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Abstract Current evaluation metrics for machine translation have increasing
difficulty in distinguishing good from merely fair translations. We believe the main
problem to be their inability to properly capture meaning: A good translation candi-
date means the same thing as the reference translation, regardless of formulation. We
propose a metric that assesses the quality of MT output through its semantic equiva-
lence to the reference translation, based on a rich set of match and mismatch features
motivated by textual entailment. We first evaluate this metric in an evaluation setting
against a combination metric of four state-of-the-art scores. Our metric predicts human
judgments better than the combination metric. Combining the entailment and tradi-
tional features yields further improvements. Then, we demonstrate that the entailment
metric can also be used as learning criterion in minimum error rate training (MERT)
to improve parameter estimation in MT system training. A manual evaluation of the
resulting translations indicates that the new model obtains a significant improvement
in translation quality.
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1 Introduction

Since human evaluation is costly and difficult to do reliably, automatic measures of
translation quality that accurately mirror human judgments are vital to the progress of
machine translation (MT).

Pioneer measures such as BLEU (Papineni et al. 2002) and NIST (Doddington 2002)
measure MT quality cheaply and objectively through the strong correlation between
human judgments and the n-gram overlap between a system translation and one or
more reference translations. While more advanced measures are emerging, popular
second generation metrics such as translation edit rate (TER) (Snover et al. 2006) and
Metric for Evaluation of Translation with Explicit ORdering (METEOR) (Banerjee
and Lavie 2005) still largely focus on word sequence overlap or, in the latter case,
overlap of semantically related lexical items. Since these evaluation metrics are used
for parameter optimization during minimum error rate training (MERT, Och (2003)),
they can directly influence the quality of the resulting translation models.

With the improving state-of-the-art in machine translation, however, BLEU and
related surface-based metrics have come under scrutiny. Studies such as Callison-
Burch et al. (2006) have identified a number of problems: (1) BLEU-like metrics are
unreliable at the level of individual sentences due to the small number of n-grams
involved; (2) BLEU metrics can be “gamed” by permuting word order; (3) for some
corpora and language pairs, the correlation to human ratings is very low even at the
system level; (4) BLEU scores are biased towards statistical MT systems; (5) the gap
in quality between MT systems and human translators is not reflected in equally large
BLEU differences.

Given the important role evaluation plays in MT research, this is problematic, but
not surprising: These metrics treat any divergence from the reference as negative. This
is clearly an oversimplification. There is a long tradition of work in (computational)
linguistics on paraphrase, linguistic variation that preserves the meaning, such as in
Example 1:

(1) Hypothesis: This was declared terrorism by observers and witnesses.
Reference: Commentators as well as eyewitnesses are terming it terrorism.

A number of metrics have aimed at accounting for linguistic variation, either by mak-
ing the matching more intelligent (Snover et al. 2006) or by integrating linguistic
information, mostly lexical or structural (Banerjee and Lavie 2005; Owczarzak et al.
2008). Unfortunately, almost all metrics, with the exception of Giménez and Márquez
(2008), concentrate on only one type of linguistic information1 and therefore lack
robustness.

In this article, we describe a metric that takes advantage the relationship
between MT evaluation and the related task of recognizing textual entailment (RTE)

1 BLEU and TER focus on exact word sequence overlap, while METEOR primarily scores translations
according to the semantic relatedness of individual lexical items.
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Measuring machine translation quality as semantic equivalence 183

Fig. 1 Status of entailment between an MT system hypothesis and a reference translation for good trans-
lations (left) and bad translations (right)

(Dagan et al. 2005). Both tasks aim at assessing semantic equivalence, and need to
distinguish meaning-preserving variation (paraphrase) from true changes in meaning.
We predict the quality of MT hypotheses with a rich RTE feature set incorporating
matches and mismatches between system output and reference on all linguistic levels.
Extending beyond existing semantics-aware metrics such as METEOR, which deal
with word relations, our metric examines more global phenomena such as multiword
paraphrases, argument and modification relations, and phrase reorderings. We show
that in addition to evaluation, the resulting metric can be directly integrated into system
tuning via MERT and performs significantly better than BLEU/TER-trained models.

