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ABSTRACT 
This paper presents a study of three statistical query transla-
tion models that use different units of translation. We begin 
with a review of a word-based translation model that uses co-
occurrence statistics for resolving translation ambiguities. The 
translation selection problem is then formulated under the 
framework of graphic model resorting to which the modeling 
assumptions and limitations of the co-occurrence model are 
discussed, and the research of finding better translation units 
is motivated. Then, two other models that use larger, linguis-
tically motivated translation units (i.e., noun phrase and de-
pendency triple) are presented. For each model, the modeling 
and training methods are described in detail. All query trans-
lation models are evaluated using TREC collections. Results 
show that larger translation units lead to more specific mod-
els that usually achieve better translation and cross-language 
information retrieval results. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Retrieval models  

General Terms 
Design, Algorithms, Theory, Experimentation 

Keywords 
Query Translation, Cross-Language Information Retrieval, 
Statistical Models, Linguistic Structures 

1. Introduction 
Query translation is a long standing research topic in the 
community of cross-language information retrieval (CLIR). 
Assume that a query is translated using a bilingual dictionary, 
there are two fundamental research tasks: (1) how to improve 
the coverage of the bilingual dictionary; and (2) how to select 
the correct translation of the query among all the translations 
provided by the dictionary. The second task is also called the 
problem of translation selection, and is the focus of this paper. 

We limit our discussion in this paper to statistic models 
for translation selection. To make a statistical model trainable, 
we always decompose the translation of a query into a se-
quence of smaller translation units. Given that we will use 
statistical models to model translation, one important ques-
tion is: what unit of translation should a statistical model represent? 

A natural unit is words since they are the smallest meaning-
ful linguistic unit. However, a word-based model, though 
simple to train, is always over-general and may lead to too 
many translation ambiguities for resolving. In theory, larger 
units such as phrases are more specific and lead to less trans-
lation ambiguities. However they pose bigger challenges in 
model structuring and training. 

This paper studies three statistical query translation mod-
els that use different translation units. We will begin with a 
review of a classical word-based translation model that uses 
co-occurrence statistics to resolve translation ambiguities. 
Then, we will formulate the translation selection problem 
under the framework of graphic model (GM). We will discuss 
the modeling assumptions and limitations of the co-
occurrence model, and motive our research of finding better 
translation units.  

We will then present two other models that use larger, 
linguistic-motivated translations units. They are noun 
phrases (NPs) and dependencies. A dependency, represented 
as a triple, is a pair of words that have a syntactic depend-
ency relation, such as verb-objective. In both models, we as-
sume that the selection of a translation only depends upon 
other selected translations in the same unit. While NPs cap-
ture dependence of adjacent words in a query, dependency 
triples can capture syntactic dependences between non-
adjacent words. Though similar models have been proposed 
earlier, we will refine those using recent advances in the re-
search community of statistical machine translation (SMT). 
We will show that (1) NP and dependency translation can be 
performed using a reranking approach based on a linear 
model; (2) the linear model provides a flexible statistical 
framework to incorporate various kinds of information, de-
fined as feature functions, for resolving translation ambigui-
ties; (3) the parameters of the linear model can be learned 
discriminatively so as to optimize the translation quality di-
rectly, and (4) most effective feature functions used in the 
linear model can be derived from generative models that are 
traditionally used in SMT, thus the ranking approach pro-
vides an appropriate framework to combine the strengths of 
both generative models and discriminative training methods. 

We evaluate our query translation models using TREC 
collections. To our knowledge, this is the first systematic 
comparison of those models on the task of English to Chinese 
CLIR on gold test sets. We shall demonstrate that linguistic 
units such as NP and dependency triples are beneficial to 
query translation if they can be detected and used properly.  

2. Co-occurrence Model 
A co-occurrence model uses words as the unit of translation. 
The basic principle of the model is that correct translations of 
query words tend to co-occur in the target language and in-
correct translations do not. Therefore, for a given query word 
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in source language (i.e., English in this study), the likelihood 
of its translation (i.e., Chinese) is measured via the similarity 
between a translation candidate (e.g., provided by a bilingual 
dictionary) and the other selected translations in the query. 
The definition of similarity between words can take different 
forms of co-occurrence statistics. Mutual information is 
among the most commonly used ones [22].  

The advantage of the co-occurrence model is that it is easy 
to train. There is no need to measure cross-language word 
similarities (e.g., translation probabilities). Only relationships 
between words of the same language are used. They can be 
obtained through co-occurrence statistics in a monolingual 
text corpus. The disadvantage of the model is that it is diffi-
cult to find an efficient algorithm that optimizes exactly the 
translation of a whole query according to the model. We now 
describe it in detail. 

