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ABSTRACT
For eye tracking to become a ubiquitous part of our everyday
interaction with computers, we first need to understand its
limitations outside rigorously controlled labs, and develop
robust applications that can be used by a broad range of users
and in various environments. Toward this end, we collected
eye tracking data from 80 people in a calibration-style task,
using two different trackers in two lighting conditions. We
found that accuracy and precision can vary between users and
targets more than six-fold, and report on differences between
lighting, trackers, and screen regions. We show how such
data can be used to determine appropriate target sizes and
to optimize the parameters of commonly used filters. We
conclude with design recommendations and examples how
our findings and methodology can inform the design of error-
aware adaptive applications.
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INTRODUCTION
Eye tracking has become an easily available and relatively
cheap modality to enhance interaction with a computer. Re-
mote (as opposed to head-mounted) video-based eye trackers
are available for under $200 [43, 45]. They are unobtrusive
and can be mounted on a display or built into laptops [28]. As
a result, there is increasing interest in using information about
eye gaze not only as a research instrument, but to enhance
our everyday interaction with computers. Gaze-enabled ap-
plications and interaction techniques range from explicit gaze
input, such as pointing [22, 49] or gaze gestures [8, 16, 33] to
attentive applications that use gaze to make inferences about
the user’s intentions [13, 29, 38] and improve input with other
modalities [37].

Surprisingly, little work has been done to understand the re-
quirements of such applications as they integrate into our
everyday computer use. There is no common standard or
framework for designers and developers to rely on to develop
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easy-to-use and robust gaze-enabled applications. As when de-
signing applications for other input modalities, such as touch
or mouse, they have to face basic questions such as:
Which region of the screen is easiest to interact with? How
accurate can we expect the user’s input to be? What is the
minimum usable size of an interactive element?

Prior work has found that tracking quality deviates from the
numbers obtained in manufacturers’ labs [5, 11, 30, 31] and
that tracking accuracy (the offset from the true gaze point) and
precision (the spread of the gaze points) vary widely across
different tracking conditions and users. However, few efforts
have been made to draw any formal conclusions that could
inform the design of gaze-enabled applications; if so, they
concentrate on specific applications or interaction techniques
(e.g. [18, 32]) Research studies typically try to keep variation
as small as possible by carefully controlling tracking condi-
tions, user positioning, frequently recalibrating the eye tracker,
and excluding participants that do not track well. While this is
reasonable for research, it is not feasible in practice.

To illustrate the extent of this problem in everyday use of gaze
input, we conducted an informal survey among five expert
users of gaze applications (people with ALS who rely on gaze-
based AAC for communication). We found that they have to
recalibrate their eye tracker between three and ten times per
day, even though devices are mounted to their wheelchairs and
their movement in front of the screen is limited due to their
motor disabilities. Despite this frequent recalibration, they
reported that they typically fail to interact with an application
several times per day as the application cannot account for
differences in tracking quality.

To establish eye gaze as part of our everyday interaction with
computers, we need to understand the characteristics and lim-
itations of eye tracking in practice and derive standards for
the design of gaze-enabled applications that take into account
that accuracy and precision can vary widely across different
tracking conditions. Toward this end, we collected calibration-
style eye tracking data from 80 participants in a controlled but
practical setup, using two different trackers in two lighting
conditions. In contrast to many eye tracking studies, we did
not exclude any participant due to insufficient tracking qual-
ity and only calibrated once at the beginning. Our findings
offer several contributions for the design and development of
gaze-enabled applications:

1. We report accuracy and precision ranges overall and for
different parts of the screen that characterize the large varia-
tion across different tracking conditions.



2. We provide a formal way to derive appropriate target
sizes from measures of accuracy and precision. Based on
our data we give recommendations for the minimum size of
gaze-aware regions to allow robust interaction.

3. We present an approach to find optimal parameters for any
filter that minimizes target size and signal delay. We com-
pare five commonly used filtering techniques and provide
optimized parameters.

4. We show our vision of error-aware adaptive applications
and show how our results and methodology can be utilized
in the design and operating principle of such applications.

Our methods can be re-applied to future hardware versions or
in other contexts to derive updated measurements as technol-
ogy and use scenarios evolve.

BACKGROUND AND RELATED WORK
There are various technologies that can be used to capture
eye gaze (see e.g. [11] for an overview). We focus on remote
video-based eye tracking, in which an eye-tracking camera is
attached to or integrated in a device’s screen.

Computer Interaction by Eye Gaze
Eye trackers deliver information about where on the screen the
user is looking. Applications can use this data for explicit eye
input that requires conscious control by the user, or can use
it as an implicit source of information, often in combination
with other input modalities (attentive user interfaces) [26].
In the following, we use the term gaze-enabled to refer to
any application that reacts to the changing gaze of the user.
In this paper, we concentrate on estimation of gaze points
by remote, video-based eye trackers. They capture the gaze
location of the user in screen coordinates at regular intervals,
depending on the recording frequency (commonly 30–60 Hz).
Optionally, the system can apply filters to smooth the signal,
and algorithms to detect events. The application then processes
the signal and responds accordinglyNote that each processing
step must happen in real-time and cannot rely on information
from future gaze points without delaying the application.

The most important gaze events for interactive applications
are fixations and saccades. A fixation denotes a period of
time (from less than 100 ms up to several seconds [11, 25])
for which the gaze location is static within a small region. A
saccade is the rapid and ballistic movement between fixations;
they take about 30–80 ms [11] and can be 2° or larger [26].
While there are other gaze events — including smooth pursuit,
microsaccades or glissades [11] — fixations and saccades are
essential to describe how the attention of the user changes
and can be recognized most reliably [11]. Table 1 overviews
interactions performed in various gaze-enabled applications,
ranging from explicit eye input to attentive user interfaces,
with several in-between these two ends of the continuum (this
list is not exhaustive, but represents exemplars of common
interaction styles). The second column shows the gaze events
on which the interaction relies. Independent of the conscious
level of control, the applications mainly use the same gaze
events to extract information about the user’s intention: single
gaze points, fixations, and saccades, with a few exceptions

Explicit or implicit inter-
action by eye gaze

Gaze event Ref #’s

 Gaze pointing Fixation or gaze point [7, 22, 49]
 Gaze gestures Sequence of fixations [8, 16, 23,

33, 47]
 Dwell-based selection Fixation over min. time [17, 24]
G# Multimodal selection Fixation or gaze point [17, 20]
G# Selection by following

a moving object
Smooth pursuit [35]

 Drag and drop Fixation or gaze point [17, 20]
 Rotary control and sliders Smooth pursuit [40]
G# Switching windows Gaze point [10]
G# Image annotation Fixation [10]
# Reading Fixation or gaze point [42]
# Focus of attention Fixation or gaze point,

saccade
[9, 15, 27,
29, 37]

Table 1. An overview of interactions performed in gaze-enabled applica-
tions. Circles mark the degree of explicit control from full control ( )
to no conscious control (#). Most interactions rely on the detection of
fixations and saccades, while a few utilize smooth pursuit of a target.

using smooth pursuit. This work concentrates on applications
that use saccades and fixations for computer interaction.

Accuracy and Precision of Gaze Tracking
The (spatial) quality of the tracked gaze can be measured in
terms of precision and accuracy. Accuracy denotes the off-
set between the true gaze position and the recorded position,
whereas precision measures the dispersion of recorded gaze
points during a fixation (i.e. , the gaze points’ standard devia-
tion). We measure accuracy and precision separately in the x-
and y-directions. Accuracy is often reported by manufacturers
to be < 0.5°. However, in particular for remote eye trackers,
offset from the true gaze point is often found to be larger than
1° [5, 30], even in controlled environments.

