
Eurographics Symposium on Geometry Processing(2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

Multi-Chart Geometry Images

P. V. Sander1, Z. J. Wood2, S. J. Gortler1, J. Snyder3, and H. Hoppe3

1 Harvard University, 2 Caltech, 3 Microsoft Research

Abstract
We introduce multi-chart geometry images, a new representation for arbitrary surfaces. It is created by resam-
pling a surface onto a regular 2D grid. Whereas the original scheme of Gu et al. maps the entire surface onto a
single square, we use an atlas construction to map the surface piecewise onto charts of arbitrary shape. We dem-
onstrate that this added flexibility reduces parametrization distortion and thus provides greater geometric fidelity,
particularly for shapes with long extremities, high genus, or disconnected components. Traditional atlas construc-
tions suffer from discontinuous reconstruction across chart boundaries, which in our context create unacceptable
surface cracks. Our solution is a novel zippering algorithm that creates a watertight surface. In addition, we pre-
sent a new atlas chartification scheme based on clustering optimization.
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Surface representations.

1. Introduction

Regular remeshing is the process whereby an irregular mesh
is approximated by a mesh with (semi-)regular connectivity
[Eck et al. 1995]. The simplicity of a regularly remeshed
representation has many benefits. In particular it eliminates
the indirection and storage of vertex indices and texture
coordinates. This will allow graphics hardware to perform
rendering more efficiently, by removing random memory
accesses and thus improving memory access performance.
Geometry images. The most extreme such method, which
creates the most regular remeshed representation, is the
geometry image (GIM) introduced by Gu et al. [2002]. Their
construction converts the surface into a topological disk using
a network of cuts and parametrizes the resulting disk onto a
square domain. Using this parametrization, the surface
geometry is resampled onto the pixels of an image. As an
added benefit, techniques such as image compression can be
directly applied to the remesh.

However, this extreme approach of mapping an entire surface
to a single square has limitations. Models having discon-
nected components require a separate geometry image per
component, and complicated shapes with many extremities or
topological handles have distorted parametrizations.

Semi-regular remeshing. A less extreme approach is to
create a remesh with the connectivity of a subdivided base
mesh. Examples of this approach include the methods of Eck
et al. [1995], Lee et al. [1998; 2000], Kobbelt et al. [1999],
Guskov et al. [2000], and Wood et al. [2000]. For these
representations, special kinds of continuous multiresolution
basis functions can be derived that allow multiresolution

editing [Zorin et al. 1997] and compression [Khodakovsky et
al. 2000].

This more flexible representation still has constraints that can
negatively impact parametrization efficiency. In particular,
each chart (each surface region associated with a triangle of
the base mesh) is effectively parametrized onto an equilateral
triangle, which is then evenly sampled. Charts with non-
triangular shapes are thus distorted by the parametrization;
charts that are long and skinny are invariably sampled anisot-
ropically. In addition, all charts, regardless of their size or

chartified orig. mesh image 400x160 remesh
PSNR=71.7 dB

Figure 1: Example of a multi-chart geometry image.

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

information content, must be allotted the same number of
samples.1

Multi-chart geometry images. We describe a new atlas-
based parametrization to define multi-chart geometry images
(MCGIMs). Motivated by the atlas approach for texture
mapping (e.g. Maillot et al. [1993]), we partition the surface
into a geometrically natural set of charts, parametrize the
charts individually onto irregular polygons, and pack the
polygons into a geometry image (Figure 1). Such an atlas
parameterization reduces distortion because the smaller charts
are easier to flatten and because their parametrized bounda-
ries can assume more natural shapes. Low-distortion
parametrizations distribute samples more uniformly over the
surface and therefore better capture surface signals. Each
chart can be allotted an appropriate number of “defined”
samples in the geometry image, separated by “undefined”
samples. Our representation can be viewed as piecewise
regular since it is composed of sub-regions of a regular GIM.

MCGIMs retain the key advantage of the original GIMs –
rendering involves a simple scan of the samples in stored
order. And, MCGIMs overcome the distortion present in
GIMs, at the small expense of assigning some samples special
“undefined” values.

