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Abstract 
We introduce multi-chart geometry images, a new representation for arbitrary surfaces.  It is created by resam-
pling a surface onto a regular 2D grid.  Whereas the original scheme of Gu et al. maps the entire surface onto a 
single square, we use an atlas construction to map the surface piecewise onto charts of arbitrary shape.  We dem-
onstrate that this added flexibility reduces parametrization distortion and thus provides greater geometric fidelity, 
particularly for shapes with long extremities, high genus, or disconnected components.  Traditional atlas construc-
tions suffer from discontinuous reconstruction across chart boundaries, which in our context create unacceptable 
surface cracks.  Our solution is a novel zippering algorithm that creates a watertight surface.  In addition, we pre-
sent a new atlas chartification scheme based on clustering optimization. 
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Surface representations. 

 

1. Introduction 

Regular remeshing is the process whereby an irregular mesh 
is approximated by a mesh with (semi-)regular connectivity 
[Eck et al. 1995].  The simplicity of a regularly remeshed 
representation has many benefits.  In particular it eliminates 
the indirection and storage of vertex indices and texture 
coordinates.  This will allow graphics hardware to perform 
rendering more efficiently, by removing random memory 
accesses and thus improving memory access performance. 
Geometry images. The most extreme such method, which 
creates the most regular remeshed representation, is the 
geometry image (GIM) introduced by Gu et al. [2002].  Their 
construction converts the surface into a topological disk using 
a network of cuts and parametrizes the resulting disk onto a 
square domain.  Using this parametrization, the surface 
geometry is resampled onto the pixels of an image.  As an 
added benefit, techniques such as image compression can be 
directly applied to the remesh. 

However, this extreme approach of mapping an entire surface 
to a single square has limitations.  Models having discon-
nected components require a separate geometry image per 
component, and complicated shapes with many extremities or 
topological handles have distorted parametrizations. 

Semi-regular remeshing.  A less extreme approach is to 
create a remesh with the connectivity of a subdivided base 
mesh.  Examples of this approach include the methods of Eck 
et al. [1995], Lee et al. [1998; 2000], Kobbelt et al. [1999], 
Guskov et al. [2000], and Wood et al. [2000].  For these 
representations, special kinds of continuous multiresolution 
basis functions can be derived that allow multiresolution 

editing [Zorin et al. 1997] and compression [Khodakovsky et 
al. 2000]. 

This more flexible representation still has constraints that can 
negatively impact parametrization efficiency.  In particular, 
each chart (each surface region associated with a triangle of 
the base mesh) is effectively parametrized onto an equilateral 
triangle, which is then evenly sampled.  Charts with non-
triangular shapes are thus distorted by the parametrization; 
charts that are long and skinny are invariably sampled anisot-
ropically.  In addition, all charts, regardless of their size or 

chartified orig. mesh image 400x160 remesh 
PSNR=71.7 dB 

Figure 1: Example of a multi-chart geometry image. 

© The Eurographics Association 2003. 



Sander et al. / Multi-Chart Geometry Images 

   

information content, must be allotted the same number of 
samples.1 

Multi-chart geometry images.  We describe a new atlas-
based parametrization to define multi-chart geometry images 
(MCGIMs).  Motivated by the atlas approach for texture 
mapping (e.g. Maillot et al. [1993]), we partition the surface 
into a geometrically natural set of charts, parametrize the 
charts individually onto irregular polygons, and pack the 
polygons into a geometry image (Figure 1).  Such an atlas 
parameterization reduces distortion because the smaller charts 
are easier to flatten and because their parametrized bounda-
ries can assume more natural shapes.  Low-distortion 
parametrizations distribute samples more uniformly over the 
surface and therefore better capture surface signals.  Each 
chart can be allotted an appropriate number of “defined” 
samples in the geometry image, separated by “undefined” 
samples.  Our representation can be viewed as piecewise 
regular since it is composed of sub-regions of a regular GIM. 

MCGIMs retain the key advantage of the original GIMs – 
rendering involves a simple scan of the samples in stored 
order.  And, MCGIMs overcome the distortion present in 
GIMs, at the small expense of assigning some samples special 
“undefined” values. 