2 The relation of textual entailment and MT evaluation

Textual entailment (Dagan et al. 2005) was introduced as a concept of inference that
corresponds better to “common sense” reasoning patterns than strict logical entail-
ment. It is defined as a relation between two natural language sentences (a premise
P and a hypothesis H ) that holds if “a human reading P would infer that H is most
likely true”.

Figure 1 illustrates the (idealized) relation between the recognition of textual entail-
ment (RTE) and MT evaluation: Very good MT output and the reference transla-
tion entail each other. Missing and additional hypothesis material breaks forward
and backward entailment, respectively. For bad translations, entailment fails in both
directions.

The examples show the common denominator between RTE and MT evalua-
tion, namely determining the degree of semantic equivalence. Both tasks require the
identification of different types of meaning-preserving reformulations. Example 1
above involves synonymy, semantic relatedness (observers/commentators), phrasal
replacements (and/as well as), and a voice alternation implying structural change (is
declared/are terming).

The tasks differ in that RTE is a binary task, while MT evaluation involves a real-
valued prediction. Fortunately, many models developed for RTE use a classification
architecture, whose features constitute evidence for matches and mismatches on dif-
ferent linguistic levels (cf. previous paragraph). Thus, the approach we follow in this
article is to build a regression model over RTE features for MT evaluation.

Another difference is that RTE assumes well-formed sentences. This is not gener-
ally true in MT, and could lead to degraded linguistic features. However, MT judgments
are more robust than entailment since they are not as sensitive to the contribution of
individual words. Thus, we expect RTE features to be predictive in MT evaluation as
well, provided that the analysis degrades gracefully on ungrammatical sentences.
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Fig. 2 The Stanford entailment recognizer

2.1 The stanford entailment recognizer

We predict MT quality with a regression model over features obtained from the
Stanford Entailment Recognizer (MacCartney et al. 2006), which computes match
and mismatch features for premise-hypothesis pairs.

Figure 2 shows the system architecture. It first constructs dependency graphs of the
two sentences in the Stanford Dependencies representation (de Marneffe et al. 2006).
These graphs contain one node per word and labeled edges representing grammatical
relations. Contiguous collocations (“take off”) and named entities (“1000 tanks” in
Fig. 2) are combined into single nodes. Stage 2 computes the highest-scoring align-
ment between hypothesis and premise nodes. Alignment scores are composed of local
word and edge alignment scores, which use about ten lexical similarity resources,
including WordNet (Miller et al. 1990), InfoMap (Takayama et al. 1999), and Dekang
Lin’s thesaurus (Lin 1998). Exhaustive search being intractable, the system uses a sto-
chastic search technique based on Gibbs sampling. See de Marneffe et al. (2007) for
more details.

In the third stage, the system produces roughly 70 features for the aligned premise-
hypothesis pair. A small number of them are real-valued (mostly quality scores), but
most are binary implementations of small linguistic theories whose activation indi-
cates syntactic and semantic (mis-)matches of different types. Figure 2 groups the
features into four classes. Semantic compatibility assesses to what extent the aligned
material has the same meaning and preserves semantic dimensions such as modality
and factivity, taking a limited amount of context into account. Insertions/Deletions
explicitly addresses material that remains unaligned and assesses to what extent these
edits preserve meaning. The Reference features ascertain that the same events and par-
ticipants are described. Finally, Structural alignment considers larger-scale structure
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Measuring machine translation quality as semantic equivalence 185

by checking, e.g., whether grammatically prominent features of the text, such as the
main verb, can be mapped onto the hypothesis.