A serious drawback of a general atlas parametrization is that
its reconstructed signal is discontinuous across chart bounda-
ries. Because irregular chart outlines do not align with the
sampling grid, boundaries between neighboring charts are
generally sampled differently. For geometry images, such
signal discontinuities create unacceptable cracks in the
surface. Even a few erroneous pixels become glaring arti-
facts. To prevent cracks, we present a novel zippering
scheme that unifies boundaries of the discretized MCGIM
charts to create a continuous (watertight) model.
Our main contribution is the MCGIM representation obtained
through this zippering scheme. To create accurate MCGIMs,
we also introduce several improvements to existing atlas
parametrization methods. We develop a new atlas chartifica-
tion scheme, based on general clustering optimization
inspired by the work of Lloyd [1957] and Max [1960]. Our
scheme creates compact, roughly flat charts whose bounda-
ries align with the model’s creases. We apply the mesh
optimization framework of Hoppe et al. [1993] to refit the
MCGIM samples to the original surface, thereby improving
its accuracy considerably. And, we extend the “Tetris”
packing algorithm of Lévy et al. [2002] to optimize both chart
rotations and overall domain dimensions. With these im-
provements, we demonstrate that MCGIMs outperform both
single-chart geometry images and semi-regular remeshes on
example models.

1This assumes that one wants a remesh free of T-vertices, while

avoiding the indirection-based representations that would
result from adaptive subdivision refinement.

2. Previous work

Atlas parametrizations. Some atlas schemes map individual
triangles or pairs of triangles separately into a texture [e.g.
Cignoni et al. 1998, Carr and Hart 2002]. In this section, we
review more general chart-based atlas constructions.

Maillot et al. [1993] partition a mesh into charts based on
bucketing of face normals. Their parametrization method
optimizes edge springs of non-zero rest length.

Piponi and Borshukov [2000] manually cut a subdivision
surface using a network of edges. They parametrize the
resulting single chart using a “pelting” analogy, by stretching
out the surface boundary using a collection of springs.

Sander et al. [2001] partition a mesh using greedy face
clustering (also done independently by Garland et al. [2001]).
They parametrize the resulting charts onto convex polygons
using geometric stretch. The charts are packed into a square
using a greedy algorithm based on bounding rectangles.

Lévy et al. [2002] align chart boundaries with high-curvature
features of the surface. After locating a set of seed faces
farthest from sharp features, they grow charts about these
seeds, and merge some resulting charts. They parametrize
each chart using least-squares conformal maps with free
boundaries. They use a Tetris-like packing algorithm that
searches for best fit over the horizon of pieces packed so far.
Sorkine et al. [2002] grow charts while simultaneously
parametrizing them. The chart growth stops when a distortion
bound is reached or if self-overlap is detected, and a new
chart is started. Their parametrization uses a stretch-based
metric that penalizes both undersampling and oversampling.
Sheffer and Hart [2002] cut a surface into a single chart by
cutting through high-distortion, less-visible surface regions.
None of these atlas constructions address the problem of
inter-chart cracks when resampling geometry, as our zipper-
ing scheme does. Our chartification method is less greedy
than previous methods, thus yielding better results.

Model decomposition. Shlafman et al. [2002] also develop a
clustering-based approach to mesh partitioning. Because
their application is morphing and not parametrization, their
clustering distance metric does not account for overall chart
planarity.

Zippering. Turk and Levoy [1994] reconstruct watertight
surfaces from scanned height meshes by zippering mesh
boundaries together. Because the desired surface is unknown,
zippering is a challenging operation. In contrast, our zipper-
ing task (Section 4.5) is given a reference surface as input,
and so can be made simple and robust.
Several algorithms consider the problem of reconstructing
surfaces from contours [e.g. Fuchs et al. 1977]. The simplest
case they consider is that of building a surface ribbon that
spans two parallel contour polygons. This is quite similar to
our zippering algorithm. The difference is that we seek to
unify the vertices across the gap rather than to construct a
ribbon of new triangles between them.

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

3. MCGIM representation

A multi-chart geometry image (MCGIM) is a rectangular 2D
grid whose entries store 3D points sampled from a given
surface. Since the MCGIM consists of multiple, arbitrarily
shaped charts packed together into a grid, there are some
wasted samples that lie outside the charts. We refer to these
as undefined samples. The remaining are called defined
samples, and can be further distinguished into boundary
samples (with at least one undefined sample among its four
immediate neighbors) and interior samples. The defined
region of the image is specified either using a bitmask or by
storing NaN (Not-a-Number) into the coordinate values of
undefined samples.
In order to reconstruct a surface from the MCGIM, we must
specify how polygon faces are formed. For each 2-by-2 quad
of samples, we examine how many samples are defined. If
fewer than three are defined, no polygon is formed. If exactly
three samples are defined, one triangle is created. And if all
four samples are defined, two triangles are created, with the
diagonal chosen to be the shorter one in 3D. Applying this
method to all quads in the image creates a triangle mesh.
Although some triangles are in fact degenerate due to our
zippering, such degenerate triangles can still be fed to the
graphics pipeline since they have no effect on rendering.
Our goal is MCGIM construction is to create a watertight
mesh, i.e. a 2-dimensional manifold where every edge is
adjacent to exactly two faces and every vertex is adjacent to
exactly one ring of faces. Note that MCGIMs can represent
meshes with several connected components, as well as
meshes with boundaries (where some edges are adjacent to
only one face).