Given the measurement of term similarity, ideally, we 
should select for each query term the translation that co-
occurs the most often with (or the most similar to) the se-
lected translations of other terms in the same query. However, 
finding such an optimal translation is computationally very 
expensive, as will be described below. Therefore, one has to 
use an approximate greedy algorithm as follows [1, 10, 11]: 

 (1) Given an English (source language) query e = {e1, e2, …, 
en}, for each query term e, we define a set of m distinct 
Chinese translations according to a bilingual dictionary 
D: D(ei) = {ci,1, ci,2, …, ci,m} 

(2) For each set D(ei) 
 (a) For each translation ci,j ∈ D(ei), define the similarity 

score between the translation wi,j and a set D(ek) (k ≠ 
i) set as the sum of the similarities between ci,j and 
each translations in the set D(ek) according to Eq. (1) 
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 (c) Select the translation c ∈ D(ei) with the highest 
cohesion score 
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Apparently, the above algorithm is sub-optimal. As 
pointed out in [15], the cohesion score for a translation as in 
Eq. (2) is computed with regard to all possible translations of 
other query terms. It does not differentiate correct transla-
tions from incorrect ones. As a result, the translation of dif-
ferent query terms is determined independently. In spite of 
the deficiency, the greedy search algorithm has been widely 
used since an exact algorithm is prohibitively expensive. In 
the next section, we will formulate the translation selection 
problem under the framework of GM [e.g., 13], and discuss 
the underlying assumptions of the greedy algorithm. 

3. GM View 
A query translation model can be viewed as an undirected 
GM. For example, Figure 1 shows a query translation model 
of a 5-term query. Each node represents a distribution of a 
translation set of a query term. The edges of the graph repre-
sent a set of independency assumptions among query term 
translations. The task of query translation is to find a set of 
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Figure 1. GMs the co-occurrence query translation model (a) 
and its approximation (b). 
 
translations that maximize the joint probability 
P(w1,w2,w3,w4,w5). 

The GM view illustrates three research tasks of query 
translation. The first is how to generate translation candidates 
for each term, and how to model the distribution of the can-
didates. Traditionally, a bilingual dictionary is used and all 
translations of a query term are assumed to be uniformly 
distributed. We may also induce a distribution using a statis-
tical translation model learned from parallel bilingual cor-
pora. 

The second is how to determine the graph topology, i.e., 
what independence assumptions we may use. The third is 
how to compute the joint probability. These two problems are 
closely related. The efficiency of the joint probability comput-
ing largely depends on the graph topology.  

In the co-occurrence model as described above, we as-
sume that the selection of each translation is consistent with 
the selected translations for other query terms. Therefore, we 
assume that the five nodes form a clique as shown in Figure 1 
(a).  Suppose that we wish to compute the marginal probabil-
ity P(w1). We obtain this marginal by summing over the other 
variables as: 
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where h(.) is a feature function, and Z is a normalization fac-
tor.   

We see that the computational complexity of P(w1) scales 
as d6 (assuming that each query term has d possible transla-
tions). This is prohibitively expensive even for a very short 
query. We therefore resort to an approximated word selection 
algorithm as described in Section 2 by introducing a transla-
tion independence assumption. The corresponding GM is 
shown in Figure 1 (b). Now, P(w1) can then be factored as: 
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Notice that if we define h(.) in Equation (4) as the similarity 
between two words, the idea behind Equation (4) is similar to 
that of Equation (2) (Z can be removed when the probability 

w1 

w2 

w4 w3 

w5

w1 
w2 

w4 w3 

w5



is used to rank translation candidates), where no more than 
two variables appear together in any summand, and thus the 
computational complexity is reduced to d2. However, as dis-
cussed earlier, the reduction of complexity may come with 
the sacrifice of accuracy due to the independence assumption 
used. 

In general, the computation complexity depends on the 
largest size of the clique in the graph. The NP and depend-
ency translation models described in Sections 5 and 6 are 
used to implement the idea that the linguistic structure of a 
sentence can be utilized to identify cliques. Linguistic units, 
such as NPs or dependency triples, can be translated as unit 
and the translation can be done accurately using only internal 
information of the unit. As a consequence, the graph would 
be divided into a few smaller sub-graphs. The probability of 
each sub-graph can be inferred independently, with an opti-
mal order that leads to a lower computation complexity.  

Using the three translation models that we propose in this 
paper, our query translation process can be cast in a sequen-
tial manner as follows. 
• Identify NPs and dependency triples of a query. 
• Translate words in NPs using the NP translation model 

described in Section 5. 
• Translate words in dependencies using the dependency 

translation model described in Section 6. 
• Translate remaining words using the co-occurrence 

model. 