A serious drawback of a general atlas parametrization is that 
its reconstructed signal is discontinuous across chart bounda-
ries.  Because irregular chart outlines do not align with the 
sampling grid, boundaries between neighboring charts are 
generally sampled differently.  For geometry images, such 
signal discontinuities create unacceptable cracks in the 
surface.  Even a few erroneous pixels become glaring arti-
facts.  To prevent cracks, we present a novel zippering 
scheme that unifies boundaries of the discretized MCGIM 
charts to create a continuous (watertight) model. 
Our main contribution is the MCGIM representation obtained 
through this zippering scheme.  To create accurate MCGIMs, 
we also introduce several improvements to existing atlas 
parametrization methods.  We develop a new atlas chartifica-
tion scheme, based on general clustering optimization 
inspired by the work of Lloyd [1957] and Max [1960].  Our 
scheme creates compact, roughly flat charts whose bounda-
ries align with the model’s creases.  We apply the mesh 
optimization framework of Hoppe et al. [1993] to refit the 
MCGIM samples to the original surface, thereby improving 
its accuracy considerably.  And, we extend the “Tetris” 
packing algorithm of Lévy et al. [2002] to optimize both chart 
rotations and overall domain dimensions.  With these im-
provements, we demonstrate that MCGIMs outperform both 
single-chart geometry images and semi-regular remeshes on 
example models. 

  

                                                                 
1This assumes that one wants a remesh free of T-vertices, while 

avoiding the indirection-based representations that would 
result from adaptive subdivision refinement. 

2. Previous work 

Atlas parametrizations.  Some atlas schemes map individual 
triangles or pairs of triangles separately into a texture [e.g. 
Cignoni et al. 1998, Carr and Hart 2002].  In this section, we 
review more general chart-based atlas constructions. 

Maillot et al. [1993] partition a mesh into charts based on 
bucketing of face normals. Their parametrization method 
optimizes edge springs of non-zero rest length.  

Piponi and Borshukov [2000] manually cut a subdivision 
surface using a network of edges.  They parametrize the 
resulting single chart using a “pelting” analogy, by stretching 
out the surface boundary using a collection of springs. 

Sander et al. [2001] partition a mesh using greedy face 
clustering (also done independently by Garland et al. [2001]).  
They parametrize the resulting charts onto convex polygons 
using geometric stretch.  The charts are packed into a square 
using a greedy algorithm based on bounding rectangles. 

Lévy et al. [2002] align chart boundaries with high-curvature 
features of the surface.  After locating a set of seed faces 
farthest from sharp features, they grow charts about these 
seeds, and merge some resulting charts.  They parametrize 
each chart using least-squares conformal maps with free 
boundaries.  They use a Tetris-like packing algorithm that 
searches for best fit over the horizon of pieces packed so far. 
Sorkine et al. [2002] grow charts while simultaneously 
parametrizing them. The chart growth stops when a distortion 
bound is reached or if self-overlap is detected, and a new 
chart is started.  Their parametrization uses a stretch-based 
metric that penalizes both undersampling and oversampling. 
Sheffer and Hart [2002] cut a surface into a single chart by 
cutting through high-distortion, less-visible surface regions. 
None of these atlas constructions address the problem of 
inter-chart cracks when resampling geometry, as our zipper-
ing scheme does.  Our chartification method is less greedy 
than previous methods, thus yielding better results. 

Model decomposition.  Shlafman et al. [2002] also develop a 
clustering-based approach to mesh partitioning.  Because 
their application is morphing and not parametrization, their 
clustering distance metric does not account for overall chart 
planarity. 

Zippering.  Turk and Levoy [1994] reconstruct watertight 
surfaces from scanned height meshes by zippering mesh 
boundaries together.  Because the desired surface is unknown, 
zippering is a challenging operation.  In contrast, our zipper-
ing task (Section 4.5) is given a reference surface as input, 
and so can be made simple and robust. 
Several algorithms consider the problem of reconstructing 
surfaces from contours [e.g. Fuchs et al. 1977].  The simplest 
case they consider is that of building a surface ribbon that 
spans two parallel contour polygons.  This is quite similar to 
our zippering algorithm.  The difference is that we seek to 
unify the vertices across the gap rather than to construct a 
ribbon of new triangles between them. 
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3. MCGIM representation 