For rendering, normals are computed at each sample point
using the normalized cross product of central differences.
When an adjacent sample is undefined, it is replaced by the
current sample in the central difference. (Opposite neighbors
cannot both be undefined if the mesh is manifold.)

4. MCGIM creation

4.1 Mesh chartification

The first step in producing a multi-chart geometry image is to
partition the mesh into charts. Charts that have compact
boundaries and are mostly flat yield better parametrization
and packing results, thereby reducing the error of the geome-
try image.

We first tried the chart merging approach of Sander et al.
[2001]. They apply a greedy face clustering algorithm.
Because the resulting charts have irregular boundaries, they
subsequently straighten the boundaries. While the method
works well when the desired number of charts is high, for a
smaller number of charts the boundaries do not usually follow
the “creases” of the model. For instance, after the straighten-
ing step, the gargoyle wings of Figure 2a are each composed
of a single chart.

This same observation motivated Lévy et al. [2002] to
develop an algorithm that aligns chart boundaries with high-
curvature features. They first estimate sharp features using

local edge dihedral angles, then identify seed faces farthest
from sharp features, and finally grow charts about these
seeds. In a sense, our new method can be seen as a generali-
zation of this approach, but uses a more general optimization
and does not require feature detection.

Algorithm overview. Our algorithm is inspired by Lloyd-
Max quantization, which partition sets of elements (e.g.
colors), into a fixed number of clusters (e.g. quantized
colors). The basic strategy is to iteratively optimize the
clusters using two steps:

• Partition the elements according to current cluster models.
• Refit a model to each cluster.
In our context, elements are mesh faces, clusters are charts,
and the model is a seed face for each chart. We call the first
step “chart growth” and the second step “seed computation”.
We now describe these in detail. Later, we present bootstrap-
ping and termination conditions.

Phase 1: Chart growth. Given n seeds representing the n
charts, assign each face to a chart.

In this phase we partition the elements by growing all the
charts simultaneously using a Dijkstra search algorithm on
the dual graph of the mesh. This graph connects each pair of
adjacent mesh faces by an edge. We assign edge costs that
encourage charts to be planar and to have compact bounda-
ries. Whereas Shlafman et al. [2002] only consider local
dihedral angles, our metric considers distance to a global
chart normal. Specifically, the edge cost between a face F on
a chart C and its adjacent face F′ that is a candidate to join C
is a measure of geometric distance between the two faces, and
difference in normal between F′ and the chart normal NC:

cost(F, F′) = (λ - (NC · NF′))(|PF′ – PF|) ,

where NC is the normal of the chart containing F (the average
normal of all faces already in the cluster), and PF′ and PF are
the centroid points of F′ and F. The parameter λ regulates the
relative weight between the normal and geometric distance
terms. For all of our experiments, we set λ to 1. Phase 1
terminates when all faces have been assigned to charts.
Phase 2: Seed computation. Given a chartified mesh, update

the seed for each chart.
In this phase, we update the seed of each chart to be the “most
interior” face within the chart. To find this face, we again
perform a Dijkstra search on the dual graph of the mesh, but
in the opposite direction. We start the search from all faces
adjacent to a chart boundary. The edge cost is simply the
geodesic distance

cost(F, F′) = |PF′ – PF| .

The last face reached within each chart becomes its new seed.

Convergence. Phases 1 and 2 are repeated until the new
seeds are identical to those of the previous iteration. Occa-
sionally, this discrete optimization fails to converge because
the seeds begin to cycle between nearby faces (defining
nearly identical chartifications). We detect these cycles by
checking the set of seeds against the ones obtained in previ-
ous iterations. In practice, if a cycle is detected, any
chartification in the cycle is acceptable.

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

Bootstrapping. In order to bootstrap the chartification
process, we first assign a random face to be the first seed.
Then we run successive iterations of phases 1 and 2, with one
small modification: at the end of phase 1, if the desired
number of seeds has not been reached, we add a new seed.
The new seed is set to be the last face that was assigned to a
chart during phase 1. This tends to place the new seed far
away from the other seeds. Once the desired number of seeds
has been reached, we repeat phases 1 and 2 until convergence
without adding new seeds.