Factors that influence tracking quality
The tracking method considered in this paper relies on pupil
and corneal reflection tracking, the most common method
for estimating the gaze location [11]. The image in Figure 1
shows a user’s eyes and the location of the pupil and corneal
reflection, as estimated by the SMI REDn scientific. The
heavy mascara, thick frames of glasses, and reflections shown
in the image could potentially impair the quality of the cap-
tured gaze. In general, tracking quality is influenced by the
interplay of various factors related to properties of the user’s
eye, the tracking environment, the tracking method, as well
as the calibration procedure (e.g. [11, 30]). Such properties
include glasses or contact lenses, varying eye physiologies,
different levels of sunlight, properties of artificial lighting, and
the resolution and focus of the camera, among others. In the
resulting signal, four different types of noise have been recog-
nized: system inherent, physiological, optic artifacts, and data
loss [11]. Artifacts and data loss impact the interaction, but
can be detected and removed from the data stream (at the cost
of signal delay), whereas the detection of physiological and
system generated noise relies on filtering by the system.

Algorithmic approaches to robust interaction
Various algorithmic methods have been proposed to filter or
correct the estimated gaze point (see [11] for a review), but
many rely on post-hoc processing that introduces high latency,
making them unsuitable for real-time interaction. We extend



Figure 1. Image of the study setup. Left: in a room with no windows
illuminated by artificial light. Right: in a room with large windows fac-
ing the tracker, recorded on a cloudy day. Inset: design of targets and
go/no-go symbols and their distribution over the screen.

prior work [39] by evaluating several real-time filtering tech-
niques for interactive applications based on our collected data,
and propose an approach to choose optimal parameters. Re-
cent efforts model and predict the error when estimating the
gaze position on head-worn eye tracking glasses [2, 3]. Such
models are the first step towards adaptive and personalized
user interfaces for gaze interaction that adapt to the quality of
the tracked gaze. However, at this stage, they are complex to
train and implement, and it is unclear how they perform under
less controlled conditions. Our focus is on remote eye tracking
rather than head-mounted systems.

Design approaches to robust interaction
Several interaction methods and design approaches have been
proposed to deal with poor accuracy and precision. One obvi-
ous approach is to enlarge targets. However, this is not always
feasible as the overall size of the interface is limited. Space-
efficient techniques, such as hierarchical menus, can facilitate
interaction with large targets, but slow down performance, as
they require more steps for selection. Dynamic approaches,
such as zooming or fisheye lenses [1, 4, 9] can make selec-
tion more robust, but may visually distract the user. Gaze
gestures [8, 16, 33, 47] have been found to be more robust
against noise in comparison to target-based selections, but
may require unnaturally large saccades to overcome tracking
problems and may be hard to learn. Smooth pursuit [35, 40,
46] shows promise as a robust selection technique, but requires
a moving stimulus that the eye can follow which is often not
suitable for many traditional user interfaces. Requiring longer
dwell times in dwell-based gaze selection is another approach
to avoiding accidental target selection, though this slows down
interaction times; expert users may be able to reliably select
targets with dwell times near 300 ms, but only if target sizes
are appropriate for the tracking quality [24]. Our findings can
inform the design of many of the applications shown in Table 1
to optimally adapt to the tracking quality at a given time.

DATA COLLECTION
We collected gaze data across a broad range of people, using
two different eye trackers in two environments with differ-
ent lighting. We controlled important factors to be the same
throughout the study, such as position of the user relative to
the tracker, but kept the setup as natural as possible to capture
how much accuracy and precision of eye tracking can vary in
tracking conditions similar to those in practice.

Age 18–24 25–34 35–44 45–54 55–64
12 45 14 8 1

Eye color Blue Green Hazel Dark brown
11 9 10 50

Ethnicity Asian or
Pac. Isl.

Black or
Afr. Am.

Hispanic White Other or
Mixed

23 7 9 34 7
Experience Never used eye tracking Has used eye tracking

52 28
Table 2. Study participants’ demographic information

Participants: 81 participants took part in the experiment (62
male, 19 female). When advertising the study, we explicitly
encouraged people to take part even if they wore glasses or
contact lenses, or had experienced problems using eye tracking
before. Table 2 shows demographic information. The calibra-
tion process failed for only one participant (male) for whom
no data could be collected, and which is excluded in Table 2.
Participants were compensated with a $5 lunch coupon.

Eye trackers: We collected gaze data with 2 different eye
trackers: Tobii EyeX [45] and SMI REDn scientific [14], both
at 60 Hz. The first is an affordable tracker developed for
consumer use, the second is sold for scientific purposes and
is more expensive. The trackers have a similar form factor
and can be attached to the bottom of screens up to 27”. They
operate at a similar tracking range, not restricting the user
in their natural movement. SMI reports an accuracy of 0.4°
and a spatial resolution (root mean square) of 0.05. No such
values are available for the Tobii EyeX [44]. Participants were
assigned randomly to use one of the eye trackers.

Tracking Environment: We collected data in two different
lighting environments, shown in Figure 1. The artificial envi-
ronment was a room with no windows; light was from halogen
MR16 spot lights and two fluorescent 40-watt Biax lamps in
2×2 fixtures. The daylight environment was a room with large
windows facing the tracker; additional lighting came from
the same fluorescent lights used in the artificial setup. Data
was collected on a cloudy day. While both conditions do not
provide the optimal lighting recommended for an eye tracking
lab [11], they allow us to capture the noise induced by exter-
nal lighting that may be encountered in practice in end users’
homes, offices, etc. Participants were assigned randomly to
one environment.

Setup: The equipment setup was the same in both environ-
ments. We used a Microsoft Surface Pro 3 with an Intel Core
i5-4300U 1.9 GHz and 4 GB memory. The application was
shown on the 12” screen at a resolution of 1440×960 pixel
(144 DPI). Both trackers were magnetically affixed to a hori-
zontal bar at the bottom of the Surface’s docking station with
the material provided by the manufacturers. We placed the
display on a table at the same height in both environments. To
compensate for different participant heights, we tilted the dock-
ing station towards the user to adapt the gaze angle between
the user’s eyes and the eye tracker, until the manufacturer’s
calibration software showed a good tracking position. Partici-
pants were positioned at 65 cm from the screen. They were
told to try to stay still, but that they could move their head
naturally. With this setup, a visual angle of 1° corresponds to
a movement of ca. 1.1 cm on the screen.



Figure 2. Left: box plot of the accuracy (offset) and precision (standard deviation) over all target fixations. Center and right: different percentiles,
averaged over all targets, show that accuracy and precision vary largely in practical tracking conditions.

Task and Procedure: The participants’ task was to look at
targets randomly presented on the screen for about two sec-
onds each. If the target turned into a checkmark, they were
instructed to press the spacebar as quickly as possible; if it
turned into a cross, they should wait for the next target. This
go/no-go task was used to keep the participants’ attention on
the target [12]. Thirty targets were shown in random order,
distributed over the screen as shown in Figure 1, with a ver-
tical distance of 214 pixel (3.32°, 3.77 cm), and a horizontal
distance of 267 pixel (4.14°, 4.71 cm) between neighboring
targets. Each target’s (invisible) activation area was a circular
region of 500 pixel diameter (8.8 cm, 7.7°). When the partici-
pant’s gaze was inside the target for 500 ms, it was activated
and its color turned cyan. After 1250 ms the go/no-go task
started. If a target could not be activated after 5 s (because the
tracked gaze was too noisy), the next target appeared. Figure 1
shows the targets and the go/no-go icons. Before the task
started, we calibrated the eye trackers with a 7-point calibra-
tion method provided by the manufacturers. The study started
with a demographic questionnaire. After that, the instructions
for the go/no-go task were displayed, and then the task began.