4. Reranking Approach 
This section describes the reranking approach which is the 
fundamental modeling framework for both NP and depend-
ency translation models.  

Given an n-term English query e = {e1, e2, …, en}, we as-
sume some way of detecting linguistic structures s of e. We 
also assume some way of generating a set of candidate Chi-
nese translations c, denoted by GEN(e). The task of a query 
translation model is to assign a score for each of the transla-
tion candidates in GEN(e) and select the one with the highest 
score: 
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In this study, we assume that the score is assigned via a 
linear model, which consists of (1) a set of D feature functions 
that map (c, e, s) to a real value, i.e., fd(c, e, s), for d = 1…D; 
and (2) a set of parameters, each for one feature, λi for i = 
1…D. Then the decision rule of Equation (5) can be rewritten 
as 
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Notice that the linear model of Equation (6) is a very general 
framework [6]. For example, the source-channel models for 
SMT [16] can be viewed as a special case of the linear model 
if we define both source model and channel model as feature 
functions. We shall show that most feature functions can be 
derived from generative models which are traditionally used 
in the framework of source-channel models for SMT. The 
values of those feature functions are (log) probabilities that 
are learned from large monolingual or bilingual corpora via 
MLE. Therefore, those features are more informative than 

binary features that are traditionally used in linear models for 
classification problems [6]. 

The model weights λ, as shown in Equation (6), are esti-
mated using an iterative procedure that is used for multi-
dimensional function optimization [18]. Assume that we can 
minimize query translation errors with respect to one pa-
rameter λ using line search. The procedure works as follows: 
Take λ0, λ1, …, λN as a set of directions. Using line search, 
move along the first direction so that the number of transla-
tion errors on training data is minimized; then move from 
there along the second direction to the minimal error rate, 
and so on. Cycling through the whole set of directions as 
many times as necessary, until the error number stops de-
creasing. In our experiments, we found that the procedure 
can converge on different minima given different starting 
points. We thus perform the procedure multiple times, each 
from a different, random starting point, and pick the parame-
ter setting that achieves the minimal errors. Note that this 
optimization approach is limited to a very small number of 
model parameters. Efficient algorithms for tuning a larger 
number of model parameters can be found in [9, 17]. 

In the next two sections we will describe in turn the NP 
translation model and the dependency translation model. 
Both models are of the form of linear models in Equation (6). 
For each model, we will first describe a generative translation 
model (consisting of a series of component models) under the 
framework of source-channel models. Then, we derive fea-
ture functions (e.g., from the component models) used in the 
linear models. 

5. NP Translation Model 
The use of NP as a unit of translation is motivated by two 
observations. First, most English NPs are translated to Chi-
nese as NPs. For example, on a 60K-sentence-pair word-
aligned English-Chinese bilingual corpus, we found more 
than 80% of English NPs being aligned to their translated 
Chinese NPs. Second, as pointed out in [14], word selection 
can almost always be resolved depending solely upon the 
internal context of the NP. 

The use of translation template between English and Chi-
nese NP patterns is the fundamental to our NP translation 
model. For example, a [NN-1 NN-2] English phrase is usually 
translated into a [NN-1 NN-2] sequence in Chinese, and a 
[NN-1 of NN-2] phrase is usually translated into a [NN-2 
NN-1] sequence in Chinese. The concept of translation tem-
plates is very similar to that of alignment templates in [16]. 
Formally, a NP translation template, denoted by z, is a triple 
(E, C, A), which describes the alignment A between an Eng-
lish NP pattern E and a Chinese NP pattern C. The alignment 
A is represented as a set of pairs (i, j), indicating that the i-th 
English word class in E is connected to the j-th Chinese word 
class in C. Either i or j can be empty, denoted by ε, indicating 
that an English (or Chinese) word class is connected to no 
Chinese (or English) word class. 

In our experiments, translation templates are extracted 
from a word-aligned bilingual corpus. We first used an in-
house parser to tag POS, base NP, and complex NP for Eng-
lish sentences. Then, for each English NP pattern E, we ex-
tracted its translated Chinese NP patterns C and the align-
ment A. An example is shown in Figure 2, where (a) is an 
English sentence with each word marked by its POS tag and 



position and elements within […] are base NPs, or complex 
NPs; (b) is the aligned Chinese sentence that has been seg-
mented into a sequence of words; (c) shows the word align-
ment between the English and Chinese sentences; and (d) 
shows three translation templates extracted respectively for 
two base NPs and for the whole phrase. Notice that the word 
positions in the alignments shown in (d) are those in E and C 
of each z. Also notice that translation templates can be recur-
sively defined. 