A multi-chart geometry image (MCGIM) is a rectangular 2D 
grid whose entries store 3D points sampled from a given 
surface.  Since the MCGIM consists of multiple, arbitrarily 
shaped charts packed together into a grid, there are some 
wasted samples that lie outside the charts.  We refer to these 
as undefined samples.  The remaining are called defined 
samples, and can be further distinguished into boundary 
samples (with at least one undefined sample among its four 
immediate neighbors) and interior samples.  The defined 
region of the image is specified either using a bitmask or by 
storing NaN (Not-a-Number) into the coordinate values of 
undefined samples.  
In order to reconstruct a surface from the MCGIM, we must 
specify how polygon faces are formed.  For each 2-by-2 quad 
of samples, we examine how many samples are defined.  If 
fewer than three are defined, no polygon is formed.  If exactly 
three samples are defined, one triangle is created.  And if all 
four samples are defined, two triangles are created, with the 
diagonal chosen to be the shorter one in 3D.  Applying this 
method to all quads in the image creates a triangle mesh.  
Although some triangles are in fact degenerate due to our 
zippering, such degenerate triangles can still be fed to the 
graphics pipeline since they have no effect on rendering. 
Our goal is MCGIM construction is to create a watertight 
mesh, i.e. a 2-dimensional manifold where every edge is 
adjacent to exactly two faces and every vertex is adjacent to 
exactly one ring of faces.  Note that MCGIMs can represent 
meshes with several connected components, as well as 
meshes with boundaries (where some edges are adjacent to 
only one face). 

For rendering, normals are computed at each sample point 
using the normalized cross product of central differences.  
When an adjacent sample is undefined, it is replaced by the 
current sample in the central difference.  (Opposite neighbors 
cannot both be undefined if the mesh is manifold.) 

4. MCGIM creation 

4.1 Mesh chartification 

The first step in producing a multi-chart geometry image is to 
partition the mesh into charts.  Charts that have compact 
boundaries and are mostly flat yield better parametrization 
and packing results, thereby reducing the error of the geome-
try image. 

We first tried the chart merging approach of Sander et al. 
[2001].  They apply a greedy face clustering algorithm.  
Because the resulting charts have irregular boundaries, they 
subsequently straighten the boundaries.  While the method 
works well when the desired number of charts is high, for a 
smaller number of charts the boundaries do not usually follow 
the “creases” of the model.  For instance, after the straighten-
ing step, the gargoyle wings of Figure 2a are each composed 
of a single chart. 

This same observation motivated Lévy et al. [2002] to 
develop an algorithm that aligns chart boundaries with high-
curvature features.  They first estimate sharp features using 

local edge dihedral angles, then identify seed faces farthest 
from sharp features, and finally grow charts about these 
seeds.  In a sense, our new method can be seen as a generali-
zation of this approach, but uses a more general optimization 
and does not require feature detection. 

Algorithm overview. Our algorithm is inspired by Lloyd-
Max quantization, which partition sets of elements (e.g. 
colors), into a fixed number of clusters (e.g. quantized 
colors).  The basic strategy is to iteratively optimize the 
clusters using two steps: 

• Partition the elements according to current cluster models. 
• Refit a model to each cluster. 
In our context, elements are mesh faces, clusters are charts, 
and the model is a seed face for each chart.  We call the first 
step “chart growth” and the second step “seed computation”.  
We now describe these in detail.  Later, we present bootstrap-
ping and termination conditions. 

Phase 1: Chart growth. Given n seeds representing the n 
charts, assign each face to a chart.  

In this phase we partition the elements by growing all the 
charts simultaneously using a Dijkstra search algorithm on 
the dual graph of the mesh.  This graph connects each pair of 
adjacent mesh faces by an edge.  We assign edge costs that 
encourage charts to be planar and to have compact bounda-
ries.  Whereas Shlafman et al. [2002] only consider local 
dihedral angles, our metric considers distance to a global 
chart normal.  Specifically, the edge cost between a face F on 
a chart C and its adjacent face F′ that is a candidate to join C 
is a measure of geometric distance between the two faces, and 
difference in normal between F′ and the chart normal NC: 

cost(F, F′) = (λ - (NC · NF′))(|PF′ – PF|) , 

where NC is the normal of the chart containing F (the average 
normal of all faces already in the cluster), and PF′ and PF are 
the centroid points of F′ and F.  The parameter λ regulates the 
relative weight between the normal and geometric distance 
terms.  For all of our experiments, we set λ to 1.  Phase 1 
terminates when all faces have been assigned to charts. 
Phase 2: Seed computation. Given a chartified mesh, update 

the seed for each chart.  
In this phase, we update the seed of each chart to be the “most 
interior” face within the chart.  To find this face, we again 
perform a Dijkstra search on the dual graph of the mesh, but 
in the opposite direction.  We start the search from all faces 
adjacent to a chart boundary.  The edge cost is simply the 
geodesic distance 

cost(F, F′) = |PF′ – PF| . 