To predict the quality of a reference/hypothesis pair, we compute entailment features
in both directions (see Fig. 2), avoiding biases towards hypotheses that are systemat-
ically more specific (longer) or less specific (shorter) than their references. The final
prediction, called RteR, is a simple linear combination of all features.2 The feature
weights are learnable from reasonably small training datasets (see Section 3).

The use of deep linguistic analysis makes our metric more heavyweight than tradi-
tional metrics, with an average per-sentence runtime of 4 s on an AMD 2.6 GHz core.
This is efficient enough to perform regular evaluations on development and test sets,
and Sect. 4 will show that RteR can already be profitably used for minimum error rate
training.

3 Experiment 1: Predicting human judgments

We first assess the performance of RteR on an evaluation task, namely the prediction
of human judgments for MT output on a 7-point Likert scale (Likert 1932; Fabrigar
et al. 2005).

3.1 Setup

We consider five baselines. The first four combine component scores of four widely
used MT metrics (BLEU, NIST, METEOR v.0.7, and TER) using the same linear com-
bination approach as RteR.3 We refer to these regression metrics with their original
name, plus the suffix -R. To alleviate possible nonlinearity, we add all features in linear
and log space. The fifth baseline, MtR, combines the features of all four baselines
into a strong ensemble of traditional MT scores. Table 1 provides more details on the
individual baselines. Finally, we test a combination model, MtRteR, that uses all
surface (MtR) and entailment (RteR) features.

Our first experiment evaluates the entailment-based metric on the task of predicting
human judgments on a seven-point Likert scale. We use the NIST MT 2008 corpus,
which contains English translations of newswire text from three source languages:
Arabic (Ar), Chinese (Ch), Urdu (Ur). Each language consists of 1500–2800 sentence
pairs produced by 7–15 MT systems. We adopt a “round robin” scheme: We optimize
the weights of our regression models on two languages and then predict human scores
on the third language. This gauges performance of our models when training and test
data come from the same genre, but from different languages, which is a setup of
practical interest.

We evaluate both on the sentence and on the system level. At the sentence level,
we can correlate predictions directly with human judgments using Spearman’s ρ,

2 The linear regression prediction we use can be replaced easily; see Padó et al. (2009) for a logistic
regression version of our metric that predicts pairwise preferences.
3 Note that these regression models are strictly more powerful than the individual component scores, which
can be simulated by the regression model.
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Table 1 Baseline regression models: Number of features and description

Model Features Description

BleuR 36 BLEU-n (Papineni et al. 2002) and n-gram precision scores (1 ≤ n ≤ 4);
BLEU brevity penalty (BP); BLEU score divided by BP. To counteract
BLEU’s sentence-level brittleness, we also smooth BLEU-n and n-gram
precision as in Lin and Och (2004)

NistR 32 NIST-n (Doddington 2002) scores (1 ≤ n ≤ 10) and information-weighted
n-gram precision scores (1 ≤ n ≤ 4); NIST brevity penalty (BP); and
NIST score divided by BP

TerR 100 Standard TER (Snover et al. 2006) score and the number of each edit
operation, using the default uniform cost as well as 9 non-uniform edit
costs, with insertion cost close to 0

MetR 2 The METEOR (Banerjee and Lavie 2005) metric

MtR 170 BleuR + NistR + TerR + MetR

Features are represented twice (in linear space and in logarithmic space)

a rank correlation coefficient appropriate for non-normally distributed data. ρ ranges
between −1 and 1. −1 means perfect inverse correlation, 0 no correlation, and 1 perfect
correlation.

At the system level, we follow Callison-Burch et al. (2008) in computing quality
as the percentage of sentences for which a system provides the best translation. We
extend this procedure because real-valued metrics cannot predict ties, while human
raters decide for a significant portion of sentences to “tie” two systems for first place.
To account for this behavior, we compute a system’s “tie-aware” quality as the per-
centage of sentences where the system’s hypothesis was assigned a score better or at
most ε worse than the best system. We set ε to make the relative frequency of ties equal
to that observed in the training set. We find that this leads to a “confidence interval”
for ε of 0.3–0.5 points on a 7-point scale.