Chart topology constraint. To ensure that all charts are
topological disks, we disallow the formation of annuli and
boundaryless (closed) charts. This is a simple local check on
the chart boundary performed during chart growth. There are
situations where a face cannot be assigned to any chart due to
the above constraint. When that happens, we add as a new
seed the first face that failed this constraint during the chart
growth. For instance, one cannot chartify a sphere with one
chart. So even if one chart is requested, more seeds are
inserted automatically.
Result example. As shown in Figure 2b, with our new
method the front and back of the ears and wings are each
assigned their own chart. Also note that the chartification is
much more symmetric. We parametrized both models and
calculated their stretch efficiencies, which is a measure of
distortion of the parametrization. While the method of Sander
et al. [2001] has a stretch efficiency of just 80% (due to high
stretch on the gargoyle wings), the new method has the near
optimal stretch efficiency of 99%. More chartification
examples are shown throughout the paper.

4.2 Chart parametrization

To parametrize the charts, we minimize the L2 geometric
stretch metric of Sander et al. [2001]. This same metric is
used by Gu et al. [2002]. It penalizes undersampling, and
results in samples that are uniformly distributed over the
surface. Sander et al. [2002] shows that the stretch metric is a
predictor of the reconstruction error under the assumption of
locally constant reconstruction. Instead of fixing the bound-
ary to a square, we allow it to be free during the optimization
[Sander et al. 2002].
We employ the hierarchical parametrization algorithm from
Sander et al. [2002] to solve the minimization problem. This
hierarchical algorithm finds better minima, and is orders of
magnitude faster than uniresolution methods. Once all the
charts are parametrized, we scale them relative to each other
based on their stretch [Sander et al. 2002].

4.3 Chart packing

The algorithm in the previous section produces a set of charts
parametrized on a continuous domain. The next step is to
discretize the charts and pack them into an image.
Packing a set of 2D shapes is a provably hard problem
[Milenkovic 1998], thus motivating heuristic approaches.
Our approach is a simple extension of the “Tetris” packing
algorithm by Lévy et al. [2002]. Their scheme iteratively
adds charts to a square image while keeping track of a
horizon that bounds all the charts packed so far. For each
chart to insert, they locate the horizontal position that mini-
mizes the wasted vertical space between the current horizon
and the new chart.

Our method considers 16 orientations for each chart. Also,
we let the domain be an arbitrary rectangle, rather than a
fixed-sized square, since current graphics hardware can
support textures with arbitrary dimensions. The user specifies
a desired upper-bound on the total number of MCGIM
samples, and we optimize for the best rectangle within this
area bound. Figure 3 demonstrates the improvement.
Chart scales. A scaling factor determines how the continu-
ous charts map to the discrete image grid. We initially set
this scaling factor assuming 100% packing efficiency, and
then successively reduce it by 1% until a successful packing
is achieved. For each scaling factor, the charts are rasterized
into a buffer to obtain their discrete shapes (see Section 4.4).

Domain dimensions. For a given chart scale, two nested
loops consider MCGIM widths and heights whose product is
less than the specified upper-bound. We limit the aspect ratio
to be less than 4.
Chart placement. We place
each chart in the position and
orientation that minimizes
“wasted space” (inset in red). In
Lévy et al. [2002], the empty
space is the region between the
discretized upper horizon of the
atlas (black) and the discretized
lower horizon of the inserted chart (green). We also add any

(a) Sander et al. [2001]; L2 stretch efficiency: 80%

(b) our method; L2 stretch efficiency: 99%
Figure 2: Comparison of the chartification algorithm
from Sander et al. [2001] with our new approach on a
12-chart gargoyle. (Garland et al. [2001] would pro-
duce results comparable to (a).)

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

unused space within the intersection of the upper and lower
envelope of the new chart (red region in the upper-left), since
a different rotation could avoid that wasted space.

4.4 Geometry image sampling

Given desired scale and orientations of the charts within the
geometry image, we discretize the surface charts into the
image. The image pixels will receive (x,y,z) positions sam-
pled from the surface (Figure 4).
The set of defined image samples implicitly create a triangu-
lation, using the rules described earlier in Section 3. We
require that this triangulation maintain the same topology as
the original surface. Satisfying this requirement involves two
sub-problems:
(1) Creating discretized charts that are topological disks, since
the surface charts are known to be disks.
(2) Connecting the charts together without cracks. The
explicit chart boundaries on the original mesh will help in this
zippering process, as explained in the next section.

We address the first sub-problem as follows. (The second
problem is the subject of the next section.)

Interior rasterization. We begin by rasterizing each chart’s
3D triangles into the 2D image domain using ordinary scan
conversion. During rasterization, the value stored in the
image domain sample is the corresponding (x,y,z) location
from the 3D triangle. The unwritten samples remain unde-
fined. This simple procedure does not guarantee that the
rasterized charts will have disk topology. For example,
undersampling a narrow chart “peninsula” leads to broken
charts (see Figure 5a).