The last face reached within each chart becomes its new seed. 

Convergence.  Phases 1 and 2 are repeated until the new 
seeds are identical to those of the previous iteration.  Occa-
sionally, this discrete optimization fails to converge because 
the seeds begin to cycle between nearby faces (defining 
nearly identical chartifications).  We detect these cycles by 
checking the set of seeds against the ones obtained in previ-
ous iterations.  In practice, if a cycle is detected, any 
chartification in the cycle is acceptable. 
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Bootstrapping.  In order to bootstrap the chartification 
process, we first assign a random face to be the first seed.  
Then we run successive iterations of phases 1 and 2, with one 
small modification:  at the end of phase 1, if the desired 
number of seeds has not been reached, we add a new seed.  
The new seed is set to be the last face that was assigned to a 
chart during phase 1.  This tends to place the new seed far 
away from the other seeds.  Once the desired number of seeds 
has been reached, we repeat phases 1 and 2 until convergence 
without adding new seeds. 

Chart topology constraint.  To ensure that all charts are 
topological disks, we disallow the formation of annuli and 
boundaryless (closed) charts.  This is a simple local check on 
the chart boundary performed during chart growth.  There are 
situations where a face cannot be assigned to any chart due to 
the above constraint.  When that happens, we add as a new 
seed the first face that failed this constraint during the chart 
growth.  For instance, one cannot chartify a sphere with one 
chart.  So even if one chart is requested, more seeds are 
inserted automatically. 
Result example.  As shown in Figure 2b, with our new 
method the front and back of the ears and wings are each 
assigned their own chart.  Also note that the chartification is 
much more symmetric.  We parametrized both models and 
calculated their stretch efficiencies, which is a measure of 
distortion of the parametrization. While the method of Sander 
et al. [2001] has a stretch efficiency of just 80% (due to high 
stretch on the gargoyle wings), the new method has the near 
optimal stretch efficiency of 99%.  More chartification 
examples are shown throughout the paper. 

4.2 Chart parametrization 

To parametrize the charts, we minimize the L2 geometric 
stretch metric of Sander et al. [2001].  This same metric is 
used by Gu et al. [2002].  It penalizes undersampling, and 
results in samples that are uniformly distributed over the 
surface.  Sander et al. [2002] shows that the stretch metric is a 
predictor of the reconstruction error under the assumption of 
locally constant reconstruction.  Instead of fixing the bound-
ary to a square, we allow it to be free during the optimization 
[Sander et al. 2002]. 
We employ the hierarchical parametrization algorithm from 
Sander et al. [2002] to solve the minimization problem. This 
hierarchical algorithm finds better minima, and is orders of 
magnitude faster than uniresolution methods.  Once all the 
charts are parametrized, we scale them relative to each other 
based on their stretch [Sander et al. 2002]. 

4.3 Chart packing 

The algorithm in the previous section produces a set of charts 
parametrized on a continuous domain.  The next step is to 
discretize the charts and pack them into an image. 
Packing a set of 2D shapes is a provably hard problem 
[Milenkovic 1998], thus motivating heuristic approaches.  
Our approach is a simple extension of the “Tetris” packing 
algorithm by Lévy et al. [2002].  Their scheme iteratively 
adds charts to a square image while keeping track of a 
horizon that bounds all the charts packed so far.  For each 
chart to insert, they locate the horizontal position that mini-
mizes the wasted vertical space between the current horizon 
and the new chart. 