5.1 Generative Model 
Given an English NP e, we search among all possible transla-
tions the most probable Chinese NP c* as 

)|()(maxarg)|(maxarg* cececc
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Here, P(c) is the Chinese language model probability esti-
mated via a trigram model as 
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P(e|c) is the translation probability. Formally, the NP transla-
tion template z is introduced as a hidden variable as 

∑=
z
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Hence, there are two probabilities to be estimated. The prob-
ability P(z|c) to apply a translation template and the prob-
ability P(e|z, c) to use a translation template for word selec-
tion.  

First, we describe the way P(z|c) is estimated. Recall that 
z = (E, C, A), we call z applicable to c if c matches the NP pat-
tern C. Let C(c, z) be the number of occurrences of c to which 
z is applicable and C(c) be the number of occurrences of c in 
training data. P(z|c) is estimated as 
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Second, we describe the way P(e|z, c) is estimated. We as-
sume that the English words are translated independently. 
We then decompose the probability as 
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Here, P(e|c) is a translation probability estimated by relative 
frequencies: 
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where C(c, e) is the frequency that the word c is aligned to the 
word e, and C(c) is the frequency of word c in training data. 

Notice that the model of Equation (11) is a deficient 
model since the constraint ΣeP(e|z, c) = 1 does not hold, as 

discussed in [16]. However it is not necessary to normalize it 
since we only use the model as a feature function for ranking 
translation candidates. We also notice that it is possible to 
define an alignment in A at the level of base NP such as z3 in 
Figure 2 (d). As shown in Figure 2 (d), we assume that all 
alignments in A are pairs of word positions. Therefore, when 
we apply A in NP translation, we recursively map each 
alignment pair of base NP position to a set of pairs of word 
positions. For example, the pair  (1, 2) in z3 in Figure 2 (d), 
which is an alignment between the positions of two base NP, 
can be mapped into a set of word position pairs using the 
alignment of z2. 

Substituting Equation (9) into Equation (7), we finally get 
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Notice that different component models in Equation (13) 
are trained on different corpora of different sizes. The dy-
namic value ranges of different component model probabili-
ties can be so different (e.g., P(e|z, c) of Equation (11) is not a 
probability but a score) that it is inappropriate to combine all 
these models through simple multiplication as in Equation 
(13). Moreover, models that are poorly trained (e.g., due to 
lack of training data) should be less weighted than well-
trained ones. One way to balance the impact of these models 
is to introduce for each component model a model weight λ 
to adjust the model score P(.) to P(.)λ. In our experiments, 
these weights are optimized so as to minimize the NP transla-
tion errors on training data under the framework of linear 
models. It is thus worth noticing that the source-channel 
models are the rationale framework behind the NP transla-
tion model. Linear models are just another representation 
based on which we describe the optimization algorithm of 
model weights. 

5.2 Feature Functions 
We used three feature functions. They are derived from the 
above three component models in Equation (13), respectively. 

1. Chinese language model feature. It is defined as the 
logarithm of the Chinese trigram model of Equation (8), 
i.e., hLM(c) = logP(c) = log P(c1)P(c2)Πi=3…JP(cj|cj-2 cj-1). 

2. Translation template selection model feature. It is 
defined as the logarithm of P(z|c), i.e., hTS(z, c) = 
logP(z|c). 

3. Word selection model feature. It is defined as the 
logarithm of P(e|z, c) of Equation (11), i.e., hWS(e, z, c) = 
logP(e|(E, C, A), c) = logΠ(i,j)∈AP(ei|cj). 

Notice that the linear model of Equation (6) does not take into 
account the sum on z in Equation (13), because considering 
the sum in decoding directly is computationally expensive. 
Therefore, we approximate the sum during decoding: Given 
an English NP e, we take the following steps to search for the 
best Chinese translation. 

1. Template matching. We find all translation templates 
that are applicable to the given English NP. 

2. Candidate generating. For each translation template, we 
determine a set of Chinese words for each English word 
position. The set of Chinese words are all possible 
translations of the English word, stored in a bilingual 
dictionary. We then form a lattice for each e. 

(a) [[the/DT/1 sales NNP/2] of/IN/3 [Chinese/NNP/4 
ships/NNP/5]]  … 

(b)  中国/1 船舶/2 销售/3 
(c) (1, ε) (2, 3) (3, ε ) (4, 1) (5, 2) 
(d) z1 = (E = [DT NNP], C = [NNP], A = {(1, ε), (2,1)}) 

z2 = (E = [NNP-1 NNP-2], C = [NNP-1 NNP-2], A = {(1, 1), (2, 2)}) 
z3 = (E = [Base-NP-1 of Base-NP-2], C = [Base-NP-2 Base-NP-1], A = 
{(1, 2), (2, ε), (3, 1)}) 

Figure 2. NP translation templates patterns 



3. Searching. For each lattice, we use a best-first decoder to 
find top n translation candidates according to Equation (6) 
where only two features, hLM and hWS, are used. 