Boundary rasterization. To prevent charts from breaking
into disconnected components, we rasterize the chart’s
boundary edges to add connecting samples (Figure 5b). In
particular, for each boundary edge, we construct a 1-pixel

wide rectangle centered along the boundary edge, and scan-
convert it into the texture domain. During this boundary
rasterization, undefined samples covered by the boundary-
polygon are labeled as defined and filled in with the closest
geometric point on the boundary. Previously defined samples
are not overwritten.
Non-manifold dilation. Even with boundary rasterization, a
discrete chart can have a non-manifold reconstruction at
boundary samples (Figure 6). For instance, a single line
peninsula of defined samples produces no triangles. Recon-
structions can also erroneously produce two triangles
touching at a single vertex. To correct these non-manifold
neighborhoods, we extend (dilate) the chart to include addi-
tional samples. For each non-manifold sample p, we make it
manifold by making “defined” a minimal number of its
undefined neighbors. We assign these new samples the same
position as p. We iterate until all samples are manifold.
The are cases when our algorithm can fail, particularly when
the requested geometry image area is small. Some discretized
charts could become annuli for coarse samplings. For
practical image resolutions this is not a problem.

Figure 4: Discretization of the bunny.

Figure 5: Rasterizing the boundary of the chart ensures
that it is connected. (Samples in red are added by
boundary rasterization.)

continuous param. discretized charts after dilation
Figure 6: The discretized charts may have non-manifold
structures. We repair these by local chart dilation.

(a) chartified original mesh
(50 charts)

(b) Lévy et al. [2002]
(packing efficiency = 58.0%)

(c) our method (packing efficiency = 75.6%)

Figure 3: Our improvement on the packing of Lévy et al.
[2002].

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

4.5 Geometry image zippering

To prevent cracks in the reconstructed mesh, we “zipper”
boundary samples along discrete boundaries of charts that
adjoin on the 3D surface. The overall process is illustrated in
Figure 7.

Cut-Nodes. The zippering algorithm first identifies all the
cut-nodes in the mesh. A cut-node is a mesh vertex with
more than two adjacent charts; in other words, a chart corner.
For every chart adjacent to the chart corner, the cut-node must
be mapped to a unique boundary cut-node sample in the
image domain. We choose the closest boundary sample in
terms of 3D distance. In addition, cut-node placement is
constrained to preserve the clockwise-order of the cut-paths.
In practice the GIM resolution is large enough to map each
cut-node to a distinct cut-node sample. Cut-node samples
corresponding to the same cut-node are all assigned its 3D
geometric position.

Cut-Paths. Cut-nodes form the end points of a set of edges
comprising the cut-path or boundary between two adjacent
charts. Every cut-path in the mesh maps to two discrete cut-
paths (sets of boundary samples) in the image domain. We
unify boundary samples along these pairs of discrete cut-
paths. See Figure 7 for an example of the discrete cut-paths.
Snap. For each boundary sample in the discrete cut-path, we
snap (overwrite) its position to the closest point along the
continuous cut-path. This narrows the gap between the charts
but the mesh is still not watertight because of sampling
differences (Figure 7c).
Unify. To seal the boundaries completely, we then unify
boundary samples. Two discrete cut-paths corresponding to
the same continuous chart boundary generally contain
different numbers of samples. So, simple 1-to-1 unification
along the two cut-paths is insufficient: more than two samples
must occasionally be unified.

A simple greedy algorithm produces high quality zipperings.
It performs a one-pass, lock-step traversal of the two discrete
cut-paths. Figure 8 shows two steps in this traversal. We
begin the zipper at a cut-node sample (see Figure 8a), which
has already been unified as described above. During the
traversal, we can advance the zipper along either of the
discrete cut-paths (see Figure 8b); in this case the newly
visited sample is assigned the geometric position of the
current unified cluster. Alternatively, we can advance the
zipper along both of the discrete cut-paths (see Figure 8c); in
this case we create a new cluster of samples that is assigned
the geometric position of one of these samples. From these
three alternatives, we select the zipper advancement that
alters the updated sample by the least amount.

After unification, all samples along a cut-path are
unified to at least one sample on the other cut-path. The
mesh reconstructed from the discrete samples is water-
tight. See Figure 7 for a close-up image of the unified
cut-paths in the bunny reconstruction. When two adja-
cent boundary samples in the same cut-path are unified
together, the reconstruction forms a degenerate triangle,
which is in fact just a line. These degenerate faces do

not affect the manifold property of the mesh and can be
removed during reconstruction or harmlessly rendered as
is. Even with texture mapping, degenerate faces do not
introduce artifacts, since the texture samples are unified
just like the geometric ones.