Data Collection and Preprocessing: All gaze points were
recorded as an (x,y) position in screen coordinates, as given
by the API of the respective tracker, with filtering turned off.
For each target, we extracted the gaze points of a 1 s window
(60 frames) during which the participant looked at the target.
We did not use a fixation detection algorithm, which cannot
reliably distinguish between saccades and noise artifacts, but
extracted the data in one of two ways: (1) Online: A target
was activated if the gaze of the user stayed within a 250 pixel
radius from the target for 500 ms. Gaze points were extracted
for the next 1000 ms and saved if the gaze was still within that
region after that time; otherwise, the activation was reset. The
go/no-go task was only shown if we could extract the gaze
points. (2) Offline: If a target could not be activated for 5 s,
the next one was shown. From the recorded data we extracted
1 s during which we could be sure that the participant looked
at the target. Therefore, we chose a 1 s window for which
on average the gaze points were closest to the target. This
post-processing had to be done for 11% of the fixations

For each fixation, we then excluded the gaze points where no
eyes could be tracked (reported as such by the eye tracker). If
this was more than 2/3 of the gaze points, we excluded this
fixation from the analysis.

ANALYSIS AND RESULTS
The analyzed dataset consists of 2,343 fixations from 80 users
looking at 30 targets (2.4% of fixations were excluded, as de-
scribed above). By “target fixation” we simply denote the data
recorded while a user was looking at a target. No algorithmic
method was involved to extract fixation events. In the follow-
ing analysis, we first compute aggregate measures for each
target. Where not denoted differently, we then average across
the 30 targets for each user to account for the fact that fixations
by the same participant are not independent observations.

Data Loss and Distribution of Gaze Points
Data loss occurs when the eye tracker cannot estimate the gaze
position. On average, each target fixation consists of 55.6 gaze
points recorded over 1 s (ca. 60 frames). The average data loss
is 7.9% of frames. A two-way ANOVA shows significantly
higher loss for the Tobii tracker than for the SMI: gaze position
could not be estimated for 13.1% versus 2.8% of points per
target (F(1,79) = 18, p < 0.01). No such difference was found
for the tracking environments (8.1% in artificial versus 7.8%
in daylight) and there was no interaction effect. For 1,450
fixations (62%) no data was lost. For the remaining 38%,
tracking was lost on average 11 times during the 1 s fixation,
for an average of 1.5 frames.

We performed normality tests on the gaze points of each target
fixation, separately in the x- and y-directions (D’Agostino and
Pearson’s test as implemented by Python’s SciPy package [7,
20] with a significance level of p < .01). They showed that on
average gaze points are normally distributed in the x-direction
for 71% of the fixations, and in the y-direction for 74%.

Precision and Accuracy
For all gaze points during a target fixation we compute accu-
racy and precision separately in the x- and y-direction. Accu-
racy denotes the absolute offset between the fixated target and
the mean of the estimated gaze points. Precision is computed
as the standard deviation (SD) of the gaze points.

Table 3 shows an overview of the results. Values are averaged
across users and given for different conditions. We also show
average accuracy and precision values for different percentiles
of users fixating each target, e.g. only the best 25%. Stan-
dard deviations are given in brackets. We used multivariate
ANOVA to test for significant differences in accuracy and
precision between the tracker and light conditions. We report



Figure 3. Precision of the estimated gaze points over the different targets.
Covariance ellipses show the contour of the 2D Gaussian, fitted to the
gaze points corresponding to all fixations of the same target.

values in cm, which is independent of screen resolution. For
space reasons, we do not report the values in degrees of visual
angle, but refer to the supplementary material for an extended
version of the table. Our results should not be seen as absolute
properties of the tested eye trackers or tracking environments,
but show how much we can expect accuracy and precision to
vary as eye tracking is used in everyday computer interaction.

Variation over all conditions
Figure 2 shows how much accuracy and precision can vary
over all collected data. Table 3 gives the corresponding results.
A paired samples t-test showed that on average, accuracy is
worse in the y-direction by about 0.1 cm (t(1,79) = 2.8,p <
.01). The middle and right plot in Figure 3 visualize how
accuracy and precision increase over different percentiles. No
significant difference between the x- and the y-direction was
found for precision (t(1,79) = 1.0.3, p = 0.3).

The middle and right plots in Figure 2 visualize how accuracy
and precision become worse for different percentiles of users.
The results given in Table 3 are average values over the cor-
responding percentiles of each target. Very accurate fixations
(25th percentile) are only 0.15 cm in the x- and 0.2 cm in the
y-direction offset from the target. On the other hand, inaccu-
rate fixations (90th percentile) can be as far offset as 0.93 cm
in the x- and 1.19 cm in the y-direction, a more than six-fold
difference. Similar for the spread of the gaze points.

Comparison between tracking conditions
Two-way MANOVA found a significant difference between
the eye trackers used in the study (F(1,79) = 7.7, p < .01).
Follow-up univariate testing showed that the Tobii EyeX
tracker was more accurate than the SMI REDn scientific in
both the x-direction (F(1,79) = 9.4, p < .01) and y-direction
(F(1,79) = 10.6, p < .01), whereas no significant difference
was found for precision. This stands in contrast to our previous
finding that the Tobii EyeX has significantly more data loss
than the SMI REDn, in which case it cannot track the gaze po-
sition at all. As shown in Table 3, tracking in the daylight con-
dition was consistently better by about 0.1-0.15cm. However,
this difference was not found to be significant(F(1,79) = 1.7,
p = 0.16) by the two-way MANOVA. Also there was no sig-
nificant interaction effect.

Accuracy (cm) Precision (cm)
X Y X Y

Overall 0.47 (0.64) 0.57 (0.52) 0.52 (0.73) 0.5 (0.56)
Percentile
25% 0.15 0.2 0.19 0.22
50% 0.31 0.45 0.32 0.32
75% 0.58 0.78 0.57 0.58
90% 0.93 1.19 1.1 1.04
Tracker
SMI REDn 0.58 (0.75) 0.66 (0.57) 0.51 (0.91) 0.51 (0.64)
Tobii EyeX 0.36 (0.5) 0.48 (0.45) 0.53 (0.44) 0.48 (0.44)
Light
Artificial 0.51 (0.75) 0.65 (0.6) 0.6 (0.87) 0.56 (0.68)
Daylight 0.42 (0.51) 0.5 (0.42) 0.44(0.56) 0.44 (0.4)

Table 3. Average accuracy and precision across all users, across different
percentiles of each target, and for different tracker and light conditions
(lower values are better). Standard deviations are given in brackets. An
extended table with degrees is provided in the supplementary material.

Comparison between screen regions
The precision of the estimated gaze for each target is worse to-
ward the right and bottom edge of the screen, as shown in Fig-
ure 3. The ellipses represent the covariance matrix computed
over all gaze points from all 80 users. Multivariate ANOVA
and follow-up univariate analysis with TukeyHSD tests found
that the precision of the bottom row was significantly worse
compared to all other rows at the p < .05 (adjusted) signifi-
cance level in both x- and y-direction. In contrast, there was
no significant difference for accuracy between any of the rows.

Significant differences between columns were only found for
precision in the x- direction. Precision was significantly worse
for the right-most (6th) column in comparison to all other
columns at the p < .01 (adjusted) significance level. In the
supplementary material we provide exact accuracy and preci-
sion values for rows and columns.

Comparison over time
The tracking quality did not significantly change for the same
participant during the experiment. MANOVA found no differ-
ence for either accuracy or precision between the first and last
target fixation of each user (F(1,158) = 0.9, p = 0.46).