3.2 Results

Table 2 shows the results (Spearman’s ρ values). At the sentence level (upper half of
the table), all correlations between model predictions and human judgments are highly
significant (p < 0.01). Nevertheless, we see differences in robustness between the met-
rics. MetR achieves the best correlation for Chinese and Arabic, but fails for Urdu,
apparently the most difficult language. TerR shows the best result for Urdu, but does
worse than MetR for Arabic and even worse than BleuR for Chinese. The MtR com-
bination metric alleviates this problem to some extent by improving the “worst-case”
performance on Urdu to the level of the best individual metric. The entailment metric
(RteR) outperforms MtR on each language. In particular, it improves on MtR’s corre-
lation with Urdu. Even though MetR still does somewhat better than MtR and RteR,
this indicates the usefulness and robustness of entailment features as a complementary
measure of translation quality.

In addition, the joint MtRteR model is best for all three languages, outperform-
ing MetR for each language pair. Interestingly, it performs considerably better than
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Table 2 Experiment 1: Spearman’s ρ between human ratings and model scores (OpenMT 2008)

Data Metrics

Train Test BleuR MetR NistR TerR MtR RteR MtRteR

Sentence

ArZh Ur 0.499 0.491 0.495 0.501 0.501 0.545 0.556

ArUr Zh 0.539 0.611 0.531 0.503 0.573 0.580 0.627

ZhUr Ar 0.525 0.601 0.504 0.545 0.552 0.599 0.611

System

ArZh Ur 0.739 0.684 0.500 0.900∗ 0.927∗ 0.774∗ 0.810∗
ArUr Zh 0.385 0.443 0.400 0.590∗ 0.518∗ 0.477 0.573∗
ZhUr Ar 0.597∗ 0.863∗ 0.619∗ 0.421 0.481 0.597∗ 0.617∗

Sentence level: All correlations significant (p < 0.01)

System level: ∗ p < 0.05

Fig. 3 Experiment 1: Learning curves for Urdu (left) and Arabic (right)

either MtR or RteR. We see this as a second promising result: the types of evidence
provided by MtR and RteR are complementary and can be combined into a superior
joint model.

At the system level, there is high variance due to the small number of datapoints,
and only a few predictions show significant correlation. BleuR, MetR, and NistR
significantly predict one language (Arabic); TerR, MtR, and RteR predict two lan-
guages. MtRteR is the only significant model for all three languages. These results
correspond well to the sentence-level analysis, and are further supported by the WMT
2009 shared evaluation task results (Padó et al. 2009).

Next, we consider the role of training data. Figure 3 shows average correlations
on Urdu and Arabic test data, using subsets of the training data (10% increments,
10 random draws per step). The relative performance of the metrics (MtR < RteR
< MtRteR) remains largely the same throughout. Most of the learning takes place
in the first 40% (800 sentence pairs) of training data. RteR shows a surprisingly
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Table 3 Experiment 1: Reference and hypothesis translations (Urdu)

Sentence pairs RteR features

Reference: I shall face that fact today
Hypothesis: Today I will face this reality

Only function words unaligned (will, this)
Fact/reality: hypernym licenses alignment

MetR: 2.8 RteR: 6.1 Gold: 6

Reference: What does BBC’s Haroon Rasheed
say after a visit to Lal Masjid Jamia Hafsa com-
plex? There are no underground tunnels in Lal
Masjid or Jamia Hafsa. The presence of the for-
eigners could not be confirmed as well

Hypothesis root node unaligned
Missing subject alignments
Important entities in hypothesis cannot be aligned
Reference, hypothesis differ in polarity

Hypothesis: BBC Haroon Rasheed Lal Masjid,
Jamia Hafsa after his visit to Auob Medical Com-
plex says Lal Masjid and seminary in under a land
mine, not also been confirmed the presence of for-
eigners could not be?
MetR: 4.5 RteR: 1.2 Gold: 1

Scores are out of 7

flat learning curve despite the large number of free parameters, presumably because
most features are binary. The performance of MetR remains the same as the training
data increases, which is to be expected from a two-feature combination, but differs
substantially between across languages.

