.28E-5 
…… 

Segmentation: 
朋友们/十二点三十分/高高兴兴/地/到/李俊生/教授/
家/吃饭/。 

Output: 
[朋友+们 MA_S] [十二点三十分 12:30 TIME] [高兴
MR_AABB] [地] [到] [李俊生 PN] [教授] [家] [吃饭] 
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5.2 Lexicon Representation and Morphological Analysis 
Lexicon words are represented as a set of TRIEs (Frakes and Baeza-Yates 1992), which 
is a particular implementation of FSA described in Section 4. Given a character string, 
all its prefix strings that form lexical words can be retrieved by browsing the TRIE 
whose root represents its first character. 

Though there are well-known techniques for English morphology analysis (i.e. fi-
nite-state morphology), they are difficult to extend to Chinese for two reasons. First, 
Chinese morphological rules are not as general as their English counterparts. For ex-
ample, in most cases English plural nouns can be generated using the rule “noun + s 

 plural noun”. But only a small subset of Chinese nouns can be pluralized (e.g. 朋友
们 ‘friends’) using its Chinese counterpart “noun + 们  plural noun” whereas others 
(e.g. 南瓜 ‘pumpkins’) cannot7. Secondly, the operations required by Chinese morpho-
logical analysis such as copying in reduplication, merging and splitting, cannot be 
implemented using the current finite-state networks8.  

Our solution is extended lexicalization. We simply collect all MDW of the five 
types described in Section 3.1 and incorporate them into the TRIE lexicon, called 
morph-lexicon. The TRIEs are essentially the same as those used for lexical words, ex-
cept that not only the MDW’s identity but also its morphological pattern and stem(s) 
are stored. 

The procedure of lexicalization involves three steps: (1) Candidate generation. It is 
done by applying a set of morphological rules to both the word lexicon and a large 
corpus. For example, the rule ‘noun + 们  plural noun’ would generate candidates 
like 朋友们. (2) Statistical filtering. For each candidate, we obtain a set of statistical 
features such as frequency, mutual information, left/right context dependency from a 
large corpus. We then use an information-gain-like metric described in (Chien 1997; 
Gao et al. 2002) to estimate how likely a candidate is to form a morphologically de-
rived word, and remove the “bad” candidates. The basic idea behind the metric is that 
a Chinese word should appear as a stable sequence in the corpus. That is, the compo-
nents within the word are strongly correlated, while the components at both ends 
should have low correlations with words outside the sequence. (3) Linguistic selec-
tion. We finally manually check the remaining candidates, and construct the morph-
lexicon, where each entry is tagged with its morphological pattern and stem(s). The 
resulting morph-lexicon contains 50,963 MDW. 

5.3 Named Entities 
We consider four types of named entities: person names (PN), location names (LN), 
organization names (ON), and transliterations of foreign names (FN). Because any 
character strings can in principle be named entities of one or more types, in order to 
limit the number of candidates for a more effective search, we generate named entity 
candidates given an input string in two steps: First, for each type, we use a set of con-
straints (which are compiled by linguists and are represented as FSA) to generate only 
those “most likely” candidates. Second, each of the generated candidates is assigned a 
class model probability. These class models are defined as generative models which 

                                                           
 
7  We do not consider those special cases, such as in a children’s fairy story, where the magic pumpkins can 

even talk. 
8  There are some types of copying operations that can be implemented by FSMs (e.g. Spoart 1992), but the 

implementation is not trivial. Because the size of MDW is manageable, storing them as a list (as in our 
paper) is not much more expensive than storing them as a finite-state network, in terms of space and ac-
cess speed, our implementation can be viewed as a pragmatic solution, easy to implement and maintain. 
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are estimated on their corresponding named entity lists using MLE, together with a 
backoff smoothing schema, as described in Section 4.1.1. We will describe briefly the 
constraints and the class models below. The Chinese person name model is a modified 
version of that described in Sproat et al. (1996). Other NE models are novel, though 
they share some similarities with the Chinese person name model. 

5.3.1 Chinese Person Names. There are two main constraints. (1) PN patterns: We as-
sume that a Chinese PN consists of a family name F and a given name G, and is of the 
pattern F+G. Both F and G are of one or two characters long. (2) Family name list: We 
only consider PN candidates that begin with an F stored in the family name list 
(which contains 373 entries in our system). 

Given a PN candidate, which is a character string s, the class model probability 
P(s|PN) is computed by a character bigram model as follows: (1) Generate the family 
name sub-string sF, with the probability P(sF|F); (2) Generate the given name sub-
string sG, with the probability P(sG|G) (or P(sG1|G1)); and (3) Generate the second 
given name, with the probability P(sG2|sG1,G2). For example, the generative probabil-
ity of the string 李俊生 given that it is a PN would be estimated as P(李俊生|PN) = 
P(李|F)P(俊|G1)P(生|俊, G2). 

5.3.2 Location Names. Unlike PN, there are no patterns for LN. We assume that a LN 
candidate is generated given s (which is less than 10 characters long), if one of the fol-
lowing conditions is satisfied: (1) s is an entry in the LN list (which contains 30,000 
LNs); (2) s ends in a keyword in a 120-entry LN keyword list such as 市 ‘city’9. 

The probability P(s|LN) is computed by a character bigram model.  Consider a 
string 夏米尔河 ‘Shamir river’. It is a LN candidate because it ends in a LN keyword 
河 ‘river’. The generative probability of the string given it is a LN would be estimated 
as P(夏米尔河|LN) = P(夏|<LN>) P(米|夏) P(尔|米) P(河|尔) P(</LN>|河), where 
<LN> and </LN> are symbols denoting the beginning and the end of a LN, respec-
tively. 

5.3.3 Organization Names. ON are more difficult to identify than PN and LN because 
ON are usually nested named entities. For example, the ON 中国国际航空公司 ‘Air 
China Corporation’ contains an LN 中国 ‘China’. 

Like the identification of LN, an ON candidate is only generated given a character 
string s (less than 15 characters long), if it ends in a keyword in a 1,355-entry ON 
keyword list such as 公司 ‘corporation’. To estimate the generative probability of a 
nested ON, we introduce word class segmentations of s, w, as hidden variables. In 
principle, the ON class model recovers P(s|ON) over all possible C: P(s|ON) = 
∑wP(s,w|ON) = ∑wP(w|ON)P(s|w,ON). Since P(s|w,ON)=P(s|w), we have P(s|ON) 
= ∑wP(w|ON)P(s|w). We then assume that the sum is approximated by a single pair 
of terms P(w*|ON)P(s|w*), where w* is the most probable word class segmentation 
discovered by Equation (5). That is, we also use our system to find w*, but the source-
channel models are estimated on the ON list.  

Consider the earlier example. Assuming that w* = LN/国际/航空/公司, where 中
国 is tagged as a LN, the probability P(s | ON) would be estimated using a word class 
bigram model as: P(中国国际航空公司|ON) ≈ P(LN/国际/航空/公司|ON) P(中国
|LN) =   P(LN|<ON>)P(国际|LN)P(航空|国际)P(公司|航空) P(</ON>|公司)P(中国
                                                           
 
9  For a better understanding, the constraint is a simplified version of that used in MSRSeg. 
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|LN), where P(中国|LN) is the class model probability of 中国 given that it is a LN, 
and <ON> and </ON> are symbols denoting the beginning and the end of a ON, re-
spectively.  