FROM ACCURACY AND PRECISION TO TARGET SIZE
Once we know the tracking accuracy and precision, we can
derive appropriate target sizes. A target denotes any region in
a user interface that should recognize if the user’s gaze falls
inside its borders in order to trigger a functionality. This can
be an explicitly controlled button, the words and lines in an
attentive reading application, the active recognition region for
gaze gestures, or the area of interest in a research experiment.

When a user fixates the center of a target, we assume that the
captured gaze points are normally distributed in the x and y
directions around a mean with offset Ox/y (accuracy) from
the target center and a standard deviation σx/y(precision). For
robust and smooth interaction, we suggest that at least 95% of
gaze points should fall inside the target regions; this means we
can derive the target width and height as:

Sw/h = 2 (Ox/y +2 σx/y) (1)

We multiply σx/y by 2, as about 95% of values lie within two
standard deviations of the mean for normally distributed data.



Figure 4. Given the accuracy and precision, target size is computed
based such that 95% of gaze points fall inside the target. The plot shows
example target sizes based on two different fixations of the same target,
one with good and one with bad tracking quality.

An error rate of more than 5% (every 20th point) slows down
performance and leads to errors that are often hard to recover
from.However, if an interaction technique can be used reliably
with a smaller percentage of points, Equation 1 can be easily
modified by replacing the multiplier with the corresponding
value from the standard normal table.

Figure 4 visualizes the computation of the target size based
on the offset and SD of the raw gaze points and shows two
example targets based on the gaze points of two fixations with
good and bad tracking quality. Although Equation 1 is a sim-
plification and not a statistical assessment of the distribution of
the gaze points, it can be used to quickly compute appropriate
target sizes based on precision and accuracy values. When we
check this formula based on our collected data, we get that for
each target fixation on average 94.9% of gaze points fall inside
a target of width and height as computed by Equation 1. Ta-
ble 5 shows the resulting average target sizes computed based
over all target fixations, and over different percentiles of users
for each target. Sizes can vary from 0.94×1.24 cm for users
that track well, up to 5.96×6.24 cm if we want to allow robust
interaction for nearly all users in our dataset. These target
sizes are based on unfiltered data; next, we discuss filtering
techniques and derive similar values based on filtered data.

PARAMETER OPTIMIZATION FOR FILTERS
Filters can significantly improve the precision of the tracked
gaze by removing noise artifacts and reducing signal disper-
sion. Several filters have been proposed for real-time systems;
however, developers implementing these filters must choose
parameters that control their performance. This is often done
suboptimally based on prior experience or heuristics. We
describe an easy-to-implement procedure to optimize the pa-
rameters of any filter for minimum target size and minimum
delay, based on calibration-style data as collected in our study.
We then compare five different types of filters with three dif-
ferent kernel functions, and evaluate their effect on precision
and accuracy in comparison to the unfiltered data.

Filters for Interactive Gaze Applications
In interactive gaze-enabled applications, no post-processing of
the data is possible, and any filtering must be done in real-time.
This limits the ability to detect outliers and artifacts, which
introduce a delay of several frames. For most applications

Filter Parameter Ranges

Weighted Average (WA) [19, 48] Window size N 2–40 frames

WA + saccade detection [39] Saccade threshold s
Max. window size N

1–4 cm (à .05)
2–40 frames

WA + saccade detection
+ 1-sample outlier correction

Saccade threshold s
Max. window size N

1–4 cm (à .05)
2–40 frames

1e filter [6] Adaption rate β Cut-
off frequency fcmin

0–1.5 (à .01)
0.4–6.5 (à .1)

Stampe filter [41] – –
Table 4. Filtering techniques for which we optimize parameters and that
we evaluate based on our collected data. Ranges denotes the parameter
ranges considered in the grid search.

there are two main states that need to be recognized: fixations
and saccades. Eye tremor, microsaccades, and noise should be
filtered in order to stabilize the signal and improve precision.
The quick and sudden change between those states must be ac-
counted for by the filter. This makes commonly used methods,
such as moving average, Kalman filter, and Savytzki-Golay,
filter less useful [6, 39]. Based on prior work [39] and our
own experience, we tested five different types of filters. They
are summarized in Table 4 and described in the following.

The Stampe filter [41] is commonly used to remove outliers
from the tracked gaze signal. It uses a two-step procedure that
detects one- and two-frame deviations from a continuously
increasing or decreasing signal and corrects them according to
the surrounding points. This introduces a delay of up to two
frames. No parameters are necessary.

Weighted average (WA) [19, 48] or finite impulse response
filter (FIR) computes the filtered point X̂t at time t as the
weighted average over the last N points:

X̂t =
N

∑
i=0

wi

∑ j w j
·Xt−i (2)

where Xt−i is the point observed at time t − i , and wi is the
corresponding (normalized) weight. The only parameter for
a WA filter is the window size N. The function defining the
weight for each point in the averaging window, is called the
kernel function. We test three different kernel functions:

1. A Linear kernel corresponds to a simple average of the last
N points, wi = 1.

2. A triangular kernel [21, 48] assigns a weight of 1 to the
least recent point (N), 2 to the next point (N −1), and so on,
wi = N − i+1.

3. A Gaussian kernel function [19] assigns weights according
to a Gaussian function, where the variance is chosen such
that no point in the averaging window is assigned a weight

smaller than 0.05 [39], wi = e−
(i−1)2

2σ2

Saccade detection can be used to extend the WA filter [36].
Similar to the identification by dispersion threshold algo-
rithm [34], commonly used for fixation detection in offline
processing [11], it defines a threshold s that is used to detect
saccades. As long as the distance between successive gaze
points is smaller than s, they are assumed to belong to the
same fixation. The filtered gaze point is computed as the
weighted average over the last N points of the same fixation.
If the distance exceeds the threshold, a saccade is detected and



Figure 5. Pareto front of optimal parameter settings for each tested filter. Filters are evaluated based on the resulting target size and average delay in
detecting a saccade. Corresponding parameters are given in the supplementary material. Depending on the application, appropriate parameters can
be chosen that yield the desired trade-off between target size and signal delay.

no filter is applied. The new gaze point is the first of a new
fixation. We test the same kernel functions as described above.
In addition to the window size N, the filter requires to set the
saccade threshold s.

Outlier correction further extends the WA filter [21]. It de-
tects and removes single outliers that would be detected as
two successive saccades by the previous filter. If the distance
between successive gaze points exceeds the saccade threshold
s, the new gaze point is saved as the start of a potential new fix-
ation. The algorithm waits for the next observation to confirm
the detection of a saccade. If the next gaze point is closer to
the previous fixation, the potential fixation is discarded as an
outlier. Otherwise, a new fixation is started. This introduces
a one-frame delay. Points belonging to the same fixation are
filtered by a WA filter, as before. The parameters are the size
N of the averaging window and the saccade threshold s.

The 1e filter [6] has been proposed for filtering the signal
obtained from human motion tracking. It uses a low-pass filter
but adapts the cut-off frequency depending on the movement
speed. At low speeds, the signal is heavily smoothed, at the
cost of responsiveness to signal changes. As speed increases,
the cut-off frequency is increased, thus the filter is less ef-
fective but more responsive to the fast changes in the signal.
This principle makes the 1e filter potentially well-suited for
eye tracking, where static fixations alternate with very fast
saccades. To our knowledge it has not been applied to eye
tracking data before. It has two parameters to control smooth-
ness and responsiveness of the filter: the cut-off frequency
fcmin and the adaption rate β .