Our method considers 16 orientations for each chart.  Also, 
we let the domain be an arbitrary rectangle, rather than a 
fixed-sized square, since current graphics hardware can 
support textures with arbitrary dimensions.  The user specifies 
a desired upper-bound on the total number of MCGIM 
samples, and we optimize for the best rectangle within this 
area bound.  Figure 3 demonstrates the improvement.  
Chart scales.  A scaling factor determines how the continu-
ous charts map to the discrete image grid.  We initially set 
this scaling factor assuming 100% packing efficiency, and 
then successively reduce it by 1% until a successful packing 
is achieved.  For each scaling factor, the charts are rasterized 
into a buffer to obtain their discrete shapes (see Section 4.4). 

Domain dimensions.  For a given chart scale, two nested 
loops consider MCGIM widths and heights whose product is 
less than the specified upper-bound.  We limit the aspect ratio 
to be less than 4. 
Chart placement.  We place 
each chart in the position and 
orientation that minimizes 
“wasted space” (inset in red).  In 
Lévy et al. [2002], the empty 
space is the region between the 
discretized upper horizon of the 
atlas (black) and the discretized 
lower horizon of the inserted chart (green).  We also add any 

(a) Sander et al. [2001];   L2 stretch efficiency: 80% 

(b) our method;   L2 stretch efficiency: 99% 
Figure 2: Comparison of the chartification algorithm
from Sander et al. [2001] with our new approach on a
12-chart gargoyle.  (Garland et al. [2001] would pro-
duce results comparable to (a).) 
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unused space within the intersection of the upper and lower 
envelope of the new chart (red region in the upper-left), since 
a different rotation could avoid that wasted space. 

4.4 Geometry image sampling 

Given desired scale and orientations of the charts within the 
geometry image, we discretize the surface charts into the 
image.  The image pixels will receive (x,y,z) positions sam-
pled from the surface (Figure 4). 
The set of defined image samples implicitly create a triangu-
lation, using the rules described earlier in Section 3.  We 
require that this triangulation maintain the same topology as 
the original surface.  Satisfying this requirement involves two 
sub-problems: 
(1) Creating discretized charts that are topological disks, since 
the surface charts are known to be disks. 
(2) Connecting the charts together without cracks.  The 
explicit chart boundaries on the original mesh will help in this 
zippering process, as explained in the next section. 

We address the first sub-problem as follows.  (The second 
problem is the subject of the next section.) 

Interior rasterization.  We begin by rasterizing each chart’s 
3D triangles into the 2D image domain using ordinary scan 
conversion.  During rasterization, the value stored in the 
image domain sample is the corresponding (x,y,z) location 
from the 3D triangle.  The unwritten samples remain unde-
fined.  This simple procedure does not guarantee that the 
rasterized charts will have disk topology.  For example, 
undersampling a narrow chart “peninsula” leads to broken 
charts (see Figure 5a). 

Boundary rasterization.  To prevent charts from breaking 
into disconnected components, we rasterize the chart’s 
boundary edges to add connecting samples (Figure 5b).  In 
particular, for each boundary edge, we construct a 1-pixel 

wide rectangle centered along the boundary edge, and scan-
convert it into the texture domain.  During this boundary 
rasterization, undefined samples covered by the boundary-
polygon are labeled as defined and filled in with the closest 
geometric point on the boundary.  Previously defined samples 
are not overwritten. 
Non-manifold dilation.  Even with boundary rasterization, a 
discrete chart can have a non-manifold reconstruction at 
boundary samples (Figure 6).  For instance, a single line 
peninsula of defined samples produces no triangles.  Recon-
structions can also erroneously produce two triangles 
touching at a single vertex.  To correct these non-manifold 
neighborhoods, we extend (dilate) the chart to include addi-
tional samples.  For each non-manifold sample p, we make it 
manifold by making “defined” a minimal number of its 
undefined neighbors.  We assign these new samples the same 
position as p.  We iterate until all samples are manifold. 
The are cases when our algorithm can fail, particularly when 
the requested geometry image area is small.  Some discretized 
charts could become annuli for coarse samplings.  For 
practical image resolutions this is not a problem. 

Figure 4: Discretization of the bunny. 
 

Figure 5: Rasterizing the boundary of the chart ensures 
that it is connected.  (Samples in red are added by 
boundary rasterization.)  
 

continuous param. discretized charts after dilation 
Figure 6: The discretized charts may have non-manifold 
structures.  We repair these by local chart dilation. 