4. Fusion and reranking. We fusion all retained translation 
candidates, and rerank them according to Equation (6), 
where all features are applied. 

We can see that the sum on z is approximated in two steps: 
First, for each z, we find the best translation. Second, we se-
lect the translation among all retained best translations ac-
cording to the linear model. 

6. Dependency Translation Model 
A dependency is denoted by a triple (w1, r, w2), representing a 
syntactic dependency relation r between two words w1 and w2. 
Among all the dependency relations, we only consider the 
four types that can be detected precisely using our parser and 
cannot be handled by the NP translation model: (1) subject-
verb, (2) verb-object, (3) adjective-noun, and (4) adverb-verb. 

Similar to that of the NP translation model, the depend-
ency translation model is also developed based on two hy-
potheses. First, dependencies have the best cohesion proper-
ties across languages [7]. That is, dependency representation 
usually remains in the translations, and an ideal query trans-
lation should contain the same syntactic dependences as in 
the original query. Second, word selection can mostly be re-
solved via the internal context of the dependency.  

It is our observation that there is a strong correspondence 
in dependency relations in the translation between English 
and Chinese, despite the great differences between the two 
languages. For example, a subject-verb relation in English, 
e.g. (dog, subject-verb, barking), is usually translated into the 
same subject-verb relation in Chinese, e.g. (狗, subject-verb, 
吠). [10, 27] also showed that more than 80% of dependency 
relations of the above four types have one-to-one mappings 
between English and Chinese. 

This suggests that similar to NP translation, there also ex-
ist a translation template between English dependency triples 
and Chinese ones. Unlike NP translation templates, there is 
only one translation template: An English dependency triple 
et = (e1, re, e2) is most likely to be translated to a Chinese de-
pendency triple ct = (c1, rc, c2), where c1 and c2 are the Chinese 
translations of the English terms e1 and e2, respectively, and rc 
is the Chinese counterpart of re. 

6.1 Generative Model 
Given an English dependency triple et = (e1, re, e2), and a set of 
its candidates of Chinese dependency triple translation, the 
best Chinese dependency triple ct = (c1, rc, c2) is the one that 
maximizes the following equation 

)|()(maxarg)|(maxarg*
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Here, P(ct) is the a priori probability of words of the translated 
Chinese dependency triple. It can be estimated using MLE as 

N
CP t

t
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where C(ct) is the number of occurrences of ct in the collection, 
and N is the number of all dependency triples.  

P(et|ct) is the translation probability. We assume that (1) et 
and ct can be translated with each other only if they have the 

same type of dependency relation, i.e., re = rc; (2) words in a 
dependency triple are translated independently. We therefore 
decompose the probability P(et|ct) as 

),()|()|()|( 2211 cett rrδcePcePP =ce  (16) 

where δ(re, rc) = 1 if re = rc and 0 otherwise.  
P(e|c) is a word translation probability, which could be 

estimated on word-aligned bilingual corpus using Equation 
(12). However, we observe that within a dependency triple 
(w1, r, w2), the translation selection of a word (e.g., w1) largely 
depends on the other word w2 and the relation r. For example, 
the word “bear” in a dependency triple (bear, verb-object, 
child) is translated to 怀, while it is most likely to be trans-
lated to 忍受 as an individual word (if the translation prob-
ability is trained directly on a word-aligned corpus or the 
translation is obtained via dictionary look up). This suggests 
that translation probabilities in Equation (16) are better 
trained on a set of aligned bilingual dependency triple pairs. 
Unfortunately, it is difficult to obtain such a corpus in large 
quantity. Therefore, in our model, instead of using a transla-
tion probability we assume that the likelihood of c to be trans-
lated to e can be measured by their semantic similarity, de-
noted by sim(e, c). Notice that e and c are not necessary to be a 
translation pair but just a pair of cross-lingual synonyms, e.g., 
怀 is not a translation of “bear” defined in a dictionary, but a 
synonym. Since our goal is to obtain good IR results, such 
cross-lingual synonyms may solve the term mismatch prob-
lem and boost the CLIR performance.  

In this study, we follow the method of [10, 27] to estimate 
the value of sim(e, c). The advantage of the method is that 
sim(e, c) can be learned on unrelated English and Chinese 
dependency triple corpora. 

6.2 Feature Functions 
We see from Equations (14) and (16) that the likelihood of et 
to be translated to ct, assuming that re = rc, can be scored via 
two factors: (1) P(ct) of Equation (15), and (2) sim(e, c). Similar 
to the NP translation model, we define a feature function for 
each type of factors, and combine them under the framework 
of linear models as shown in Equation (6). The two types of 
features are defined as follows. 