Parameter Optimization
Most of these filters require the choice of one or more pa-
rameters, which determine the effectiveness of the filter. We
propose an approach to optimize parameters based on data
collected through a calibration-style study such as the one
described earlier in this paper. In a grid search, we instantiate
a filter with each possible parameter, apply it to the data, and
evaluate its effect on two criteria: the resulting target size and
the delay in following a saccade. For each possible parameter,
the following steps are performed separately in the x- and
y-direction:

1. Target size: For each target fixation in the data set, apply
the filter, compute the accuracy and precision of the filtered
gaze, and derive the corresponding target size according to
Equation 1. Compute the target size S75% over all fixations
as the 75th percentile of all target sizes. This represents a
target size that allows for robust interaction, where for 75%
of fixations at least 95% of gaze points fall inside the target.

2. Saccade simulation: Simulate saccades between two
neighboring targets of size S75%. For each target fixation,
simulate a second fixation by shifting each gaze point by
S75% cm and append it to the original fixation. The result-
ing signal simulates a fixation-saccade-fixation sequence.
Create a second sequence by shifting the original points by
−S75% cm in the negative direction.

3. Saccade delay: Apply the filter to the constructed se-
quences. For each filtered sequence, compute saccade delay
as number of frames from the start of the second fixation
until the signal first exceeds the lower target bound of the
second target. Adjust the delay by any delay the unfiltered
signal may have due to signal noise.

In this way, for each potential set of parameters, we compute
the target size necessary for robust interaction and the average
signal delay the filter would lead to when used in a gaze-
enabled application. In order to decide on the best parameters,
we have to trade off these two opposing criteria. Therefore,
we identify the Pareto optimal solutions by discretizing the
delay, and then for each delay, determining the parameters that
yield the minimum target size without exceeding this delay.

Figure 5 shows the resulting Pareto fronts for applying each
filter in the x- and y-direction. Each point denotes a parame-
ter setting that yields the minimum target size for the corre-
sponding delay. The Weighted Average filter can be seen as a
baseline. Its only parameter, the size of the averaging window,
determines the trade-off between small target size and short
delays. The Gaussian and Triangle kernel perform slightly
better than the Constant kernel. They give a higher weight
to more recent points, thus allowing for a larger averaging
window at the same signal delay than the Constant kernel. In
practice the Stampe filter yields a larger delay than expected
from its construction. The two points in the plot represent the
first and second step during which one- and two-frame outliers



Target width (cm) Target height (cm)
Raw Filt. Diff Raw Filt. Diff

Overall 3.0 2.02 33% 3.14 2.19 30%
Percentile
25% 0.94 0.58 38 % 1.24 0.8 35%
50% 1.8 1.12 38 % 2.26 1.48 35%
75% 3.28 1.9 42 % 3.78 2.35 38%
90% 5.96 3.9 35 % 6.24 4.24 32%

Table 5. Recommended target sizes for robust and smooth interaction
by eye gaze, and a comparison between sizes computed based on raw
data and filtered data. Percentiles show how much target sizes varies for
different levels of tracking quality.

are corrected, in theory yielding one- and two-frame delays.
However, depending on the noise structure, the Stampe filter
may detect saccades as outliers, thus yielding a larger delay.
In practice, this leads to similar or worse performance than
the weighted average filter. The 1e filter performs better than
the WA filter, due to the dynamic adjustment of the cut-off
frequency. However, in practice this adjustment is not enough
for the filter to react to the sudden and large signal jumps
corresponding to a saccade. Moreover, the cut-off frequency
is also adjusted to noise artifacts that show similar dynamics
as saccades. The Saccade filter performs best for a delay up
to one frame (16 ms with a 60 Hz tracker). While in theory,
it does not introduce any delay, in practice a saccade may not
be detected, in which case a strong averaging filter is applied.
On the other hand, choosing a small saccade threshold ensures
minimal delay, but increases the number of outliers wrongly
detected as saccades, thus yielding a larger target size. A simi-
lar trade-off applies to the Outlier filter. The construction of
the filter introduces a minimum delay of one frame. However,
stronger filtering is achieved if we increase the saccade thresh-
old and thus take into account larger delays if a saccade is not
recognized, on average up to about 2.5 frames.

The supplementary material contains corresponding parameter
settings for each filter. Developers can use these results to
choose the best filter settings appropriate for their application.
If a different setup is used or as technology develops, the
presented approach and metrics can be used to derive optimal
parameters for any given filter based on data obtained from
simple target fixations.

Effect on Accuracy and Precision
Based on our comparison, we choose to filter our data with the
Outlier filter with a Gaussian kernel, which extends weighted
averaging with saccade detection and outlier correction. Ac-
cording to our optimization, we choose a saccade threshold of
1.45 cm in x- and 1.65 cm in the y-direction, and a window
size of 36 and 40 frames respectively. In practice, this would
yield a delay of about two frames (32 ms with a 60 Hz tracker).

Figure 6 shows the resulting average target sizes based on the
filtered and unfiltered data of each target fixation. Table 5
compares the average sizes based on the raw and filtered data.
The first row shows the average overall data. Precision has
improved from 0.53 cm to 0.29 cm in the x-direction and from
0.51 to 0.27 cm in the y-direction, while accuracy has approx-
imately stayed the same. The other rows show the variation
of target size for different percentiles of target fixations. They

Figure 6. Appropriate target sizes for different screen positions, com-
puted based on the raw and the filtered data.

are computed based on the corresponding percentile for each
target and averaged over all targets. The optimized Outlier
filter reduces the target size by up to 42%. However, the filter
can only improve the precision of the data, not its accuracy.

IMPLICATIONS FOR GAZE-ENABLED APPLICATIONS
We can use our findings to derive implications for the design
of gaze-enabled applications that are used by a broad range of
users under varying tracking conditions. Such implications are
useful for designers and developers, but also for researchers
who want to minimize the risk of having to exclude users from
their study or who want to conduct studies in more natural
environments.

Target size and distances: Gaze-enabled regions should
be designed slightly larger in height than in width, since
we observed consistently larger standard deviations in the
y-direction. According to our data, target sizes of at least
1.9×2.35 cm allow for reliable interaction for at least 75% of
users if optimal filtering is used. If no filter is implemented,
this should be enlarged to 3.28×3.78 cm. Targets of this size
can be placed directly next to each other. Note that the size
only denotes the region that is reactive to the eye gaze; this
can be invisible to the user and the corresponding UI elements
can be smaller, in which case the distance between graphical
elements must then take into account the larger tracking area.

Screen regions: Avoid placing gaze-enabled elements to-
wards the bottom or right edge of the screen, for which accu-
racy and precision was found to be significantly worse.

Filtering: Use a weighted average filter with a Gaussian or
Triangular kernel and saccade detection. If the application can
account for a two-sample delay, additional outlier correction
(Kumar et al. 2008) can improve precision further and reduce
recognition of false saccades. In this work, we obtained best
results with the following parameters: window size of 36/40
frames, saccade threshold of 1.45 cm/1.65 cm in x-/y-direction.
The latter one could be further adapted to the specific appli-
cations, for example when targets are far apart and expected
saccades thus larger. Therefore, the supplementary material
provides optimized parameters.



Figure 7. Example case that shows how the design of a gaze-controlled social network application can be adapted to the changing tracking quality. Left:
Target sizes for good and bad tracking, based on data from two users. Middle: UI for good tracking quality. Right: UI adapted to bad tracking. The
keyboard has moved up where tracking is best and letters are grouped to account for vertical offset and spread of gaze points. Green lines show that
the active gaze region of the buttons is actually larger than the graphical UI element, accounting for bad tracking near the bottom of the screen.