(a) chartified original mesh 
(50 charts) 

(b) Lévy et al. [2002] 
(packing efficiency = 58.0%) 

(c) our method (packing efficiency = 75.6%) 

Figure 3: Our improvement on the packing of Lévy et al.
[2002]. 
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4.5 Geometry image zippering 

To prevent cracks in the reconstructed mesh, we “zipper” 
boundary samples along discrete boundaries of charts that 
adjoin on the 3D surface.  The overall process is illustrated in 
Figure 7. 

Cut-Nodes.  The zippering algorithm first identifies all the 
cut-nodes in the mesh.  A cut-node is a mesh vertex with 
more than two adjacent charts; in other words, a chart corner.  
For every chart adjacent to the chart corner, the cut-node must 
be mapped to a unique boundary cut-node sample in the 
image domain.  We choose the closest boundary sample in 
terms of 3D distance.  In addition, cut-node placement is 
constrained to preserve the clockwise-order of the cut-paths.  
In practice the GIM resolution is large enough to map each 
cut-node to a distinct cut-node sample.  Cut-node samples 
corresponding to the same cut-node are all assigned its 3D 
geometric position. 

Cut-Paths.  Cut-nodes form the end points of a set of edges 
comprising the cut-path or boundary between two adjacent 
charts.  Every cut-path in the mesh maps to two discrete cut-
paths (sets of boundary samples) in the image domain.  We 
unify boundary samples along these pairs of discrete cut-
paths.  See Figure 7 for an example of the discrete cut-paths. 
Snap.  For each boundary sample in the discrete cut-path, we 
snap (overwrite) its position to the closest point along the 
continuous cut-path.  This narrows the gap between the charts 
but the mesh is still not watertight because of sampling 
differences (Figure 7c).  
Unify.  To seal the boundaries completely, we then unify 
boundary samples.  Two discrete cut-paths corresponding to 
the same continuous chart boundary generally contain 
different numbers of samples.  So, simple 1-to-1 unification 
along the two cut-paths is insufficient: more than two samples 
must occasionally be unified.  

A simple greedy algorithm produces high quality zipperings.  
It performs a one-pass, lock-step traversal of the two discrete 
cut-paths.  Figure 8 shows two steps in this traversal.  We 
begin the zipper at a cut-node sample (see Figure 8a), which 
has already been unified as described above.  During the 
traversal, we can advance the zipper along either of the 
discrete cut-paths (see Figure 8b); in this case the newly 
visited sample is assigned the geometric position of the 
current unified cluster.  Alternatively, we can advance the 
zipper along both of the discrete cut-paths (see Figure 8c); in 
this case we create a new cluster of samples that is assigned 
the geometric position of one of these samples.  From these 
three alternatives, we select the zipper advancement that 
alters the updated sample by the least amount.   

After unification, all samples along a cut-path are 
unified to at least one sample on the other cut-path. The 
mesh reconstructed from the discrete samples is water-
tight.  See Figure 7 for a close-up image of the unified 
cut-paths in the bunny reconstruction.  When two adja-
cent boundary samples in the same cut-path are unified 
together, the reconstruction forms a degenerate triangle, 
which is in fact just a line.  These degenerate faces do 

not affect the manifold property of the mesh and can be 
removed during reconstruction or harmlessly rendered as 
is.  Even with texture mapping, degenerate faces do not 
introduce artifacts, since the texture samples are unified 
just like the geometric ones. 
 

(a) Domain: 
boundary samples in black and 

cut-node samples in pink 

(b) Before zippering; 
surface cut-path in red 

(c) Boundary samples snapped 
to the cut-paths 

(d) Boundary samples unified 
to form watertight mesh 

Figure 7: Illustration of the zippering process. 
 

  
(a) (b) (c) 

Figure 8: Three stages of the unification algorithm. 
Green bubbles represent unified clusters. 
 