5.3.4 Transliterations of Foreign Names. As described in Sproat et al. (1996): FN are 
usually transliterated using Chinese character strings whose sequential pronunciation 
mimics the source language pronunciation of the name. Since FN can be of any length 
and their original pronunciation is effectively unlimited, the recognition of such 
names can be tricky. Fortunately, there are only a few hundred Chinese characters 
that are particularly common in transliterations. 

Therefore, an FN candidate would be generated given s, if it contains only charac-
ters stored in a transliterated name character list (which contains 618 Chinese charac-
ters). The probability P(s | FN) is estimated using a character bigram model. Notice 
that in our system a FN can be a PN, a LN, or an ON, depending on the context. Then, 
given a FN candidate, three named entity candidates, each for one category, are gen-
erated in the lattice, with the class probabilities P(s|PN)=P(s|LN)=P(s|ON)=P(s|FN). 
In other words, we postpone the determination of its type to the decoding phase 
where the context model is used. 

5.3.4 Abbreviations. For the sake of completeness, we describe below the basic ideas 
of tackling NE abbreviations within our framework. This is on-going research, and we 
do not have conclusive results yet. Readers can refer to (Zhu et al. 2003; Sun, Zhou 
and Gao 2003) for more details, where marginal improvements have been reported.  

For different types of NE, different strategies can be adopted. We find that most 
abbreviations of Chinese PN and LN are single-character NE. The PN and LN models 
described previously cannot handle them very well because (1) single-character NE 
are generated in a way different from that of multi-character NE, and (2) the context of 
single-character NE is different from multi-character ones. For example, single-
character NE usually appears adjacently such as 中 and 俄 in 中俄贸易 ‘China-Russia 
trade’. But this is not the case for multi-character NE. 
We thus define single-character PN and LN as two separate word classes, denoted by 
SCPN and SCLN, respectively. We assume that a character is a candidate of SCPN (or 
SCLN) only when it is included in a pre-defined SCPN (or SCLN) list, which contains 
151 (or 177) characters. The class model probabilities are assigned by unigram models 
as 

∑
Ni

isC
sC

sP

...1=
)(

)(
=SCPN)|(  ,  

∑
Ni

isC
sC

sP

...1=
)(

)(
=SCLN)|( , 

(11) 

where C(s) is the count of the SCPN (or SCLN) s in an annotated training set and N is 
the size of SCPN (or SCLN) list. In the context model, we also differentiate between 
PN (or LN) and SCPN (or SCLN). Therefore, SCPN and SCLN should be labeled ex-
plicitly in the training data. 

It is much more difficult to detect abbreviations of ON (denoted by ONA) because 
ONA are usually multiple-character strings, and can be generated from their original 
ON arbitrarily. For example, the abbreviation of 清华大学 ‘Tsinghua University’ is 清
华 while the abbreviation of 北京大学 ‘Peking University’ is 北大. We assume that an 
ONA candidate is only generated given a character string s (less than 6 characters 
long), if both of the following conditions are satisfied: (1) An ON has been detected in 
the same document, and (2) s can be derived from the ON using a generative pattern 
defined in Table 7. Since there is no training data for the ONA class model, we  



 
 
 
 
Gao et al.                                                           Chinese Word Segmentation: A Pragmatic Approach 

 

23 
 
 
 
 
 
 
 

Table 7 
Generative patterns of ONA, where sij denotes the j-th character of the i-th word of ON (Sun, 
Zhou and Gao 2003)  

Condition (ON) Generated patterns (ONA)  Examples 
ON = w1…wN  (N ≥ 2)  ONA = s11s21, or 

ONA = s11s21s31, or … 
ONA = s11s21…sN1 

北京/邮电/大学  北邮 
北京/邮电/大学  北邮大 

ON = w1w2, and w1 is not a LN ONA = w1 清华/大学  清华 
ON = w1w2w3, and w1 is not a LN ONA = w1, or  

ONA = w1w2 
苹果/电脑/公司  苹果 
苹果/电脑/公司  苹果/电脑 

ON = w1w2w3, and w1 is a LN ONA = w2 北京/国安/队  国安 

Table 8 
FT detection results on MSR gold test set. The row of ‘All’ is the results of detecting all 10 
types of factoids, as described in Table 1, which amount to 6630 factoids, as shown in Table 3. 

 All (P/R) dat (P/R) tim (P/R) mea (P/R) mon (P/R) 
FSA 0.906/0.905 0.967/0.870 0.967/0.967 0.911/0.919 0.991/0.975 
MSRSeg 0.908/0.896 0.980/0.851 0.973/0.967 0.913/0.898 0.994/0.975 

construct a score function to assign each ONA candidate a class model score. Consider 
a string 北大. The generative probability of the string given it is an ONA would be as 
approximated as P(北大|ONA) ≈ P(北京大学|ON) P(北大|北京大学, ON), where 
P(北大|北京大学, ON) is defined as a constant (0.8 in our experiments) if 北大 can be 
derived from 北京大学 using any generative pattern of Figure 7, 0 otherwise. If there 
are more than one ON that are detected previously in the same document and can 
derive the ONA candidate (e.g. 北方大学 ‘North University’), only the closest ON is 
taken into account. We also notice that ONA and ON occur in similar context. So we 
do not differentiate them in the context model. 

5.4 Factoids 
The types of factoids handled in MSRSeg are shown in Table 1 of Section 3.1. For each 
type of factoid, we generate a grammar of regular expressions. The ten regular expres-
sions are then compiled into a single FSA. Given an input string s, we scan it from left 
to right, and output a FT candidate when a substring matches one of the ten regular 
expressions. We also remove those FT candidates that are substrings of any other can-
didates of the same type. Consider the example in Figure 1, only the string 十二点三十
分 is accepted as a FT candidate (time expression), but not the substrings such as 十二
点 or 十二点三十. 

The use of FSA is motivated by the fact that the detection of most FT is based ex-
clusively on their internal properties and without relying on context. This can be in 
principle justified by experiments. As shown in Table 8, the overall performance of FT 
detection using only FSA is comparable with that of using MSRSeg where the contex-
tual information of FT is considered (i.e. in MSRSeg, FSA are used as feature func-
tions, and the FT are detected simultaneously with other words). If we read the results 
carefully, we can see that the use of context information (in MSRSeg) achieves a 
higher precision but a lower recall – a small but significant difference. 
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5.5 New Words 
New words in this section refer to OOV words that are neither recognized as named 
entities or factoids nor derived by morphological rules. These words are mostly do-
main-specific and/or time-sensitive, such as三通‘Three Links’, 非典 ‘SARS’. The iden-
tification of such new words has not been studied extensively before. It is an impor-
tant issue that has substantial impact on the performance of word segmentation. For 
example, approximately 30% of OOV words in the SIGHAN’s PK corpus in Table 4 
are new words of this type. There has been previous work on detecting Chinese new 
words from a large corpus in an off-line manner and updating the dictionary before 
word segmentation. However, our approach is able to detect new words on-line, i.e. to 
spot new words in a sentence on the fly during the process of word segmentation 
where widely-used statistical features such as mutual information or term frequency 
are not available. 