1. Chinese language model feature. It is defined as the 
logarithm of the model of Eq. (14), i.e., hLM(ct) = logP(ct). 

2. Cross-lingual word similarity feature. It is defined as the 
similarity between two words, i.e., i.e., hWS(et, ct) = sim(e, 
c). Since there are 4 dependency relations, each with 2 
words, there are in total 8 types of word pair. We define 8 
feature functions, each for one type of word pair, such as 
the similarity between a verb pair in a verb-object 
dependency.  

7. Experiments 

7.1 Settings 
We evaluate the three proposed query translation models on 
CLIR experiments on TREC Chinese collections. The TREC-9 
collection contains articles published in Hong Kong Com-
mercial Daily, Hong Kong Daily News, and Takungpao. They 
amount to 260MB. A set of 25 English queries (with translated 
Chinese queries) has been set up and evaluated by people at 



NIST (National Institute of Standards and Technology). The 
TREC-5&6 corpus contains articles published in the People's 
Daily from 1991 to 1993, and a part of the news released by 
the Xinhua News Agency in 1994 and 1995. A set of 54 Eng-
lish queries (with translated Chinese queries) has been set up 
and evaluated by people at NIST.  

All Chinese texts, articles and translated queries, are 
word-segmented using the Chinese word segmentation sys-
tem MSRSeg [8]. The system also identifies named entities of 
various types. Then, stop words are removed. Each of the 
TREC queries has three fields: title, description, and narra-
tives. In our experiments, we used two versions of queries, 
short queries that contain titles only and long queries that con-
tain all the three fields. 

The bilingual dictionary we used is a combination of three 
human compiled bilingual lexicons, including the LDC Eng-
lish-Chinese dictionary and a bilingual lexicon generated 
from a parallel bilingual corpus automatically. The dictionary 
contains 401,477 English entries, including 109,841 words, 
and 291,636 phrases. 

The Okapi system with BM2500 weighting [21] is used as 
the basic retrieval system. The main evaluation metric is in-
terpolated 11-point average precision. Statistical significance 
test (i.e., t-test) is also employed. 

7.2 Results 
The main results are shown in Tables 1 to 3 (i.e., average pre-
cisions) and Figures 2 and 3 (i.e., precision-recall curves). To 
investigate the effectiveness of our models for query transla-
tion, three baseline methods are compared, denoted by ML, 
ST and BST, respectively. 

ML (Monolingual). We retrieve documents using the 
manually translated Chinese queries provided with the TREC 
collections. Its performance has been considered as an upper-
bound of CLIR because the translation process always intro-
duces translation errors. However, recent studies show that 
CLIR results can be better than monolingual retrieval results 
[24]. This is also observed in our experiments. 

ST (Simple Translation). We retrieve documents using 
query translation obtained from the bilingual dictionary. 
Phrase entries in the dictionary are first used for phrase 
matching and translation, and then the remaining words are 
translated by their translations stored in the dictionary. For 
each phrase/word with multiple translations stored in the 
dictionary, we only take the first translation, which is sup-
posed to be the most frequently used translation. We could 
take more translations for each phrase/words, but our pilot 
experiments show that it hurts the performance in most cases. 

BST (Best-Sense Translation). We retrieve documents us-
ing translation words selected manually from the dictionary, 
one translation per word, by a native Chinese speaker. If none 
of the translations stored in the dictionary is correct, the first 
one is chosen. This method reflects the upper bound per-
formance using the dictionary. 

COTM is the co-occurrence translation model described 
in Section 2. We implemented a variant, called decaying co-
occurrence model [10]. The word similarity is defined as 
Table 1: 11-point average precision (AP) for short queries on TREC-9 
dataset (* indicates that the improvement is statistically significant.) 

 Translation Model AP % of Impr. over 

ML ST 
1 ML 0.2956   
2 ST 0.1398 44.28%  
3 BST 0.1833 62.01% 40.03%* 
4 COTM 0.1399 47.33% 6.88% 
5 NPTM 0.2345 79.33% 79.14%* 
6 COTM + NPTM 0.2708 91.61% 106.88%* 

 
Table 2: 11-point average precision (AP) for long queries on TREC-9 
dataset (* indicates that the improvement is statistically significant.) 
 Translation Model AP % of 

ML 
Impr. over 

ST 
1 ML 0.3179      
2 ST 0.2003  62.99%   
3 BST 0.2924  91.96% 46.00%* 
4 COTM 0.2657  83.58% 32.69%* 
5 NPTM 0.2562  80.58% 27.93%* 
6 DPTM 0.2160  67.94% 7.86% 
7 NPTM+NPTM 0.3093  97.28% 54.44%* 
8 COTM+DPTM 0.2705  85.09% 35.09%* 
9 COTM+NPTM+DPTM 0.3303  103.88% 64.92%* 