(a) Domain:
boundary samples in black and

cut-node samples in pink

(b) Before zippering;
surface cut-path in red

(c) Boundary samples snapped
to the cut-paths

(d) Boundary samples unified
to form watertight mesh

Figure 7: Illustration of the zippering process.

(a) (b) (c)

Figure 8: Three stages of the unification algorithm.
Green bubbles represent unified clusters.

4.6 Geometry image optimization

Having created a zippered, watertight MCGIM, we optimize
its defined samples to improve geometric fidelity to the
original mesh. As in feature-sensitive remeshing [Vorsatz et
al. 2001], we seek to more accurately represent sharp features
such as creases and corners. In addition, we want to smooth
and regularize the sample positions across the zippered chart
boundaries.
We extend the mesh optimization technique of Hoppe et al.
[1993]. In that work, both the connectivity and vertex
positions of the approximating mesh are optimized to fit the
reference surface. The fit accuracy is measured by sampling
a dense set of points from the reference surface and minimiz-
ing the squared distanced of those points from the
approximating mesh.

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

Figure 9: Comparison of two multi-chart geometry images
before and after mesh optimization.
In our setting, the mesh connectivity is completely deter-
mined by the grid structure and the vertex positions. Recall
from Section 3 that each quad of the grid is split into two
triangle along its shorter diagonal. Thus, we only need to
optimize vertex positions, noting that the grid diagonals may
change as vertices are moved. We optimize using a non-
linear conjugate-gradient solver, which converges to reasona-
bly good answers even though the fit measure lacks
continuity due to diagonal flipping.

To keep the mesh from folding over during the fit, we add a
mesh smoothness term to the energy function being mini-
mized. This term is set to the Lp norm of the dihedral angles
of the mesh edges. Setting p=4 has produced good results.
Figure 9 shows examples of MCGIM models with sharp
features that are improved using geometry image optimiza-
tion. The results are surprisingly good considering the
restricted mesh connectivities.

5. Results

We have run our completely automatic pipeline on a large
number of models. The process takes approximately 1-2
hours per model. Chartification takes no more than 5 minutes,
parameterization no more than 15 minutes, sampling and
zippering less than a minute, and mesh optimization about 10
minutes. The remainder of the time is needed for the discrete
optimization used for packing. One could easily substitute
other packing schemes – packing is not one of our main
contributions.
We use two cost metrics to compare our results with other
approaches. Memory cost is the total number of samples in
the domain grid (i.e., domain rectangle area). Rendering cost
is the number of samples that must be processed (i.e., defined
samples). Packing efficiency is the ratio of defined samples
to total number of samples. Thus,

rendering cost = memory cost * packing efficiency .

We express geometric accuracy as Peak Signal to Noise Ratio
PSNR = 20 log10(peak/d), where peak is the bounding box
diagonal and d is the symmetric rms Hausdorff error (geomet-
ric distance) between the original mesh and the
approximation. We similarly measure PSNR for a normal
signal derived from the geometry (Section 3). A large normal
error suggests parametrization artifacts like anisotropy.

Geometry image comparison. We created MCGIMs for a
variety of models and compared them with GIMs from Gu et
al. [2002]. To produce a fair comparison between single-
chart and multi-chart geometry images, we also applied our
geometry image optimization (Section 4.6) to the prior GIM
results.

As shown in Table 1, we obtain significantly better PSNR
results using MCGIMs for the models in Figure 14. For the
same memory cost (i.e., including storage cost for our unde-
fined samples), the geometry PSNR for our horse and feline
meshes was more than 10dB higher than those of Gu et al.
To make a comparison for equivalent rendering cost, we
created new MCGIMs with the same number of defined
vertices as GIMs. The additional samples yield a further
improvement of about 2dB. For the Buddha model of Figure
1, the optimized GIM has a PSNR of 65.5dB, whereas our
equivalent-memory-cost MCGIM has a PSNR of 71.7 dB.

models gargoyle horse dragon feline
genus 0 0 1 2

257x257 GIM from Gu et al. [2002]
stretch efficiency 67.8% 32.4% 42.2% 33.3%
defined vertices 66,049 66,049 66,049 66,049
unique vertices 65,537 65,537 65,537 65,537
geometry PSNR 79.4 73.4 70.2 68.0
normal PSNR 30.3 19.4 20.1 17.6
257x257 GIM from Gu et al. + geometry image optimization
geometry PSNR 83.5 71.9 73.6 68.1
normal PSNR 31.5 18.9 19.6 17.0