Error-Aware and Adaptive Applications
Our findings open up a new set of questions, setting the stage
for research in future areas such as adaptive UIs. We share the
vision of other researchers (e.g. [2, 3, 36]) that applications
should be aware of uncertainty in the input signal and adapt
their interface and functionality accordingly. However, eye
tracking poses a challenge in that the error of the estimated
gaze point varies substantially depending on the interplay of
many factors and thus is hard to predict and correct. Therefore,
we envision applications consisting of flexible modules that
adapt their graphical representation and functionality to varia-
tions in accuracy and precision of the tracked gaze. The results
and methods presented in this paper are an important step to-
wards the the design of such adaptive modules. To exemplify
this, we sketch an example application in Figure 7. We show
how the user interface of a social network application can be
adapted based on example data of two different users from our
data set. We envision the application to adapt to the changes
in tracking quality by going through the following steps:

1. Collect information about tracking accuracy and preci-
sion by analyzing target fixations during calibration and usage.
Utilize the data to compute appropriate target sizes as shown
in Equation 1. The left plot in Figure 7 shows example target
sizes based on data from two different users. Yellow denotes
“good” and blue “bad” tracking quality.

2. Choose optimal filter parameters, trading off signal re-
sponse and precision based on the characteristics of the ap-
plication. For example, if error corrections are costly, a more
aggressive filter could be chosen if signal quality drops, taking
into account delayed response of user actions for a more ro-
bust interaction. Optimal parameters for a range of acceptable
delays are given in the supplementary material.

3. Adapt functionality and design of the UI to account for
the changes in tracking quality, either as predefined or op-
timized in real-time. This is exemplified in Figure 7. The
middle part shows a UI designed for good tracking quality:
it has a full keyboard placed on the bottom of the screen (as
familiar from mobile interfaces); links and buttons can be
selected individually. The UI on the right is adapted to poor
tracking. The keyboard is moved to the top where tracking
is relatively best, and letters are grouped to account for the
vertical offset and spread of gaze points (grouped-key text

entry may then be disambiguated algorithmically using text
prediction, or combined with a secondary input action to select
individual characters). The links under "Trends" are merged
into one gaze target, while keeping them visually as before; if
activated, an alternative pointing technique like zooming [4,
10] or fish-eye lenses [1] could be applied. Similarly, the scroll
buttons are kept as before, but their active gaze region expands
beyond the screen and toward the static message window.

4. Optimize when to adapt the UI, by monitoring changes in
tracking and predicting the potential gain. In order for adaptive
interfaces to be usable, the system needs to take into account
the cost for the user to adapt to the new UI. To determine the
best changes the system trades off criteria such as interaction
cost, learning time, or user preference in interaction with
the user. Toward this end, future work is needed to develop
appropriate user models and optimization methods.

Other types of applications could benefit from information
about accuracy and precision. For example, the more accu-
rate and precise the estimated gaze points, the more complex
and small the gaze gestures that can be used. During run-
time, a gesture system could adapt to loss of tracking quality
and encourage the user to perform larger gestures, or provide
different gesture sets for different levels of tracking quality.
Recognition algorithms could also take into account the qual-
ity of the tracked gaze to better differ between noise in the
signal and noise in the gesture performance. Attentive read-
ing applications (e.g. [13, 38]) could adapt their font size and
word spacing for better recognition of fixations during reading.
Visualizing tracking quality to the end user could be useful, for
example in remote collaborative settings where information
about collaborators’ gaze can be a useful communication tool,
but a noisy signal can be confusing [7].

DISCUSSION
We showed how eye tracking precision and accuracy can vary
under tracking conditions similar to those encountered in prac-
tice. Our work underscores the importance of error-aware
applications that adapt to variations in tracking quality, and
we suggested several opportunities for how our results can
inform the design of such applications. In the following, we
discuss the generalizability of our findings to applications used
in-the-wild and opportunities for further work.



Generalizability of Results
To assess the generalizability of our results to gaze input in
everyday computer interaction, we have replicated our data
collection with six experienced eye tracking users (people with
ALS who rely on gaze-based AAC for communication), in
environments and setups in which they use their eye track-
ers in practice. The task was the same as described in the
Study section, but we only used the Tobii EyeX tracker, and
mounted it on a rolling stand (rather than table) for wheelchair
accessibility. Compared to the first study, gaze points were
tracked with a similarly large variation in precision; multivari-
ate ANOVA found no difference for precision in either the x-
or the y-direction. However, accuracy of the gaze points varied
even more, ranging from 0.16 cm and 0.21 cm in the x- and
y-direction if tracking was good (25th percentile) to 1.32 cm
and 1.67 cm in the x- and y-direction for poor tracking (90th
percentile). Multivariate ANOVA and follow-up univariate
testing found the difference in accuracy to the first study sig-
nificant (F(1,86) = 2.6, p = 0.04). Further analysis showed,
that in comparison to the first study, there were more outliers
for which offset was over 1 cm. A Mood’s median test found
no significant difference in accuracy between the two studies.

This shows that the conditions created in our study closely
resemble those that we can expect in practice. However, when
applying our findings designers should keep in mind that in
particular the accuracy can vary even more, suggesting that
designers should be conservative in their design of targets.

Limitations and Opportunities for Future Work
Several characteristics of our study design may lead to even
larger variations in-the-wild. We computed target sizes with
the assumption that users look at the center of a target. If
the user’s gaze changes within a small region, accuracy and
precision will likely stay the same but more gaze points will
land outside a target as the gaze gets close to its border. It is
a separate research question how the visual design of targets
(label shape, color, etc.) changes the focus of a user.

Our study was short, thus we did not find differences in ac-
curacy or precision between a user’s first and last fixation.
In practice, we expect that accuracy and precision further
decrease over time (due to movement, fatigue, etc.).

We found that accuracy and precision become worse toward
the bottom and right edge of the screen. However, both tested
trackers can be used with screens up to 27”, which is larger
than the 12” screen we used. We expect tracking to also get
worse toward the left and top edges as targets are placed closer
to the spatial limits of the tracker; however, a similar study on
a larger screen is necessary to confirm this expectation.

We used two commercially-available remote, IR eye trackers
under two lighting setups. The specific accuracy and precision
measures we report may vary under other environmental con-
ditions and/or with different equipment. However, our study
reveals that in practical conditions, tracking quality is much
more affected by differences between individual users than
trackers or lighting. Using mixed linear regression to model
the accuracy and precision of our data, we found that on aver-
age differences in lighting and tracker only account for up to

8.3% of the deviation in tracking quality, whereas differences
between users account for up to 32.8%. Thus, it is reasonable
to assume that data collected under similar conditions with
other eye trackers are likely to show a similarly large varia-
tion in tracking accuracy and precision; formally investigating
this would be a valuable direction for future research. For
applications to be usable in practice, it is important to account
for these large variations in tracking quality, regardless of the
source. But in order to generate updated measurements as use
scenarios and eye tracking devices evolve, other researchers
can use the experimental and analytic methodologies we de-
scribed in this paper.

CONCLUSION
Eye tracking has the potential to revolutionize how we interact
with computers. Attentive applications seamlessly integrate
gaze input into existing interaction paradigms and explicit gaze
control opens new design spaces for HCI. While researchers
have developed many interaction techniques and applications
that use gaze information, there was a gap in understanding
the requirements of such applications as they are released to
consumers. Toward this end, our work provides important
contributions for developers and designers of gaze-enabled
applications, as well as researchers using eye tracking:

1. We showed that there is large variability in accuracy and
precision when eye tracking is used in more practical condi-
tions. Differences between users can be more than six-fold,
and we analyzed variations of trackers and screen regions.