For brevity of discussion, we will focus on the identification of 2-character new 
words, denoted as NW_11. Other types of new words such as NW_21 (a 2-character 
word followed with a character) and NW_12 can be detected similarly (e.g. by view-
ing the 2-character word as an inseparable unit, like a character). These 3 types 
amount to 85% of all NWs in the PK corpus. Below, we shall describe the class model 
and context model for NWI, and the creation of training data by sampling. 

5.5.1 Class Model. We use a classifier (SVMlight (Joachims 2002) in our experiments) to 
estimate the likelihood of two adjacent characters forming a new word. Of the great 
number of features with which we experimented, four linguistically-motivated fea-
tures are chosen due to their effectiveness and availability for on-line detection. They 
are Independent Word Probability (IWP), Anti-Word Pair (AWP), Word Formation Analogy 
(WFA), and Morphological Productivity (MP). Below we describe each feature in turn. In 
Section 5.5.2, we shall describe the way the training data (new word list) for the classi-
fier is created by sampling. 

IWP (Independent Word Probability) is a real valued feature. Most Chinese char-
acters can be used either as independent words or component parts of multi-character 
words, or both. The IWP of a single character is the likelihood for this character to ap-
pear as an independent word in texts (Wu and Jiang 2000): 

)(
),(

=)(
xC
WxC

xIWP  (12) 

where C(x, W) is the number of occurrences of the character x as an independent word 
in training data, and C(x) is the total number of x in training data. We assume that the 
IWP of a character string is the product of the IWPs of the component characters. In-
tuitively, the lower the IWP value, the more likely the character string forms a new 
word. In our implementation, the training data is word-segmented. 

AWP (Anti-Word Pair) is a binary feature derived from IWP. For example, the 
value of AWP of an NW_11 candidate ab is defined as: AWP(ab)=1 if IWP(a)>θ or 
IWP(b) >θ, 0 otherwise. θ ∈ [0, 1] is a pre-set threshold. Intuitively, if one of the com-
ponent characters is very likely to be an independent word, it is unlikely to be able to 
form a word with any other characters. While IWP considers all component characters 
in a new word candidate, AWP only considers the one with the maximal IWP value. 

WFA (Word Formation Analogy) is a binary feature. Given a character pair (x, y), a 
character (or a multi-character string) z is called the common stem of (x, y) if at least one 
of the following two conditions hold: (1) character strings xz and yz are lexical words 
(i.e. x and y as prefixes); and (2) character strings zx and zy are lexical words (i.e. x and 
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y as suffixes). We then collect a list of such character pairs, called affix pairs, of which 
the number of common stems is larger than a pre-set threshold. The value of WFA for 
a given NW_11 candidate ab is defined as: WFA(ab) = 1 if there exist an affix pair (a, x) 
(or (b, x)) and the string xb (or ax) is a lexical word, 0 otherwise. For example, given an 
NW_11 candidate 下岗 (xia4-gang3, ‘be laid off’), we have WFA(下岗) = 1 because (上, 
下) is an affix pair (they have 32 common stems such as _任,  游,  台,  车,  面,  午,  班) 
and 上岗 (shang4-gang3, ‘take over a shift’) is a lexical word. 

MP (Morphological Productivity) is a real-valued feature. It is a measure of the 
productivity of a particular construction, as defined below (Baayen 1989): 

)(
)(

=)( 1

xN
xn

xMP  (13) 

MP is strongly related to the Good-Turing estimate. Here N is the number of tokens of 
a particular construction found in a corpus, e.g. the number of tokens of all nouns 
ending in -们, and n1 is the number of types of that construction, e.g. the number of 
unique nouns ending in -们. Intuitively, a higher value of MP indicates a higher prob-
ability that (one of) the component parts of a multi-character string appears to be a 
word. For example, Sproat and Shih (2002) show that the MP values of Chinese noun 
affix -们 and verb affix -过 are 0.20 and 0.04, respectively, indicating -们 that is a much 
more productive affix, while the MP value of single-character nouns which belong to a 
closed and non-productive class is close to 0. These results are in agreement with our 
intuition. Similarly, we find some very productive characters with high MP values. 
For example, in our training set, there are 236 words that contains the character 帽, 
among which 13 occur only once. 

5.5.2 Context Model. The motivations of using context model for NWI are two-fold. 
The first is to capture useful contextual information. For example, new words are 
more likely to be nouns than pronouns, and POS tagging is context-sensitive. The sec-
ond is more important. As described in Section 4, with a context model, NWI can be 
performed simultaneously with other word segmentation tasks (e.g.: word breaking, 
NER and morphological analysis) in a unified approach. 

However, it is difficult to develop a training corpus where new words are anno-
tated because “we usually do not know what we don’t know”. Our solution is Monte 
Carlo simulation. We sample a set of new words from our dictionary according to the 
distribution – the probability that any lexical word w would be a new word P(NW|w). 
We then generate a new-word-annotated corpus from a word-segmented text corpus. 

Now we describe the way P(NW|w) is estimated. It is reasonable to assume that 
new words are those words whose probability to appear in a new document is lower 
than general lexical words. Let Pi(k) be the probability of word wi that occurs k times in 
a document. In our experiments, we assume that P(NW|wi) can be approximated by 
the probability of wi occurring less than K times in a new document:  

∑≈
1

0=
)()|(

K

k
ii kPwNWP , (14) 

where the constant K (7 in our experiments) is dependent on the size of the document: 
The larger the document, the larger the value. Pi(k) can be estimated using several 
term distribution models (Chapter 15.3 in Manning and Schütze (1999)). Following 
(Gao and Lee 2000), we use K-Mixture (Katz 1996) which estimate Pi(k) as 
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where δk,0=1 if  k=0, 0 otherwise. α and β are parameters that can be fit using the 
observed mean λ and the observed inverse document frequency IDF as follow: 
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where cf is the total number of occurrence of word wi in training data, df is the number 
of documents in training data that wi occurs in, and N is the total number of docu-
ments. In our implementation, the training data contain approximately 40 thousand 
documents that have been balanced among domain, style and time. 

5.5.3 Evaluation Results. The NWI component has been constructed as an SVM classi-
fier. This section discusses two factors that we believe have the most impact on the 
performance of NWI. First, we investigate the relative contribution of the four linguis-
tically-motivated features in NWI. Second, we compare methods where we use the 
NWI component (i.e. an SVM classifier) as a post-processor versus as a feature func-
tion in the linear models of Equation (4).  

The NWI results on the PK test set are shown in Tables 9 and 10. We turned off the 
features one at a time and recorded the scores of each ablated NWI component. It 
turns out that in cases of both NW_11 and NW_12, IWP is obviously the most effective 
feature. 

Tables 11 and 12 show results of NWI on four Bakeoff test sets. We can see that 
unified approaches (i.e. using NWI component as a feature function) significantly 
outperform consecutive approaches (i.e. using NWI component as a post-processor) 
consistently, in terms of both Roov and P/R/F of the overall word segmentation. This 
demonstrates empirically the benefits of using the context model for NWI and the uni-
fied approach to Chinese word segmentation, as described in 5.5.2. 