Finally, we perform a qualitative analysis, comparing the output of the RteR metric
to MetR, which we found to be generally the best individual MT metric at the sen-
tence level. Table 3 illustrates two frequently observed patterns in cases where RteR
outperforms MetR. In the top example, a good translation is erroneously assigned a
low score by MetR because it cannot align fact and reality and punishes the change
in word order. RteR correctly assigns a high score, based on the (mostly seman-
tic) features shown on the right. Generally, RteR accounts for more valid variation
in good translations because (a) it judges alignments by context; (b) incorporates a
broader range of semantic relations; (c) weighs mismatches based on the word’s sta-
tus. The bottom example shows a very bad translation that is scored highly by MetR
since almost all of the reference words appear either literally or as synonyms in the
translation hypothesis (shown in italics). In combination with MetR’s concentration
on recall, this results in a moderately high score. RteR’s features indicate seman-
tic incompatibilities with the reference, indirectly pointing toward the hypothesis’
ill-formedness.

4 Experiment 2: MT model optimization via MERT

Minimum error rate training (MERT) is the standard technique for tuning a machine
translation model by varying its parameters to maximize performance achieved on
a specific evaluation metric (Och 2003), traditionally BLEU or TER. However, the
success of MERT depends highly on the evaluation metric. Translations produced by
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a MERT model are likely to exhibit properties that the metric rewards, but will be
largely blind to aspects of translation quality that are not captured by the metric. As
discussed above, almost all existing metrics capture either just local surface phenom-
ena (like BLEU and TER) or do not have a good grasp on sentence coherence (like
METEOR, cf. Table 3). In contrast, the large feature set used by RteR spanning a
number of linguistic levels is a good candidate for use in MERT.

4.1 Experimental setup

We compare the performance of a statistical MT system trained with MERT using
the popular BLEU and TER metrics against a system trained using RteR. Our MT
system is a log-linear translation model with 14 real-valued features: the eight stan-
dard baseline features available in Moses (Hoang et al. 2007), plus six lexicalized
re-ordering features. These MT system features are completely independent from the
RTE features described in Sect. 2.1.

The MT system features are optimized with MERT on the Chinese-English data
provided for NIST MT 2002. As test set, we use the NIST MT Chinese-English
2003 and 2005 datasets. We use Phrasal, Stanford’s left-to-right beam search decoder
(Cer et al. 2008), which is very similar to Moses. Our phrase table was built from 1.1M
bi-sentences sampled from the NIST constrained track4 and GALE Y2 training data.
The Chinese data was word segmented using the Stanford CRF segmenter (Tseng et al.
2005). We extracted phrases as in Koehn et al. (2003) by running GIZA++ (Och and
Ney 2003) in both directions and merging alignments with the grow-diag-final heuris-
tic. We also produced a bidirectional lexical reordering model conditioned on source
and target phrases. A 5-gram language model was created using the SRI language
modeling toolkit (Stolcke 2002) and trained using the Gigaword corpus and English
sentences from the parallel data.

For the MERT runs with an entailment-based metric, we optimized the
parameters of MtRteR on the NIST MT 2006 and 2008 datasets (source languages:
Arabic, Chinese, and Urdu). We introduced extensive caching for the linguistic anal-
ysis process. However, each iteration of MERT learning using 100-best lists still
took on average 4 days. Since 10 iterations or more are often performed prior to
convergence, MERT training with MtRteR would still take well over a month to
complete. We therefore broke training down into two manageable steps: (1) train an
initial MT model using one of the traditional MT evaluation metrics (BLEU and
TER); (2) use the resulting model weights as the starting point for MERT train-
ing using MtRteR with small n-best lists (e.g., with n = 10). While such small
n-best lists would not be sufficient to reliably estimate MT features from scratch,
we found that they do allow for successful model adaptation while minimizing the
computation cost. With this change, each iteration of MERT requires approximately
11 hours. We call the resulting models BLEU → MtRteR and TER→MtRteR,
respectively.