MCGIM (equivalent memory cost as Gu et al.)
charts 15 25 40 50
stretch efficiency 98.7% 99.2% 92.7% 99.1%
packing efficiency 72.7% 75.6% 73.1% 75.6%
dimensions 466x138 281x228 369x174 478x133
rectangle area 64,308 64,068 64,206 63,574
defined vertices 46,724 48,389 46,913 48,038
unique vertices 41,961 41,857 38,516 35,956
geometry PSNR 83.8 84.6 77.9 79.5
normal PSNR 33.7 30.8 22.9 28.7

MCGIM (equivalent rendering cost as Gu et al.)
unique vertices 58,769 55,329 52,059 55,329
geometry PSNR 85.2 85.3 79.4 82.5
normal PSNR 35.5 30.6 23.1 30.2

Table 1: Geometry image comparison results.

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

Texture-mapping using the implicit MCGIM parametrization
is demonstrated in Figure 10.

Unlike GIMs, MCGIMs can also represent meshes with
multiple components. The teapot in Figure 11 is an example
with four components. Note the excellent chartification and
packing.

Semi-regular remeshing comparison. We also made
comparisons with semi-regular remeshes created by Guskov
et al. [2000] and Lee et al. [1998] (Figure 12). We created
MCGIMs with rendering cost (i.e., number of vertices) no
larger than those of the semi-regular meshes. As shown in
Table 2, our PSNR results are approximately 3db higher than
those of the semi-regular meshes, representing a 30% reduc-
tion in Hausdorff error.

semi-regular meshes our MCGIM approach
unique
vertices

 geom.
PSNR

unique
vertices

geom.
PSNR

feline 258,046 84.4 256,862 88.3
horse 112,642 87.8 99,851 90.2

Table 2: Semi-regular remeshing comparison results.

MCGIM (3,800 faces)
(44x86 geometry image)

same coarse mesh,
normal-mapped

(medium frequency) (near Nyquist rate)
texture-mapped using a sampled, projected stripe texture

Figure 10: An MCGIM texture-mapped with three
352x688 images. Texture coordinates are implicit, and
each triangle is exactly associated with 9x9/2 texture
samples. The resulting renderings are nearly seamless.
The problem is that some zippered triangles are longer
than interior ones, resulting in local undersampling.

(a) chartified mesh
(4 components; 30 charts)

(b) reconstructed mesh
(PSNR=86.2db)

(c) geometry image charts

(dimensions=388x168; packing efficiency=81.3%)
Figure 11: As opposed to the GIM framework, MCGIMs
can represent meshes with multiple components, such as
this teapot.

Original irregular mesh

Semi-regular remeshing

Multi-chart geometry image

Figure 12: Horse close-up showing improved sampling
uniformity of MCGIM over semi-regular remeshing.

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

72

73

74

75

76

77

78

79

1 10 100 1000

number of charts

PS
N

R

Figure 13: MCGIM accuracy as a function of the num-
ber of charts on the horse model, for 1282 samples.

Selecting the number of charts. As shown by the graph in
Figure 13, MCGIM accuracy exhibits a rough “hill” shape
with increasing number of charts. Noise in the graph data
results from optimization procedures involved in chartifica-
tion, parameterization, zippering, and packing. The graph’s
shape comes from two countervailing trends: MCGIMs with
fewer charts use less gutter space and unify fewer samples;
MCGIMs with more charts produce less parametric distortion
and more efficient packings. An optimal number of charts
thus exists for a given model, but good accuracy is obtained
over a broad range.

6. Summary and future work

We introduced multi-chart geometry images, a new surface
representation that extends the geometry images of Gu et al.
[2002]. MCGIMs have the same regular grid structure of
GIMs, except that some of their image samples are undefined.
This permits partitioning of the model into charts, and so
obtains the flexibility needed to parametrize meshes of
arbitrary complexity, high genus, and multiple components
with less distortion.

We showed that MCGIMs significantly exceed the geometric
accuracy of GIMs for equivalent memory cost. Obviously,
this advantage increases if we neglect the cost of undefined
samples, which are ignored in reconstruction and rendering.
We also showed that MCGIMs yield better geometric ap-
proximations than those of the semi-regular remeshing of
Guskov et al. [2000] and Lee et al. [1998].

Several areas of future work remain, especially MCGIM
level-of-detail control and compression. We are also inter-
ested in rendering MCGIMs using graphics hardware, and
exploiting their simplicity in future architectural designs.

References
CARR, N., AND HART, J. 2002. Meshed atlases for real-time procedural

solid texturing. ACM Transactions on Graphics. 21 (2), pp. 106-
131.