5.6 Decoder 
The decoding process follows the source-channel framework. It consists of three steps: 

Step 1: Throughout the process, we maintain an array of word class candidates, called 
lattice, which is initialized to be empty.  

Step 2: Given a Chinese sentence, all possible words of different types are generated 
simultaneously by corresponding channel models described in Sections 5.2 to 5.5. For 
example, as shown in Table 6, the lexicon TRIE generates LW candidates; the SVM 
classifier generates NW candidates, and so on. All the generated candidates are added 
to the lattice. Each element in the lattice is a 5-tuple (w, i, l, t, s), where w is the word 
candidate, i is the starting position of w in the sentence, l is the length of w, t is the 
word class tag, and s is the class model score of w assigned by its feature function in 
Table 6, Some examples are shown in Figure 5.  

Step 3: The Viterbi (or A*) algorithm is used to search for the best word class sequence, 
among all candidate segmentations in the lattice, according to Equations (2) and (3). 
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Table 9  
NW_11 identification results on PK test set 

 Table 10 
NW_21 identification results on PK test set 

 P R F   P R F 
All features 0.565 0.788 0.658  All features 0.420 0.811 0.553 
w/o IWP 0.395 0.835 0.536  w/o IWP 0.104 0.973 0.188 
w/o AWP 0.508 0.723 0.596  w/o AWP 0.338 0.730 0.462 
w/o MP 0.556 0.771 0.646  w/o MP 0.398 0.716 0.512 
w/o WFA 0.561 0.779 0.652  w/o WFA 0.401 0.797 0.534 

Table 11   
NWI results on PK and CTB corpora, NWI as post-processor versus unified approach 

PK CTB  MSRSeg 
Roov F P R Roov F P R 

w/o NWI .741 .956 .949 .963 .690 .892 .875 .910 
w/ NWI (post-processor) .746 .953 .947 .960 .722 .899 .886 .912 
w/ NWI (unified approach) .781 .955 .952 .959 .746 .904 .895 .914 
         

Table 12   
NWI results on HK and AS corpora, NWI as post-processor versus unified approach 

HK AS MSRSeg 
Roov F P R Roov F P R 

w/o NWI .694 .947 .937 .958 .436 .951 .958 .943 
w/ NWI (post-processor) .728 .952 .944 .959 .549 .955 .950 .959 
w/ NWI (unified approach) .746 .954 .948 .960 .584 .958 .955 .961 
         

For efficiency, we sometimes need to control the search space. Given an input sen-
tence s, all word candidates are ranked by their normalized class model score λf(.). 
Thus, the number of candidates (i.e. the size of the lattice) is controlled by two pa-
rameters: 

• Number threshold – the maximum number of candidates cannot be larger than 
a given threshold; 

• Score threshold – the difference between the class model score of the top-ranked 
candidates and the bottom-ranked candidates cannot be larger than a given 
threshold. 

6. Standards Adaptation  

This section describes the second component of MSRSeg: a set of adaptors for adjust-
ing the output of the generic segmenter to different application-specific standards.  

We consider the following standards adaptation paradigm. Suppose we have a gen-
eral standard pre-defined by ourselves. We have also created a large amount of train-
ing data which are segmented according to this general standard. We then develop a 
generic word segmenter, i.e. the system described in Section 5. Whenever we deploy 
the segmenter for any application, we need to customize the output of the segmenter 
according to an application-specific standard, which is not always explicitly defined. 
However, it is often implicitly defined in a given amount of application data (called 
adaptation data) from which the specific standard can be partially acquired. 
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Condition: ‘Affixation’  
Actions: Insert a boundary between ‘Prefix’ and 

‘Stem’… 

 
 
Condition: ‘Date’  
Actions:  Insert a boundary between ‘Year’ and 

‘Mon’ … 

 
 
Condition: ‘PersonName’  
Actions:  Insert a boundary between ‘FamilyName’ 

and ‘GivenName’… 

Figure 6 
Word internal structure and class-type transformation templates. 

6.1 Transformation-Based Learning Approach 
In MSRSeg, standards adaptation is conducted by a postprocessor which performs an 
ordered list of transformations on the output of the generic segmenter – removing ex-
traneous word boundaries, and inserting new boundaries – to obtain a word segmen-
tation that meets a different standard. 

The method we use is Transformation-Based Learning (TBL, Brill (1995)), which 
requires an initial segmentation, a goal segmentation into which we wish to transform 
the initial segmentation and a space of allowable transformations (i.e. transformation 
templates). Under the abovementioned adaptation paradigm, the initial segmentation 
is the output of the generic segmenter. The goal segmentation is adaptation data. The 
transformation templates can make reference to words (i.e. lexicalized templates) as 
well as some pre-defined types (i.e. class-type based templates), as described below. 

We notice that most variability in word segmentation across different standards 
comes from those words that are not typically stored in the dictionary. Those words 
are dynamic in nature and are usually formed through productive morphological 
processes. In this study, we focus on three categories: MDW, NE and FT. 

For each word class that belongs to these categories, we define an internal struc-
ture similar to (Wu 2003). The structure is a tree with ‘word class’ as the root, and 
‘component types’ as the other nodes. There are 30 component types. As shown in 
Figure 6, the word class Affixation has three component types: Prefix, Stem and Suffix. 
Similarly, PersonName has two component types and Date has nine – 3 as non-
terminals and 6 as terminals. These internal structures are assigned to words by the 
generic segmenter at run time. The transformation templates for words of the above 
three categories are of the form: 

Condition: word class 
Actions:  

 Insert – place a new boundary between two component types. 
 Delete – remove an existing boundary between two component types. 

 

Dig_Y Pre_D

Mon Day

Pre_Y Pre_M Dig_M Dig_D

Year 

Date 

PersonName 

FamilyName GivenName

Affixation 

Prefix Stem Suffix 
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Table 13  
Comparison scores for PK open and CTB open. 

PK  (# of Tr. Word = 1.1M) CTB (# of Tr. Word = 250K)  
P R F Roov Riv P R F Roov Riv 

1. MSRSeg w/o adaptation .824 .854 .839 .320 .861 .799 .818 .809 .624 .861 
2. MSRSeg .952 .959 .955 .781 .972 .895 .914 .904 .746 .950 
3. FMM w/ adaptation .913 .946 .929 .524 .977 .805 .874 .838 .521 .952 
4. Rank 1 in Bakeoff .956 .963 .959 .799 .975 .907 .916 .912 .766 .949 
5. Rank 2 in Bakeoff .943 .963 .953 .743 .980 .891 .911 .901 .736 .949 
           

Table 14 
Comparison scores for HK open and AS open 

HK (# of Tr. Word = 240K) AS (# of Tr. Word = 5.8M)  
P R F Roov Riv P R F Roov Riv 

1. MSRSeg w/o adaptation .819 .822 .820 .593 .840 .832 .838 .835 .405 .847 
2. MSRSeg .948 .960 .954 .746 .977 .955 .961 .958 .584 .969 
3. FMM w/ adaptation .818 .823 .821 .591 .841 .930 .947 .939 .160 .964 
4. Rank 1 in Bakeoff .954 .958 .956 .788 .971 .894 .915 .904 .426 .926 
5. Rank 2 in Bakeoff .863 .909 .886 .579 .935 .853 .892 .872 .236 .906 

 

Since the application of the transformations derived from the above templates are 
conditioned on word class and make reference to component types, we call the tem-
plates class-type transformation templates. Some examples are shown in Figure 6. 