4.6 Geometry image optimization 

Having created a zippered, watertight MCGIM, we optimize 
its defined samples to improve geometric fidelity to the 
original mesh.  As in feature-sensitive remeshing [Vorsatz et 
al. 2001], we seek to more accurately represent sharp features 
such as creases and corners.  In addition, we want to smooth 
and regularize the sample positions across the zippered chart 
boundaries. 
We extend the mesh optimization technique of Hoppe et al. 
[1993].  In that work, both the connectivity and vertex 
positions of the approximating mesh are optimized to fit the 
reference surface.  The fit accuracy is measured by sampling 
a dense set of points from the reference surface and minimiz-
ing the squared distanced of those points from the 
approximating mesh. 
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Figure 9: Comparison of two multi-chart geometry images
before and after mesh optimization. 
In our setting, the mesh connectivity is completely deter-
mined by the grid structure and the vertex positions.  Recall 
from Section 3 that each quad of the grid is split into two 
triangle along its shorter diagonal.  Thus, we only need to 
optimize vertex positions, noting that the grid diagonals may 
change as vertices are moved.  We optimize using a non-
linear conjugate-gradient solver, which converges to reasona-
bly good answers even though the fit measure lacks 
continuity due to diagonal flipping. 

To keep the mesh from folding over during the fit, we add a 
mesh smoothness term to the energy function being mini-
mized.  This term is set to the Lp norm of the dihedral angles 
of the mesh edges.  Setting p=4 has produced good results.  
Figure 9 shows examples of MCGIM models with sharp 
features that are improved using geometry image optimiza-
tion.  The results are surprisingly good considering the 
restricted mesh connectivities. 

5. Results 

We have run our completely automatic pipeline on a large 
number of models. The process takes approximately 1-2 
hours per model. Chartification takes no more than 5 minutes, 
parameterization no more than 15 minutes, sampling and 
zippering less than a minute, and mesh optimization about 10 
minutes.  The remainder of the time is needed for the discrete 
optimization used for packing.  One could easily substitute 
other packing schemes – packing is not one of our main 
contributions. 
We use two cost metrics to compare our results with other 
approaches.  Memory cost is the total number of samples in 
the domain grid (i.e., domain rectangle area).  Rendering cost 
is the number of samples that must be processed (i.e., defined 
samples).  Packing efficiency is the ratio of defined samples 
to total number of samples. Thus, 

rendering cost = memory cost * packing efficiency . 

We express geometric accuracy as Peak Signal to Noise Ratio 
PSNR = 20 log10(peak/d), where peak is the bounding box 
diagonal and d is the symmetric rms Hausdorff error (geomet-
ric distance) between the original mesh and the 
approximation.  We similarly measure PSNR for a normal 
signal derived from the geometry (Section 3).  A large normal 
error suggests parametrization artifacts like anisotropy. 

Geometry image comparison.  We created MCGIMs for a 
variety of models and compared them with GIMs from Gu et 
al. [2002].  To produce a fair comparison between single-
chart and multi-chart geometry images, we also applied our 
geometry image optimization (Section 4.6) to the prior GIM 
results. 

As shown in Table 1, we obtain significantly better PSNR 
results using MCGIMs for the models in Figure 14.  For the 
same memory cost (i.e., including storage cost for our unde-
fined samples), the geometry PSNR for our horse and feline 
meshes was more than 10dB higher than those of Gu et al.  
To make a comparison for equivalent rendering cost, we 
created new MCGIMs with the same number of defined 
vertices as GIMs.  The additional samples yield a further 
improvement of about 2dB.  For the Buddha model of Figure 
1, the optimized GIM has a PSNR of 65.5dB, whereas our 
equivalent-memory-cost MCGIM has a PSNR of 71.7 dB. 

 
models gargoyle horse dragon feline 
genus 0 0 1 2

257x257 GIM from Gu et al. [2002] 
stretch efficiency 67.8% 32.4% 42.2% 33.3%
# defined vertices 66,049 66,049 66,049 66,049
# unique vertices 65,537 65,537 65,537 65,537
geometry PSNR 79.4 73.4 70.2 68.0
normal PSNR 30.3 19.4 20.1 17.6
257x257 GIM from Gu et al. + geometry image optimization 
geometry PSNR 83.5 71.9 73.6 68.1
normal PSNR 31.5 18.9 19.6 17.0

MCGIM (equivalent memory cost as Gu et al.) 
# charts 15 25 40 50
stretch efficiency 98.7% 99.2% 92.7% 99.1%
packing efficiency 72.7% 75.6% 73.1% 75.6%
dimensions 466x138 281x228 369x174 478x133
rectangle area 64,308 64,068 64,206 63,574
# defined vertices 46,724 48,389 46,913 48,038
# unique vertices 41,961 41,857 38,516 35,956
geometry PSNR 83.8 84.6 77.9 79.5
normal PSNR 33.7 30.8 22.9 28.7

MCGIM (equivalent rendering cost as Gu et al.) 
# unique vertices 58,769 55,329 52,059 55,329
geometry PSNR 85.2 85.3 79.4 82.5
normal PSNR 35.5 30.6 23.1 30.2

Table 1: Geometry image comparison results. 
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Texture-mapping using the implicit MCGIM parametrization 
is demonstrated in Figure 10. 