2. We propose a way of formally going from measures of
accuracy and precision to target sizes. We provide look-
up tables for appropriate target sizes and discuss the best
screen regions. Our findings can be directly used by people
developing gaze-enabled applications.

3. We optimize and evaluate filters that work for eye track-
ing data in practical conditions. We propose an optimization
approach to find parameters that minimize target size and
signal delay, given calibration-style data. Developers can
directly use our results to choose the filter and parameters
appropriate for their application, while researchers can fol-
low our approach as they develop new filters.

4. We outline our vision of error-aware gaze application,
that adapt their design and interaction techniques to the
current tracking quality. We discuss several examples and
provide a walkthrough how our findings can be used to
inform the design of such applications.

For eye tracking to become a ubiquitous part of our everyday
interaction with computers, it is important to more systemati-
cally explore the question of “What is good design?’ for gaze
input, with the goal of establishing standards and frameworks
for robust, usable gaze applications. The presented findings
are an important step toward this goal, and our methods can
be re-applied to future hardware versions or in other contexts
to derive updated measurements as technology evolves.
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1€ Filter

x-direction

β fcmin

delay 

(frames)

target width 

(cm)

1 0.78 0.5 2.68

0.54 0.93 1.0 2.54

0.34 0.78 1.5 2.47

0.21 0.95 2.0 2.36

0.15 0.95 2.5 2.29

0.11 0.94 3.0 2.26

0.09 0.8 3.5 2.22

0.1 0.2 4.0 2.17

0.08 0.24 4.5 2.13

0.05 0.67 5.0 2.12

y-direction

β fcmin

delay 

(frames)

target width 

(cm)

0.99 0.87 0.50 3.00

0.53 0.93 1.00 2.89

0.33 0.94 1.50 2.82

0.23 0.79 1.98 2.75

0.17 0.79 2.50 2.70

0.12 0.87 3.00 2.65

0.09 0.84 3.49 2.61

0.07 0.85 4.00 2.59

0.07 0.46 4.49 2.56

Appendix 1: Optimal parameters 

Note: parameter values are optimized with respect to input signal (gaze points) 

given in cm. The characteristics of the filter may lead to different values if other 

units are used, such as pixel, which lead to much larger input values.



Metrics Stampe Filter

x-direction

Step

target width 

(cm)

delay 

(frames)

1 2.557639 1.489

2 2.38125 3.028

y-direction

Step

target height 

(cm)

delay 

(frames)

1 2.980972 1.545

2 2.786944 3.152



Optimal parameters

Weighted Average Filter

x-direction

window size 

(frames)

target width 

(cm)

delay 

(frames)

target width 

(cm)

delay 

(frames)

target width 

(cm)

delay 

(frames)

2 2.95 0.6 2.96 0.2 3.16 0.0

3 2.73 1.0 2.79 0.5 3.03 0.1

4 2.59 1.5 2.65 0.9 2.79 0.4

5 2.52 2.0 2.59 1.2 2.68 0.8

6 2.45 2.6 2.54 1.6 2.61 1.1

7 2.40 3.0 2.49 1.9 2.56 1.4

8 2.36 3.5 2.43 2.3 2.52 1.8

9 2.31 4.1 2.40 2.6 2.49 2.1

10 2.26 4.6 2.36 2.9 2.43 2.4

11 2.22 5.1 2.35 3.2 2.42 2.7

12 2.19 5.6 2.31 3.6 2.38 3.0

13 2.15 6.1 2.28 4.0 2.35 3.3

14 2.13 6.7 2.26 4.2 2.33 3.6

15 2.12 7.1 2.22 4.6 2.31 4.0

16 2.10 7.7 2.19 5.0 2.26 4.3

17 2.06 8.3 2.17 5.5 2.24 4.8

18 2.06 8.9 2.17 5.9 2.22 5.1

19 2.05 9.3 2.15 6.1 2.20 5.5

y-direction

window size 

(frames)

target height 

(cm)

delay 

(frames)

target height 

(cm)

delay 

(frames)

target height 

(cm)

delay 

(frames)

2 3.32 0.6 3.37 0.3 3.49 0.0

3 3.12 1.0 3.18 0.5 3.39 0.2

4 2.98 1.5 3.03 0.9 3.18 0.4

5 2.89 2.0 2.96 1.2 3.09 0.9

6 2.84 2.6 2.89 1.6 2.98 1.2

7 2.77 3.1 2.84 2.0 2.93 1.5

8 2.70 3.8 2.80 2.4 2.88 1.9

9 2.66 4.3 2.75 2.8 2.84 2.2

10 2.63 4.9 2.70 3.2 2.79 2.6

11 2.59 5.4 2.68 3.5 2.73 3.0

12 2.56 5.9 2.65 3.9 2.72 3.3

13 2.54 6.4 2.63 4.3 2.68 3.6

14 2.52 6.9 2.59 4.7 2.66 4.0

15 2.50 7.4 2.58 4.9 2.65 4.3

16 2.50 7.9 2.56 5.3 2.63 4.7

17 2.50 8.6 2.54 5.7 2.59 5.1

18 2.49 9.2 2.54 6.1 2.59 5.4

19 2.47 9.6 2.52 6.5 2.58 5.7

Kernel: Triangle Kernel: GaussianKernel: Constant

Kernel: Constant Kernel: Triangle Kernel: Gaussian



Optimal parameters

Weighted Average Filter with Saccade Detection

x-direction

Kernel: Constant

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target 

width 

(cm)

delay 

(frames)

saccade

threshold 

(cm)

max. 

fixation 

window 

(frames)

target 

width 

(cm)

delay 

(frames)

2.1 2 2.84 0.09 1.3 11 2.82 0.10

1.5 15 2.66 0.20 1.5 33 2.59 0.20

1.75 12 2.54 0.30 1.7 37 2.42 0.29

1.7 36 2.42 0.39 1.8 37 2.40 0.34

1.75 38 2.36 0.47 1.8 39 2.38 0.46

1.8 37 2.35 0.58 1.8 39 2.38 0.46

1.85 35 2.33 0.68 1.9 35 2.36 0.69

1.85 35 2.33 0.68 1.9 35 2.36 0.69

1.9 36 2.31 0.90 2.0 39 2.35 0.86

1.90 36.0 2.31 0.90 2.0 39 2.35 0.86

y-direction

Kernel: Constant

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target 

height 

(cm)

delay 

(frames)

saccade

threshold 

(cm)

max. 

fixation 

window 

(frames)

target 

height 

(cm)

delay 

(frames)

1.20 5.0 3.21 0.08 1.65 4.0 3.14 0.10

1.75 6 3.02 0.20 1.3 35 2.96 0.19

1.7 12 2.93 0.30 1.6 38 2.86 0.30

1.75 15 2.86 0.38 1.7 39 2.82 0.38

1.7 39 2.75 0.50 1.85 31 2.75 0.46

1.8 36 2.72 0.60 1.9 36 2.72 0.54

1.85 38.0 2.68 0.69 2.00 40.0 2.66 0.67

1.95 34.0 2.65 0.76 2.00 40.0 2.66 0.67

1.95 37.0 2.63 0.85 2.10 40.0 2.65 0.85

2.00 39.0 2.59 0.94 2.10 40.0 2.65 0.85

Kernel: Triangle

Kernel: Triangle



saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target width 

(cm)

delay 

(frames)

1.4 23.00 2.68 0.10

1.6 34.00 2.52 0.20

1.7 37.00 2.45 0.28

1.8 39.00 2.43 0.31

1.9 35.00 2.42 0.42

1.9 39.00 2.38 0.58

1.9 39.00 2.38 0.58

1.9 39.00 2.38 0.58

2.0 32.00 2.36 0.84

2.0 36.00 2.35 0.93

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target height 

(cm)

delay 

(frames)