In addition, we also use lexicalized transformation templates as: 

 Insert – place a new boundary between two lemmas. 
 Delete – remove an existing boundary between two lemmas. 

Here, lemmas refer to those basic lexical words that cannot be formed by any pro-
ductive morphological process. They are mostly single characters, bi-character words, 
and 4-character idioms. 

6.2 Evaluation Results 
The results of standards adaptation on four Bakeoff open test sets10  are shown in Ta-
bles 13 and 14. A set of transformations for each standard is learnt using TBL from the 
corresponding Bakeoff training set. For each test set, we report results using our sys-
tem with and without standards adaptation (Rows 1 and 2). It turns out that perform-
ance improves dramatically across the board in all four test sets.  

For comparison, we also include in each table the results of using the FMM (for-
ward maximum matching) greedy segmenter11 as a generic segmenter (Row 3), and 
the top 2 scores (sorted by F) that are reported in SIGHAN’s First International Chi-
nese Word Segmentation Bakeoff (Rows 4 and 5). We can see that with adaptation, our 
generic segmenter can achieve state-of-the-art performance on different standards, 
showing its superiority over other systems. For example, there is no single segmenter 
in the Bakeoff which achieved top-2 ranks in all four test sets (Sproat and Emerson 
2003). 
                                                           
 
10  See Section 8.3 for the definitions of open test and close test. 
11  FMM algorithm processes through the sentence from left to right, taking the longest match with the 

lexicon entry at each point. Similarly, BMM (backward maximum matching) algorithm processes the sen-
tence from right to left. 



 
 
 
 
Computational Linguistics                                                                                    Volume ??, Number ? 

 

30 
 
 
 
 
 
 
 

Table 15  
Size of training data set and the adaptation results on AS open 

Size of training set (# words) R P F R oov R iv 
5.8 M .961 .956 .958 .603 .968 
2.9 M .959 .950 .954 .623 .966 
1.1 M .954 .945 .949 .591 .962 
.25 M .947 .935 .941 .595 .955 

w/o adaptation .832 .838 .835 .405 .847 

We notice in Tables 13 and 14 that the quality of adaptation seems to depend 
largely upon the size of adaptation data (indicated by # of Tr. Word in the tables): we 
outperformed the best bakeoff systems in the AS set because of the large size of the 
adaptation data while we are worse in the CTB set because of the small size of the ad-
aptation data. To verify our hypothesis, we evaluated the adaptation results using 
subsets of the AS training set of different sizes, and observed the same trend, as 
shown in Table 15. However, even with a much smaller adaptation data set (e.g. 250K 
words), we still outperform the best Bakeoff results. 

7. Training Data Creation 

This section describes (semi-)automatic methods of creating the training data based on 
which the class model probability P(w) (i.e. trigram probability) in Equation (1) is es-
timated. Ideally, given an annotated corpus, where each sentence is segmented into 
words which are tagged by their classes, the trigram word class probabilities can be 
calculated using MLE. Unfortunately, building such annotated training corpora is 
very expensive. 

7.1 Bootstrapping Approach and Beyond 
Our basic solution is the bootstrapping approach described in Gao et al. (2002). It con-
sists of three steps: (1) Initially, we use a greedy word segmenter12 to annotate the 
corpus, and obtain an initial context model based on the initial annotated corpus; (2) 
we re-annotate the corpus using the obtained models; and (3) re-train the context 
model using the re-annotated corpus. Steps 2 and 3 are iterated until the performance 
of the system converges. This approach is also named Viterbi iterative training – an 
approximation of EM training. 

In the above approach, the quality of the context model depends to a large degree 
upon the quality of the initial annotated corpus, which is however not satisfied due to 
two problems. First, the greedy segmenter cannot deal with the segmentation ambi-
guities, and even after many iterations, these ambiguities can only be partially re-
solved. Second, many factoids and named entities cannot be identified using the 
greedy word segmenter which is based on the dictionary. 

To solve the first problem, we use two methods to resolve segmentation ambigui-
ties in the initially segmented training data. We classify word segmentation ambigui-
ties into two classes: overlap ambiguity (OA), and combination ambiguity (CA), corre-
sponding respectively to OAS and CAS defined in Section 3.5.  
 

                                                           
 
12 The greedy word segmenter is based on a FMM algorithm. 
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(a) 

 
(b) 在/各/国有/企业/中  (in each state-owned enterprise) 

在/人权/问题/上/,/各国/有/共同点  
(Regarding human rights, every country has some common ground) 
 

(c) 在/<OAS>/企业/中  
在/人权/问题/上/,/<OAS>/共同点  

Figure 7 
A Chinese OAS各国有 in (a). Two sentences in the training set, which contain the OAS (b) 
and whose OAS have been replaced with the single tokens <OAS> (c). (Li et al. 2003) 

To resolve OA, we identify all OAS in the training data and replace them with a 
single token <OAS>. An example is shown in Figure 7. By doing so, we remove the 
portion of training data that are likely to contain OA errors. We thus train a context 
model using the reduced training set which does not contain any OAS. Intuitively, the 
resulting context model would resolve the ambiguities. The method has been tested 
on the MSR test set. Our main results are shown in Table 16. We can see that the FMM 
(or Backward Maximum Matching – BMM) method can only resolve 73.1% (or 71.1%) 
of OA, while using our method, the resulting context model can resolve 94.3% of the 
OA. Our method is different from previous ones that use lexicalized rules to resolve 
OAS. For example, Sun and Zuo (1998) report that over 90% of OA can be disambigu-
ated simply by rules. We re-implemented their method in our experiments, and find 
that 90.7% (or 91.3%) of the OA in the MSR test set can be resolved. The result is simi-
lar to Sun and Zou’s, but still not as good as ours. Therefore, we conclude that our 
method significantly outperforms the rule-based approaches. Another advantage of 
our method is that it is an unsupervised approach that requires no human annotation. 
Readers can refer to (Li et al. 2003) for more details.  

To resolve CA, we select 70 high-frequency two-character CASs (e.g. 才能 ‘talent’ 
and 才/能 ‘just able’), as shown in Figure 8. For each CAS, we train a binary classifier 
using sentences that contains the CAS and have been segmented using the greedy 
segmenter. Then for each occurrence of a CAS in the initial segmented training data, 
the corresponding classifier is used to determine whether the CAS should be seg-
mented. Our experiments show that 95.7% of the CAs can be resolved. Detailed re-
sults are shown in Figure 8, where ‘Voting’ indicates the accuracy of the baseline 
method that always chooses the more frequent case of a given CAS, and ‘VSM’ indi-
cates the accuracy of the VSM-inspired (vector space model) binary classifier13, which 
will be described below. Suppose for a given CAS, s, whose position in a sentence is i, 
we use its six surrounding words w in positions i-3, i-2, i-1, i+1, i+2 and i+3 as features. 
We then define a set of feature functions to simulate the TF-IDF scores. Each feature 
function is a mapping f(s, w)∈ℜ. In particular, let TF1(s, w) (or TF2(s, w)) be the term 
frequency of w in the case that s is a 1-word (or 2-word) string. Similarly, let IDF1(s, w) 
(or IDF2(s, w)) be 1 if w only occurs in the case that s is a 1-word (or 2-word) string. If 
w occurs in both cases, let IDF1(s, w) = IDF2(s, w) = 0.25. We also assign weight λ for 
                                                           
 
13 The VSM-inspired classifier for resolving CA was mainly proposed and implemented by Wenfeng Yang, 

when he was visiting Microsoft Research Asia. 