CIGNONI, P., MONTANI, C., ROCCHINI, C., AND SCOPIGNO, R. 1998. A
general method for recovering attribute values on simplified meshes.
IEEE Visualization 1998, pp. 59-66.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND
STUETZLE, W. 1995. Multiresolution analysis of arbitrary meshes.
SIGGRAPH 1995, pp. 173-182.

FUCHS, H., KEDEM, Z., AND USELTON, S. 1977. Optimal surface
reconstruction from planar contours. Comm. ACM 20.

GARLAND, M., WILLMOTT, A., AND HECKBERT, P. S. 2001. Hierarchical
face clustering on polygonal surfaces. 2001 ACM Symposium on
Interactive 3D Graphics, pp. 49-58.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images.
SIGGRAPH 2002, pp. 355-361.

GUSKOV, I., VIDIMCE, K., SWELDENS, W., AND SCHRÖDER, P. 2000.
Normal meshes. SIGGRAPH 2000, pp. 95-102.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE,
W. 1993. Mesh optimization. SIGGRAPH 1993, pp. 19-26.

KOBBELT, L., VORSATZ, J., LABSIK, U., AND SEIDEL, H.-P. 1999. A
shrink wrapping approach to remeshing polygonal surfaces. Euro-
graphics 1999, pp. 119-130.

KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W. 2000. Progres-
sive geometry compression. SIGGRAPH 2000, pp. 271-278.

LEE, A., MORETON, H., HOPPE, H. 2000. Displaced subdivision surfaces.
SIGGRAPH 2000, pp. 85-94.

LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN, D.
1998. MAPS: Multiresolution adaptive parameterization of surfaces.
SIGGRAPH 1998, pp. 95-104.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares
conformal maps for automatic texture atlas generation. SIGGRAPH
2002, pp. 362-371.

LLOYD, S. P. 1957. Least squares quantization in PCM. Unpublished,
reprinted as IEEE Trans. Inform. Theory, IT-28(2):127-135, 1982.

MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive texture
mapping. SIGGRAPH 1993, pp. 27-34.

MAX, J. 1960. Quantizing for minimum distortion. IEEE Trans.
Inform. Theory, IT-6(1): pages 7-12, March 1960.

MILENKOVIC, V. 1998. Rotational polygon containment and minimum
enclosure. Proc. of 14th Annual Symposium on Comp. geometry,
ACM.

PIPONI, D. AND BORSHUKOV, G. D. 2000. Seamless texture mapping of
subdivision surfaces by model pelting and texture blending. SIG-
GRAPH 2000, pp. 471-478.

SANDER, P. V., GORTLER, S. J., SNYDER, J., AND HOPPE, H. 2002. Signal-
specialized parametrization. Eurographics Rendering Workshop
2002.

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H. 2001.
Texture mapping progressive meshes. SIGGRAPH 2001, pp. 409-
416.

SHEFFER, A. AND HART, J. C. 2002. Seamster: Inconspicuous Low-
Distortion Texture Seam Layout. IEEE Visualization 2002.

SHLAFMAN, S., TAL, A., AND KATZ, S. 2002. Metamorphosis of polyhe-
dral surfaces using decomposition. Eurographics 2002, pp. 219-228.

SORKINE, O., COHEN-OR, D., GOLDENTHAL, R., AND LISCHINSKI, D.
2002. Bounded-distortion piecewise mesh parameterization. IEEE
Visualization 2002.

TURK, G. AND LEVOY, M. 1994. Zippered polygon meshes from range
images. SIGGRAPH 1994, pp. 311-318.

VORSATZ, J., RÖSSL, C., KOBBELT, L. P., AND SEIDEL, H. 2001. Feature-
sensitive remeshing. Computer Graphics Forum, 20(3):393--401,
2001.

WOOD, Z. J., DESBRUN, M., SCHRÖDER, P., AND BREEN, D. 2000. Semi-
regular mesh extraction from volumes. IEEE Visualization 2000, pp.
275-282.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Interactive
multiresolution mesh editing. SIGGRAPH 1997, pp. 259-268.

© The Eurographics Association 2003.

Sander et al. / Multi-Chart Geometry Images

genus 0; 15 charts genus 0; 25 charts genus 1; 40 charts genus 2; 50 charts

packing efficiency=72.7% packing efficiency=75.6% packing efficiency=73.1% packing efficiency=75.6%

PSNR=83.8 dB PSNR=84.6 dB PSNR=75.6 dB PSNR=79.5 dB

O
rig

in
al

 ir
re

gu
la

r m
es

he
s

[G
u

20
02

] g
eo

m
. i

m
ag

es

M
ul

ti-
ch

ar
t g

eo
m

. i
m

ag
es

Figure 14: Multi-chart geometry image results. Black squares indicate close-up views used in comparisons below.

© The Eurographics Association 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