Unlike GIMs, MCGIMs can also represent meshes with 
multiple components.  The teapot in Figure 11 is an example 
with four components.  Note the excellent chartification and 
packing. 

Semi-regular remeshing comparison.  We also made 
comparisons with semi-regular remeshes created by Guskov 
et al. [2000] and Lee et al. [1998] (Figure 12).  We created 
MCGIMs with rendering cost (i.e., number of vertices) no 
larger than those of the semi-regular meshes.  As shown in 
Table 2, our PSNR results are approximately 3db higher than 
those of the semi-regular meshes, representing a 30% reduc-
tion in Hausdorff error. 

 

semi-regular meshes our MCGIM approach  
# unique 
vertices 

 geom. 
PSNR

# unique 
vertices 

geom. 
PSNR

feline 258,046 84.4 256,862 88.3
horse 112,642 87.8 99,851 90.2

Table 2: Semi-regular remeshing comparison results. 
 

MCGIM (3,800 faces) 
(44x86 geometry image) 

same coarse mesh, 
normal-mapped 

(medium frequency) (near Nyquist rate) 
texture-mapped using a sampled, projected stripe texture 

Figure 10: An MCGIM texture-mapped with three 
352x688 images.  Texture coordinates are implicit, and 
each triangle is exactly associated with 9x9/2 texture 
samples.  The resulting renderings are nearly seamless.  
The problem is that some zippered triangles are longer 
than interior ones, resulting in local undersampling. 

(a) chartified mesh 
(4 components; 30 charts) 

(b) reconstructed mesh 
(PSNR=86.2db) 

 
(c) geometry image charts 

(dimensions=388x168; packing efficiency=81.3%) 
Figure 11: As opposed to the GIM framework, MCGIMs 
can represent meshes with multiple components, such as 
this teapot. 
 

Original irregular mesh 

Semi-regular remeshing 

Multi-chart geometry image 

Figure 12: Horse close-up showing improved sampling 
uniformity of MCGIM over semi-regular remeshing. 
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Figure 13: MCGIM accuracy as a function of the num-
ber of charts on the horse model, for 1282 samples. 

Selecting the number of charts.  As shown by the graph in 
Figure 13, MCGIM accuracy exhibits a rough “hill” shape 
with increasing number of charts.   Noise in the graph data 
results from optimization procedures involved in chartifica-
tion, parameterization, zippering, and packing.  The graph’s 
shape comes from two countervailing trends: MCGIMs with 
fewer charts use less gutter space and unify fewer samples; 
MCGIMs with more charts produce less parametric distortion 
and more efficient packings.  An optimal number of charts 
thus exists for a given model, but good accuracy is obtained 
over a broad range.   

6. Summary and future work 

We introduced multi-chart geometry images, a new surface 
representation that extends the geometry images of Gu et al. 
[2002].  MCGIMs have the same regular grid structure of 
GIMs, except that some of their image samples are undefined.  
This permits partitioning of the model into charts, and so 
obtains the flexibility needed to parametrize meshes of 
arbitrary complexity, high genus, and multiple components 
with less distortion. 

We showed that MCGIMs significantly exceed the geometric 
accuracy of GIMs for equivalent memory cost.  Obviously, 
this advantage increases if we neglect the cost of undefined 
samples, which are ignored in reconstruction and rendering.  
We also showed that MCGIMs yield better geometric ap-
proximations than those of the semi-regular remeshing of 
Guskov et al. [2000] and Lee et al. [1998]. 

Several areas of future work remain, especially MCGIM 
level-of-detail control and compression.  We are also inter-
ested in rendering MCGIMs using graphics hardware, and 
exploiting their simplicity in future architectural designs. 
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Figure 14: Multi-chart geometry image results.  Black squares indicate close-up views used in comparisons below. 
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