各 国 有 
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Table 16 
Methods of resolving OAs in word segmentation, on the MSR test set 

Methods Accuracy 
FMM 73.1% 
BMM 71.5% 
Rule + FMM 90.7% 
Rule + BMM 91.3% 
Ours 94.3% 

才能  与其  人为  着手  上将  将来  穿着  不过  成人  处在  到底  到手  得出  的话  上来  正当  中将  总会  
 等到  等同  等于  低下  地带  都会  多年  一度  一道  高等  上人  高地  个人  上前  过夜  和局  业已  回家 
口水  后退  来使  中人  会同  中共  家当  马上  中和  口气  中游  家人  为人  教会  人手  人称  可靠  理事 
全能  天下  在场  天才  市区  着眼  条约  应对  是非  正在  内在  名将  将就  同行  同一  使女  

Overall accuracy of Voting:  81.7% 
Overall accuracy of ME: 94.1% 
Overall accuracy of VSM: 95.7% 

Figure 8 
Results of 70 high-frequency 2-character CASs. ‘Voting’ indicates the accuracy of the baseline 
method that always chooses the more frequent case of a given CAS. ‘ME’ indicates the accuracy 
of the maximum-entropy classifier. ‘VSM’ indicates the accuracy of the method of using VSM 
for disambiguation. 

 

each position empirically (i.e. in our experiments, we have λ-3=λ+3=1, λ-2=λ+2=4, and λ-1 
=λ+1=7).Then, we can calculate the score of s to be 1-word or 2-word by Equations (18) 
and (19), respectively. The CAS is a single word if Score1(s) > Score2(s), two words 
otherwise. 

ii
ii

i λww ),(1IDF),1(TF)1(Score
0,3...3

sss ∑
≠+−=

=  (17) 

ii
ii

i λww ),(2IDF),(2TF)(2Score
0,3...3

sss ∑
≠+−=

=  (18) 

Our experiments show that the VSM-inspired classifier outperforms other well-
known classifiers for this particular task. For example, a maximum entropy classifier 
using the same features achieved an overall accuracy of 94.1%. 

For the second problem of NE and FT detection, though we can simply use the 
FSA-based approach, as described in Section 5.4, to detect FT in the initial segmented 
corpus, our method of NER in the initial step (i.e. step 1) is a little more sophisticated. 
First, we manually annotate named entities on a small subset (call seed set) of the train-
ing data. Then, we obtain a context model on the seed set (called seed model). We thus 
improve the context model which is trained on the initial annotated training corpus by 
interpolating it with the seed model. Finally, we use the improved context model in 
steps 2 and 3 of the bootstrapping. We shall show in the next subsection that a rela-
tively small seed set (e.g. 150K words) is enough to get a reasonably good context 
model for initialization. 

7.2 Evaluation Results 
To justify the methods described above, we built a large number of context models 
using different initial corpora. For each of the initial corpora, a context model is 
trained using the Viterbi iterative procedure until convergence, i.e. the improvement  
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Table 17 
Comparison of performance of MSRSeg: the versions that are trained using (semi-)supervised 
iterative training with different initial training sets (Rows 1 to 8) versus the version that is 
trained on annotated corpus of 20 million words (Row 9). 

Word segmentation FT PN LN ON  Initial  
training set F P R P R P R P R P R 

1 FMM  .877 .833 .927         
2 1 + OA   .886 .841 .936         
3 1 + FT   .919 .894 .946 .903 .887       
4 2 + FT   .927 .903 .954 .902 .886       
5 0.15 .961 .955 .968 .900 .889 .835 .818 .897 .865 .780 .681 
6 0.35 .967 .962 .973 .903 .891 .840 .820 .900 .866 .794 .680 
7 0.50 .967 .962 .972 .905 .895 .844 .821 .900 .863 .800 .678 
8 

4 + NE 
Seed set 

(M word) 
1.00 .968 .963 .973 .905 .895 .854 .826 .903 .865 .802 .679 

9 MSR training set .974 .969 .979 .905 .899 .870 .906 .892 .855 .816 .654 
             

Table 18 
Precision of person name recognition on the MSR test set, using Viterbi 
iterative training, initialized by four seed sets with different sizes 

Seed set (M char) w/o iteration w/ 1 iteration  w/ 2 iterations 
0.15 .745 .790 (+1.6%) .800 (+0.7%) 
0.35 .757 .796 (+1.8%) .802 (+0.5%) 
0.50 .783 .824 (+5.2%) .835 (+1.3%) 
1.00 .815 .835 (+2.5%) .840 (+0.6%) 

Table 19 
Precision of location name recognition on the MSR test set, using Viterbi 
iterative training, initialized by four seed sets with different sizes 

Seed set (M char) w/o iteration w/ 1 iteration w/ 2 iterations 
0.15 .883 .895 (+1.4%) .897 (+0.2%) 
0.35 .893 .901 (+0.9%) .900 (-0.1%) 
0.50 .894 .901 (+0.8%) .900 (-0.1%) 
1.00 .895 .902 (+0.8%) .903 (+0.1%) 

Table 20 
Precision of organization name recognition on the MSR test set, using Viterbi 
iterative training, initialized by four seed sets with different sizes 

Seed set (M char) w/o iteration w/ 1 iteration w/ 2 iterations 
0.15 .695 .770 (+10.8%) .780 (+1.3%) 
0.35 .737 .786 (+6.6%) .794 (+1.0%) 
0.50 .745 .790 (+6.0%) .800 (+1.3%) 
1.00 .757 .796 (+5.2%) .802 (+0.8%) 

of the word segmentation performance of the resulting system is less than a pre-set 
threshold. The results are shown in Table 17, where Row 1 (FMM) presents the seg-
mentation results of using the initial corpus segmented by a greedy word segmenter – 
the basic solution described above; in Row 2, we resolve segmentation (overlap) am-
biguities on top of the corpus in Row 1; we then tag FT in Rows 3 and 4. From Rows 5 
to 8, several NE annotated seed sets of different sizes are used, showing the tradeoff 
between performance and human cost. In Rows 1 to 8, we use the raw training set 
containing approximately 50 million characters. For comparison, we also include in 
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Row 9, the results of MSRSeg, whose context model has been trained on 20-million-
word manually annotated corpus. The experimental results reveal several facts. 

 Although the greedy segmenter (FMM) can resolve around 90% of ambiguities 
in word segmentation, as shown in Table 16, the resulting segmenter is still 
much worse than MSRSeg because a large number of unknown words cannot 
be detected correctly even after Viterbi iterative learning.  