4 http://www.itl.nist.gov/iad/mig/tests/mt/2008/doc/mt08_constrained.html.

123

http://www.itl.nist.gov/iad/mig/tests/mt/2008/doc/mt08_constrained.html


190 S. Padó et al.

Table 4 Human pairwise
preference for translation models

System pairs MtRteR
preferred (%)

Level of
significance

BLEU → MtRteR vs. BLEU 52.9 p < 0.001

TER→MtRteR vs. TER 51.7 p < 0.01

4.2 Results

We evaluated the output of the four models (BleuR, TerR, BLEU → MtRteR and
TER→MtRteR) against the three automatic metrics involved (BLEU, TER, and
MtRteR). MERT training could always maximize the objective function. The BLEU-
trained model performed best on BLEU, the TER-trained model on TER. According
to MtRteR, the best model was TER→MtRteR, followed by BLEU → MtRteR,
TER, and finally BLEU. This shows a systematic advantage of TER over BLEU: TER-
trained models beat BLEU-trained models (cf. Table 2); TER is also a better starting
point for tuning the model with MtRteR.

Then, we validated that the tendencies indicated by MtRteR correspond to true
translation quality. We used Amazon’s Mechanical Turk service, following Snow et al.
(2008) in obtaining expert-level labeling by averaging ratings performed by a small
number of human raters. Raters were presented with two system outputs and a single
reference translation and asked to choose the better translation. The elicitation of MT
quality judgments as pairwise preferences is particularly suitable for the compara-
tively small differences in translation that we expect, but has also been adopted more
generally in the ACL SMT workshops (Callison-Burch et al. 2008). Inter-annotator
agreement was 0.632, κ = 0.26 (fair agreement), comparable to the 2009 SMT results.
Even though far from perfect, we find it promising that naive human annotators can
produce agreement comparable to professionals. As gold standard, we adopted the
label that received the majority of votes. They are fairly reliable, with an average of
2.4 times as many votes for the majority than for the minority label.

Table 4 shows that use of the entailment-based metric during training does in fact
result in translations that tend to be preferred by human judges. While the magni-
tude of the effect is still modest, the results are highly statistically significant. We
expect that more substantial gains can be obtained in the future by providing the
translation model with a richer feature set that addresses more of the phenomena mea-
sured by the entailment-based evaluation metric. In an analysis of MT02, we found
that sentences produced by MtRteR tend to exhibit better translations of structurally
important words and are in particular better at preserving argument structure. Table 5
shows a typical case, where both translations miss information. Hyp (BLEU) scores
better in BLEU-2,5 but its deviance is more severe: It does not mention that it is the
interior minister who provides the information, and falsely claims that he employed

5 We report BLEU-2, that is the BLEU score calculated using only unigram and bigram counts, because
BLEU with higher ns becomes zero for this sentence.
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Table 5 Development set errors
made by RTE- and
BLEU-trained MT systems

Reference: Interior minister confirms senior
adviser to the Italian government was shot by
the “red brigade”

Bleu-2 MtRteR

Hypothesis (BLEU): The senior adviser to
the interior minister was shot dead

0.4289 3.73

Hypothesis (TER→MtRteR): Interior
minister said the senior adviser was shot

0.2124 4.15

the adviser. RteR tries to avoid such errors by penalizing translations that involve
actions by or on the wrong entities.