1.15 22 3.14 0.10

1.65 20 2.91 0.20

1.75 36 2.82 0.29

1.85 38 2.77 0.38

1.95 35 2.73 0.49

2 37 2.72 0.55

2.05 35 2.70 0.65

2.1 35 2.68 0.72

2.15 40 2.66 0.84

2.2 39 2.65 1.00

Kernel: Gaussian

Kernel: Gaussian



Optimal parameters

Weighted Average Filter with Saccade Detection and Outlier Correction

x-direction

Kernel: Constant

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target 

width 

(cm)

delay 

(frames)

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target 

width 

(cm)

delay 

(frames)

2.7 1 2.84 1.10 2.7 1 2.88 0.98

2.45 1 2.82 1.19 2.6 2 2.70 1.07

2.5 2 2.65 1.30 2.5 2 2.70 1.18

1.9 2 2.65 1.39 2.4 3 2.58 1.28

1.85 3 2.54 1.45 2.1 3 2.58 1.37

1.45 6 2.40 1.59 2.0 5 2.47 1.50

1.45 8 2.33 1.69 1.5 8 2.38 1.59

1.35 11 2.28 1.80 1.2 14 2.33 1.70

1.3 17 2.22 1.90 1.3 20 2.22 1.80

1.4 17 2.19 2.00 1.3 32 2.15 1.89

1.45 20 2.13 2.09 1.35 39 2.10 1.99

1.40 30 2.10 2.20 1.45 38 2.06 2.09

1.45 35 2.05 2.28 1.55 37 2.03 2.30

1.45 40 2.01 2.33

1.50 38 1.99 2.45

y-direction

Kernel: Constant

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target 

height 

(cm)

delay 

(frames)

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target 

height 

(cm)

delay 

(frames)

3.05 1 3.25 1.09 3.1 2 3.10 0.98

2.7 1 3.23 1.20 3.0 2 3.10 1.08

2.85 2 3.07 1.30 2.7 2 3.10 1.20

1.55 2 3.05 1.40 2.8 3 2.95 1.27

1.9 3 2.91 1.46 2.9 4 2.89 1.40

2.35 4 2.80 1.59 2.0 5 2.80 1.50

1.8 6 2.72 1.70 1.6 7 2.75 1.59

1.3 8 2.72 1.80 1.6 9 2.70 1.70

1.4 11 2.65 1.89 1.3 15 2.65 1.80

1.5 13 2.61 1.98 1.8 13 2.59 1.90

1.55 15 2.58 2.09 1.25 26 2.54 2.00

1.25 36 2.54 2.18 1.35 35 2.47 2.09

1.30 39 2.50 2.30 1.55 39 2.43 2.16

1.35 40 2.47 2.36 1.65 40 2.42 2.30

1.50 35 2.43 2.44

Kernel: Triangle

Kernel: Triangle



saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target width 

(cm)

delay 

(frames)

2.7 3 2.72 0.97

2.6 3 2.72 1.06

2.4 3 2.70 1.19

2.5 4 2.61 1.28

2.4 5 2.54 1.37

2.4 6 2.47 1.48

1.4 11 2.36 1.60

1.4 16 2.26 1.70

1.3 28 2.19 1.79

1.4 37 2.12 1.88

1.45 36 2.10 1.97

1.55 38 2.06 2.15

saccade

threshold 

(cm)

max. fixation 

window 

(frames)

target height 

(cm)

delay 

(frames)

3.1 3 s 0.99

3.0 3 3.12 1.06

3.0 4 3.00 1.20

2.7 4 2.98 1.29

2.6 5 2.91 1.40

1.7 7 2.82 1.49

1.6 10 2.72 1.59

1.3 17 2.65 1.70

1.2 36 2.61 1.79

1.3 40 2.54 1.88

1.35 39 2.49 1.99

1.65 40 2.45 2.06

1.85 39 2.43 2.20

Kernel: Gaussian

Kernel: Gaussian



Appendix 2: 
Accuracy and precision of target fixations

X (cm) X (degree) Y (cm) Y (degree) X (cm) X (degree) Y (cm) Y (degree)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Overall 0.47 0.36 0.829 0.635 0.58 0.29 1.022 0.511 0.53 0.43 0.934 0.758 0.51 0.35 0.899 0.617

Percentile

-    25% 0.15 0.264 0.2 0.353 0.19 0.335 0.22 0.388

-    50% 0.31 0.547 0.45 0.793 0.32 0.564 0.32 0.564

-    75% 0.58 1.022 0.78 1.375 0.57 1.005 0.58 1.022

-    90% 0.93 1.639 1.19 2.098 1.1 1.939 1.04 1.833

Tracker

SMI REDn 0.59 0.41 1.040 0.723 0.67 0.25 1.181 0.441 0.53 0.49 0.934 0.864 0.53 0.35 0.934 0.617

Tobii EyeX 0.36 0.26 0.635 0.458 0.48 0.3 0.846 0.529 0.53 0.35 0.934 0.617 0.49 0.35 0.864 0.617

Light

Artificial 0.53 0.4 0.934 0.705 0.65 0.35 1.146 0.617 0.61 0.54 1.075 0.952 0.58 0.44 1.022 0.776

Daylight 0.42 0.32 0.740 0.564 0.5 0.19 0.881 0.335 0.44 0.24 0.776 0.423 0.44 0.21 0.776 0.370

Row

1 0.51 0.72 0.899 1.269 0.58 0.4 1.022 0.705 0.5 0.6 0.881 1.058 0.38 0.44 0.670 0.776

2 0.38 0.34 0.670 0.599 0.55 0.36 0.970 0.635 0.35 0.36 0.617 0.635 0.43 0.32 0.758 0.564

3 0.42 0.45 0.740 0.793 0.54 0.31 0.952 0.547 0.45 0.44 0.793 0.776 0.48 0.31 0.846 0.547

4 0.49 0.47 0.864 0.829 0.61 0.39 1.075 0.688 0.57 0.51 1.005 0.899 0.54 0.4 0.952 0.705

5 0.6 0.49 1.058 0.864 0.59 0.4 1.040 0.705 0.84 0.67 1.481 1.181 0.75 0.72 1.322 1.269

Accuracy Precision 

Shown are mean values and standard deviations for different conditions investigated in the paper. 

Results were computed in cm. Conversion in degrees of visual angle is only given for reference in relation 

to central line of sight, assuming a viewing distance of 65 cm.
[Reference: K. Holmqvist, M. Nyström, et al. 2011. Eye tracking: A comprehensive guide to methods and measures. OUP Oxford.]



Column

1 0.48 0.47 0.846 0.829 0.6 0.41 1.058 0.723 0.46 0.46 0.811 0.811 0.55 0.45 0.970 0.793

2 0.45 0.39 0.793 0.688 0.54 0.3 0.952 0.529 0.44 0.29 0.776 0.511 0.5 0.33 0.881 0.582

3 0.42 0.47 0.740 0.829 0.6 0.4 1.058 0.705 0.51 0.52 0.899 0.917 0.52 0.43 0.917 0.758

4 0.4 0.36 0.705 0.635 0.57 0.3 1.005 0.529 0.46 0.31 0.811 0.547 0.48 0.3 0.846 0.529

5 0.5 0.43 0.881 0.758 0.57 0.35 1.005 0.617 0.5 0.42 0.881 0.740 0.48 0.38 0.846 0.670

6 0.58 0.46 1.022 0.811 0.58 0.31 1.022 0.547 0.77 0.89 1.357 1.569 0.54 0.41 0.952 0.723
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