 The method of resolving OA brings marginal improvements. Since the method 
does not require any human annotation, Row 2 shows the best results we 
achieved in our experiments using unsupervised learning approaches. 

 Factoid rules, although simple, bring substantial improvements. 
 The Viterbi iterative training method does not turn out to be an effective way of 

resolving ambiguities in word segmentation, nor detecting new words. In Rows 
1 to 4, the word segmentation performance always saturates after 2 or 3 itera-
tions with little improvement. For example, FMM (Row 1) achieves an initial 
segmentation F-measure of 0.8771, and after two iterations, it saturates and ends 
up with 0.8773. 

 The Viterbi iterative training is effective in boosting the precision of NER with-
out great sacrifices for a recall (e.g. the recall remains almost the same when us-
ing the seed set of Row 5 in Table 17, or becomes a little worse when using the 
seed sets of Rows 6 to 8). As shown in Tables 18 to 20, we start with a series of 
seed sets of different sizes and achieve a reasonable accuracy of NER, which is 
comparable with that of MSRSeg, after two iterations.  

 The use of a small NE annotated seed set (e.g. in Row 5) would achieve the best 
tradeoff between performance and human effort, because after 2 iterations, the 
accuracy of NER is very close to that of using larger seed sets, while the human 
effort of creating the seed set is much less. 
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Table 21 
MSRSeg system results for the MSR test set 

Word segmentation FT PN LN ON Segmenter  P R P R P R P R P R 
1 FMM .837 .927         
2 Baseline .863 .947         
3 2 + FT .913 .961 .904 .898       
4 3 + PN .950 .972 .905 .898 .790 .905     
5 4 + LN .955 .975 .905 .899 .858 .906 .794 .860   
6 5 + ON .969 .979 .905 .899 .870 .906 .892 .855 .816 .654 

8. System Evaluation 

8.1 System Results 
Our system is designed so that components such as the FT detector and NE recognizer 
can be ‘switched on or off’, so that we can investigate the relative contribution of each 
component to the overall word segmentation performance. To date, we have not done 
a separate evaluation of MDW recognition. We leave it to future work. 

The main results are shown in Table 21. For comparison, we also include in the ta-
ble (Row 1) the results of using the greedy segmenter (FMM) described in Section 7. 
Row 2 shows the baseline results of our system, where only the lexicon is used. It is 
interesting to find, in Rows 1 and 2, that the dictionary-based methods already 
achieve quite good recall, but the precisions are not very good because they cannot 
correctly identify unknown words that are not in the lexicon such factoids and named 
entities. We also find that even using the same lexicon, our approach that is based on 
the linear mixture models outperforms the greedy approach (with a slight but statisti-
cally significant different) because the use of context model resolves more ambiguities 
in segmentation. The most promising property of our approach is that the linear mix-
ture models provide a flexible framework where a wide variety of linguistic knowl-
edge and statistical models can be combined in a unified way. As shown in Rows 3 to 
6, when components are switched on in turn by activating corresponding class models, 
the overall word segmentation performance increases consistently. 

We also conduct an error analysis, which shows that 85% of errors come from 
NER and factoid detection, especially the NE abbreviations, although the tokens of 
these word types amount to only 8.3% in the MSR test set. The rest 15% of errors are 
mainly due to new words. 

8.2 Comparison with Other Systems using MSR Test Set 
We compare our system with three other Chinese word segmenters14 on the MSR test 
set: 

1. The MSWS system is one of the best available products. It is released by Micro-
soft® (as a set of Windows APIs). MSWS first conducts the word breaking using 
MM (augmented by heuristic rules for disambiguation), then conducts factoid de-
tection and NER using rules. 

                                                           
 
14 The three systems are well-known in mainland China, but to our knowledge no standard evaluations on 

Chinese word segmentation have been published by press time. Although our comparison evaluations 
are limited to NER and crossing bracket (described below), we think the comparison we draw is still in-
formative. 
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Table 22 
Cross-system comparison results 

LN PN ON Segmenters # OAS 
errors P R F P R F P R F 

MSWS 63 .935 .442 .600 .907 .744 .818 .642 .469 .600 
LCWS 49 .854 .720 .782 .945 .781 .856 .713 .131 .222 
PBWS 20 .767 .736 .752 .780 .787 .784 .817 .216 .342 
MSRSeg 7 .876 .864 .870 .830 .897 .862 .799 .617 .696 

2. The LCWS system is one of the best research systems in mainland China. It is re-
leased by Beijing Language University. The system works similarly to MSWS, 
but has a larger dictionary containing more PN and LN. 

3. The PBWS system is a rule-based Chinese parser (Wu and Jiang 2000), which can 
also output word segmentation results. It explores high-level linguistic knowl-
edge such as syntactic structure for Chinese word segmentation and NER. 

As mentioned above, to achieve a fair comparison, we compare the above four sys-
tems only in terms of NER precision-recall and the number of OAS errors. However, 
we find that due to the different annotation specifications used by these systems, it is 
still very difficult to compare their results automatically. For example, 北京市政府 
‘Beijing city government’ has been segmented inconsistently as 北京市/政府 ‘Beijing 
city’ + ‘government’ or 北京/市政府 ‘Beijing’ + ‘city government’ even in the same 
system. Worse still, some LNs tagged in one system are tagged as ONs in another sys-
tem. Therefore, we have to manually check the results. We picked 933 sentences at 
random containing 22,833 words (including 329 PNs, 617 LNs, and 435 ONs) for test-
ing. We also did not differentiate LNs and ONs in evaluation. That is, we only 
checked the word boundaries of LNs and ONs and treated both tags as interchange-
able. The results are shown in Table 22. We can see that in this small test set MSRSeg 
achieves the best overall performance of NER and the best performance of resolving 
OAS. 

8.3 Evaluations on Bakeoff Test Sets 
Table 23 presents the comparison results of MSRSeg on four SIGHAN’s Bakeoff test 
sets with others reported previously. The layout of the table follows (Peng, Feng and 
McCallum 2004). SXX indicates participating sites in the 1st SIGHAN International 
Chinese Word Segmentation Bakeoff (Sproat and Emerson 2003). CRFs indicates the 
word segmenter reported in (Peng, Feng and McCallum 2004), which uses models of 
linear-chain conditional random fields (CRFs). Entries contain the F-measure of each 
segmenter on different open runs, indicated by XXo, with the best performance in 
bold.  Column Site-Avg is the average F-measure over the datasets on which a seg-
menter reported results of open runs, where a bolded entry indicates the segmenter 
outperforms MSRSeg. Column Our-Avg is the average F-measure of MSRSeg over 
the same datasets, where a bolded entry indicates that MSRSeg outperforms the other 
segmenter. For completeness, we also include in Table 23 the results of closed runs, 
indicated by XXc. In a closed test, one can only use training material from the training 
data for the particular corpus being testing on. No other material was allowed (Sproat 
and Emerson 2003). Since MSRSeg uses the MSR corpus for training, our results are of 
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Table 23 
Comparisons against other segmenters: In Column 1, SXX indicates participating sites in the 1st 
SIGHAN International Chinese Word Segmentation Bakeoff, and CRFs indicates the word 
segmenter reported in (Peng et al. 2004). In Columns 2 to 5, entries contain F-measure of each 
segmenter on different open runs, with the best performance in bold.  Column Site-Avg is the 
average F-measure over the datasets on which a segmenter reported results of open runs, 
where a bolded entry indicates the segmenter outperforms MSRSeg. Column Our-Avg is the 
average F-measure of MSRSeg over the same datasets, where a bolded entry indicates that 
MSRSeg outperforms the other segmenter. 