 
Table 3: 11-point average precision (AP) for long queries on TREC5&6

dataset (* indicates that the improvement is statistically significant.) 
 Translation Model AP % of 

ML 
Impr. over 

ST 
1 ML 0.5184     
2 ST 0.2811 54.22%   
3 BST 0.3906 75.35% 38.95%* 
4 COTM 0.3391 65.41% 20.63%* 
5 COTM+NPTM 0.3894 75.12% 38.53%* 
6 COTM+NPTM+DPTM 0.4541 87.60% 61.54%* 
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Figure 3: Precision-Recall curves for short queries on TREC-9 dataset.
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Figure 4: Precision-Recall curves for long queries on TREC-9 dataset.
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where MI(.) is the mutual information between two words, 
and is estimated on a Chinese newspaper corpus. D(.) is a 
penalty function, indicating that the mutual information be-
tween words decreases exponentially with the increase of the 
distance between them. It is defined as  

))1),((*exp(),( −−= jiji wwDisαwwD  (18) 

where α is the decaying rate (α = 0.8 in our experiments), and 
Dis(wi,wj) is the average intra-sentence distance between wi 
and wj in the Chinese newspaper corpus.  

NPTM is the NP translation model described in Section 5. 
The translation template selection model (i.e., value of hTS(z,c)) 
is trained on a word-aligned bilingual corpus containing ap-
proximately 60K English-Chinese sentence pairs. Translation 
templates are first extracted automatically from the corpus 
using an in-house chunking parser, and then filtered by a 
linguist. The probability P(z|c) is then estimated according to 
Equation (10). For each Chinese NP pattern, there are 4.21 
translation templates on average. The word selection model 
(i.e., hWS(e, z, c)) are computed according to Equation (12) 
using the same word-aligned bilingual corpus. The Chinese 
trigram model (i.e., hLM(c)) is trained on a word-segmented 
Chinese corpus consisting of about 1 billion words. 

DPTM is the dependency translation model described in 
Section 6. sim(e, c) is estimated using two unrelated English 
and Chinese corpora (i.e., 87-97 WSJ newswires for English 
and 80-98 People’s Daily articles for Chinese). An English and 
Chinese parser NLPWIN [12] is used to extract dependency 
triples in both corpora. Notice that NLPWIN is a rule-based 
parser and performs well only when the input is a grammati-
cal sentence, so we only tested DPTM on long queries (i.e., to 
parse the descriptions and narratives). 

The experimental results in Tables 1 to 3 and Figures 2 
and 3 give rise to the following observations. 

First of all, we see that that COTM brings statistically sig-
nificant improvements over ST for long queries but its im-
provement over ST for short queries is marginal. This is ex-
pected because COTM resolves translation ambiguities with 
resort to context terms. Long queries contain much richer 
contextual information than short queries. 

Secondly, we see that NPTM achieves substantial im-
provements over ST for both long and short queries, and even 
outperforms BST for short queries, as shown in Rows 3 and 5 
in Table 1. It is thus interesting to compare the phrase transla-
tion results using NPTM and with that using dictionary look-
up (Rows 2 and 3 in Table 1). A further analysis shows that 
by using NP identification and translation, we obtained better 
translations. For example, in TREC-9 short query retrieval, 
only 11 multi-word phrases out of 25 queries are stored in the 
dictionary, and translated as a phrase, whilst using NPTM, 26 
NPs are identified and translated. It thus leads to a significant 
improvement over BST. 

Thirdly, we find that the use of DPTM leads to an effec-
tiveness well below that with COTM and NPTM. For exam-
ple, as shown in Table 2 (Rows 2 and 6), the improvement of 
DPTM over ST is not statistically significant. This is however 
expectable because dependency triples have a much lower 
coverage than the other models. Consider TREC-9 long query 
retrieval, only a few triples from 11 queries out of 25 have 
been translated by DPTM. So this “counter-performance” is 
not surprising. A further analysis shows that from the 11 que-

ries, NLPWIN extracted 52 dependency triples which appear 
at least 5 times in the corpus. The 52 triples include 12 verb-
object dependency triples, 8 sub-verb triples, 32 adjective-
noun triples and no adv-verb triple. For these queries, the 
dependency triple translation has positive impact on the 
methods of ST and COTM for 10 out of the 11 queries, which 
leads to a statistically significant improvement of 58% over 
ST, and 11% over COTM for the 11 queries. 

Finally, we see that as expected, the combined models (us-
ing the sequential combining approach described in Section 3) 
always perform better than each component model to be 
combined. Interestingly, for some queries, their CLIR results 
are even better than their monolingual retrieval results. 