 ASo ASc CTBo CTBc HKo HKc PKo PKc Site-Avg Our-Avg 
S01   .881 .881  .901 .953 .951 .917 .930 
S02   .912 .874     .912 .904 
S03 .872  .829  .886  .925  .878 .943 
S04       .937 .939 .937 .955 
S05  .942  .732    .894   
S06  .945  .829  .924  .924   
S07       .940  .940 .955 
S08     .956 .904 .938 .936 .947 .955 
S09  .961      .946   
S10   .901 .831   .959 .947 .930 .930 
S11 .904  .884  .879  .886  .888 .943 
S12  .959    .916     
CRFs .957 .956 .894 .849 .946 .928 .946 .941 .936 .943 
MSRSeg .958  .904  .954  .955   .943 

       

open tests15. 
Several conclusions can be drawn from Table 23. First of all, for the same system, 

open tests generally achieve better results than close tests due to the use of additional 
training material16. Second, there is no single segmenter that performs best in all four 
datasets. Third, MSRSeg achieves consistently high performance across all four data-
sets. For example, MSRSeg achieves better average performance than the other three 
segmenters that report results on all four datasets (i.e. S03, S11, CRF). In particular, 
MSRSeg outperforms them on every dataset. There are two segmenters that achieve 
better average F-measure than ours. One is S02, which reported results on CTB only. 
The other is S10, which reported results on CTB and PK. From these results, we con-
clude that MSRSeg is an adaptive word segmenter that achieves state-of-the-art per-
formance on different datasets, corresponding to different domains and standards. 

As described in Section 2.1, most segmenters, including the ones in Table 23, can 
be roughly grouped into two categories: ones that use a rule-based approach, and 
ones that use a statistical approach. MSRSeg is a hybrid system that takes advantages 
of both. Though rule-based systems (e.g. S08, S10 and S11 in Table 23) can achieve rea-
sonably good results, they cannot effectively make use of increasingly large training 
data, and are weak in unknown word detection and adaptation. Some statistical seg-
menters (e.g. S01 and S07 in Table 23) use generative models, such as HMM, for Chi-

                                                           
 
15 It would be more informative if the comparison could be conducted in close tests, which implies that 

dictionaries and models of MSRSeg should be generated solely on the given training data. We leave it for 
future work. 

16 It is interesting to see that, in AS, close tests achieve better performance than open tests, although among 
different systems. It is because that the training data of AS is much larger than the other 3 corpora, and 
those segmenters that apply statistical approaches, such as S09 (Xue 2003) and CRFs, have been well 
trained. 
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nese word segmentation. However, it is very difficult to incorporate linguistic knowl-
edge into the (approximated or assumed) generation process of Chinese sentence, un-
derneath which the models are developed. Discriminative models (e.g. the linear 
models in MSRSeg, where though all components models are derived from genera-
tive models, they are combined using discriminatively trained weights) are free from 
this issue, and provide a flexible mathematical framework to incorporate arbitrary 
linguistic knowledge. They do not assume any underlying generation process. Instead, 
they assume that the training and test sets are generated from the same distribution, 
but the form of the distribution (i.e. generative process) is unknown. If we view Chi-
nese word segmentation as a classification problem i.e. to discriminate between 
“good” segmentations and “bad” ones, we may prefer discriminative models to gen-
erative models. Intuitively, it is sufficient to find directly the desired features that can 
differentiate good segmentations from bad ones (as in discriminative models). It is, 
however, not necessary to estimate the distributions of generating Chinese sentences 
(or segmentations) first, and then use the estimated distributions to construct the de-
sired features (as in generative models). As pointed out by Vapnik (1998): “when solv-
ing a given problem, solve it directly and try to avoid solving a more general problem 
as an intermediate step.” 

Our models is similar to maximum entropy models in (Xue 2003) and CRFs in 
(Peng, Feng and McCallum 2004) in that all these models give flexibility to incorporate 
arbitrary features, and can be discriminatively-trained. Our models are novel in that 
many feature functions are derived from probabilistic or heuristic models inspired by 
source-channel models of Chinese sentence generation, as described in Section 4.3. 
Therefore, these feature functions are not only potentially more reasonable but also 
much more informative than for instance the binary features used in standard maxi-
mum entropy models in NLP. 

We also notice that many segmenters (e.g. S03 and S04 in Table 23) separate un-
known word detection from word segmentation. Though this would make the devel-
opment of the segmenter easier, it seems to be a flawed solution in nature, as we dis-
cussed earlier. The benefits of integrating both tasks can also been shown empirically 
in Table 23.  

9. Conclusions 

This paper presents a pragmatic approach to Chinese word segmentation. Our main 
contributions are three-fold. First, we view Chinese words as segmentation unit whose 
definition is pragmatic in nature and depends on how they are used and processed 
(differently) in realistic applications, while theoretical linguists define words with 
purely linguistic criteria. Second, we propose a pragmatic mathematical framework 
for Chinese word segmentation, where various problems of word segmentation (i.e. 
word breaking, morphological analysis, factoid detection, NER and NWI) are solved 
in a unified approach. The approach is based on linear models where component 
models are inspired by source-channel models of Chinese sentence generation. Third, 
we describe in detail an adaptive Chinese word segmenter, MSRSeg. This pragmatic 
system consists of two components: (1) a generic segmenter that is based on the 
mathematical framework of word segmentation and unknown word detection, and 
can adapt to different domain-specific vocabularies, and (2) a set of output adaptors 
for adapting the output of the former to different application-specific standards. 
Evaluation on five test sets with different standards shows that the adaptive system 
achieves state-of-the-art performance on all the test sets. 
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One area of our future work is to apply MSRSeg in a wide range of practical ap-
plications. We believe that some application-specific features can also be integrated 
into the framework. For instance, in MT, it would be interesting to investigate how to 
jointly optimize the performances of both word segmentation and word alignment. 

As one of the reviewers pointed out, though the reliable high performance of 
MSRSeg is impressive, it is by far one of the most complex systems with access to the 
richest resources. Hence, another interesting area of our future work is to explore 
whether the performance is attributed to a superior architecture or simply to the richer 
resources. We have developed a simplified version of MSRSeg, called S-MSRSeg. It 
does not use the morph-lexicon, and is trained using one fifth of the MSR training 
data in Table 4, which are only partially labeled (i.e. LW are not annotated). Interest-
ingly, S-MSRSeg achieves very similar (or slightly worse) performance on the five test 
sets in Table 4. This demonstrates again the potential of our pragmatic approach to 
Chinese word segmentation. Needless to say, the work reported in this paper repre-
sents not an end, but a beginning of yet another view of Chinese word segmentation. 
Towards this end S-MSRSeg and its training and test datasets are publicly available 
(e.g. at http://research.microsoft.com/~jfgao), for the sake of encouraging others to 
improve upon the work we have done. 
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