8. Related Work and Discussion 
Co-occurrence information has been utilized by several recent 
studies [2, 3, 10, 11, 15] to deal with the translation selection 
problem for CLIR. One potential problem of most proposed 
co-occurrence model is the use of the approximate word se-
lection algorithm. As described in Section 2, each query term 
translation is actually determined independently. To remedy 
the problem, Liu et al. [15] presented a so-called maximum 
coherent model that is able to estimate translations of multi-
ple query terms simultaneously. In this paper, we remedy the 
problem simply by combining it with other two translation 
models using larger, linguistic-motivated units of translation. 
The basic idea is that the translations of a set of query terms 
that need to be jointed optimized only when they are really 
correlated tightly such as query words within a NP or a de-
pendency. In this sense, our query translation methods are 
both stochastically and linguistically motivated: stochastically 
because we use statistics from corpus, linguistically because 
the translation units (NPs and dependencies) we defined are 
informed by syntactic analysis. 

The NP translation model is inspired by recent work on 
phrase-based SMT. Our NP translation template is very simi-
lar to the template-based translation model described in [16]. 
The use of hierarchical structure in our NP translation tem-
plates can be viewed as a special case of the hierarchical 
phrase-based model in [4]. There are however two major 
differences between our work and that of [4, 16]. First, the 
NPs that we deal with are syntactically well-defined consti-
tutes. [4, 16] extract phrases from bilingual corpus. These 
phrases are just a sequence of consecutive words, and could 
be completely meaningless syntactically. Second, our transla-
tion templates use POS tag as word class while in [16], the 
templates use word classes that are automatically learnt from 
bilingual corpus. In a word, our model is more syntactically-
motivated, and would potentially more accurate and efficient. 
Moreover, in our study we view NP translation as a subtask 
of machine translation. We believe that focusing on such a 
narrower problem would allow more dedicated modeling. 
Koehn [14] presents a pretty comprehensive piece of work 
along this line. The rich feature set used for NP translation, 
presented in [14], might also improve the accuracy of our 
method. 

The dependency translation model aims at incorporating 
syntax information to resolve translation ambiguities. The 
same goal has also motivated the research of syntax-based 
MT, which is closely related to our work. Similar to our 
method, [5] also use parsers to identify linguistic structures of 



both Chinese and English languages. Then, they identify 
those sub-structures from both languages that can be mapped. 
The identified mappings form the so-called transduction 
grammar. Due to the structural difference between source and 
target language, people also use a parser in one language, 
and map the extracted linguistic structure to the other lan-
guage [19, 25], assuming that there exist a large set of word-
aligned bilingual sentence pairs. There are also some methods 
that can learn a transduction grammar without parsing 
monolingual sentences [4, 23]. While most previous work 
requires a large amount of word-aligned bilingual corpus, 
which is not always available; our model can be learned from 
unrelated bilingual corpus. This benefit results from the fact 
that we define dependency translation as a subtask of MT, 
like the case of NP translation model. We also argue that 
while most existing methods rely on constituency analysis, we 
believe that dependency analysis bring semantically related 
words together, and is more effective for resolving translation 
ambiguities. 

9. Conclusions 
This paper presents three statistical query translation models 
for dealing with the problem of query translation ambiguity. 
The models differ in the use of translation unit and the use of 
linguistic information. The co-occurrence model is based on 
word translation. It does not take into account any linguistic 
structure explicitly, and simply views a query as a bag of 
words. The other two models, the NP translation model and 
the dependency translation model, use larger, linguistically 
motivated translation units, and can exploit linguistic de-
pendency constraints between words in NPs or in higher 
level dependencies. Our experiments of CLIR on TREC Chi-
nese collections show that models using larger and more spe-
cific unit of translation are always better, if the models can be 
well trained, because more specific models could model more 
information. This is consistent with the observations on gen-
eral reasoning: when more information is available and is 
used in reasoning, we usually obtain better results. The inte-
gration of different types of knowledge in query translation is 
the most apparent in the NP and dependency models. Both 
are constructed under the framework of linear models, where 
different information is combined as feature functions. This 
combination method is very effective flexible to incorporate 
more types of information or knowledge when it is available. 

It is well known that statistical translation models will 
perform better with larger translation units. It is also well-
known that models using larger translation units require 
more training data. Thus, our work can be viewed as finding 
a tradeoff between specificity and trainability. Given a lim-
ited amount of training data, we always try to make the 
model as specific as possible. Recently, people have tried to 
automatically collect bilingual corpora from web [20, 26]. 
Since the web provides a potentially unlimited data source, it 
turns out to be a very promising research area. 
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