5 Related work

Researchers have exploited various ways to enable matching between non-identical
words or n-grams. Banerjee and Lavie (2005) and Chan and Ng (2008) use WordNet,
and Zhou et al. (2006) and Kauchak and Barzilay (2006) exploit large collections of
automatically extracted paraphrases. These approaches reduce the risk that a good (but
free) translation is rated poorly, but do not address the problem of translations that
contain long matches while lacking coherence and grammaticality (cf. Table 3). This
issue has been addressed by a line of research on incorporating syntactic knowledge.
Amigó et al. (2006) use the degree of dependency overlap between reference and
hypothesis as a quality predictor. Similar ideas have been applied by Owczarzak et al.
(2008) to LFG parses, and by Liu and Gildea (2005) to phrase-structure trees.

The most comparable work to ours is Giménez and Márquez (2008). Our studies
agree on the crucial point that the use of a wide range of linguistic knowledge in
MT evaluation is desirable and important. However, Giménez and Márquez propose
a rather different approach to the actual integration of this knowledge. They advocate
the bottom-up combination of “heterogeneous”, independent metrics each of which
measures overlap with respect to one linguistic level. In contrast, our aim is to pro-
vide a “top-down” motivation for the features we integrate through the entailment
recognition task.

6 Conclusion and outlook

In this article, we have proposed an automatic metric for MT evaluation that exploits
the close relationship between MT evaluation and the recognition of textual entailment
(RTE) which allows the use of features developed for RTE (covering lexical, syntactic,
and syntacto-semantic phenomena) for the assessment of MT hypotheses.

We have shown that our entailment-based metric correlates better with human
judgments of MT quality than traditional metrics, demonstrating that deep linguistic
features are sufficiently robust. Furthermore, we find that traditional and entailment
features can be combined into a superior joint system. Reassuringly, the amount of
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data necessary for weight optimization is fairly small, and learned weights generalize
well. Furthermore, we have demonstrated that the entailment-based metric can be used
directly in MT parameter optimization, resulting in translations that are significantly
preferred by human judges.

Further data analysis has confirmed the benefits of entailment-based MT evalua-
tion (it abstracts away from valid variation such as word order or lexical substitu-
tion, but detects semantic divergences such as mismatches in argument structure) and
clarified the relationship between MT evaluation and textual entailment: The majority
of phenomena (but not all) that are relevant for RTE are also informative for MT eval-
uation. In the future, linguistically meaningful RTE features (cf. Fig. 2) may also be
helpful in uncovering shortcomings of MT systems.

Acknowledgements This article is based on work funded by DARPA through IBM. The content does
not necessarily reflect the views of the U.S. Government, and no official endorsement should be inferred.

References

Amigó E, Giménez J, Gonzalo J, Màrquez L (2006) MT evaluation: human-like vs. human acceptable. In:
Proceedings of COLING/ACL 2006, pp 17–24

Banerjee S, Lavie A (2005) METEOR: an automatic metric for MT evaluation with improved correlation
with human judgments. In: Proceedings of the ACL workshop on evaluation measures, pp 65–72

Callison-Burch C, Fordyce C, Koehn P, Monz C, Schroeder J (2008) Further meta-evaluation of machine
translation. In: Proceedings of the ACL workshop on statistical machine translation, pp 70–106

Callison-Burch C, Osborne M, Koehn P (2006) Re-evaluating the role of BLEU in machine translation
research. In: Proceedings of EACL. pp 249–256

Cer D, Jurafsky D, Manning CD (2008) Regularization and search for minimum error rate training. In:
Proceedings of the third workshop on statistical machine translation, Columbus, Ohio, pp 26–34

Chan YS, Ng HT (2008) MAXSIM: a maximum similarity metric for machine translation evaluation. In:
Proceedings of ACL-08/HLT, pp 55–62

Dagan I, Glickman O, Magnini B (2005) The PASCAL recognising textual entailment challenge. In: Pro-
ceedings of the PASCAL RTE workshop, pp 177–190

de Marneffe M-C, Grenager T, MacCartney B, Cer D, Ramage D, Kiddon C, Manning CD (2007) Align-
ing semantic graphs for textual inference and machine reading. In: Proceedings of the AAAI spring
symposium on machine reading, pp 36–42

de Marneffe M-C, MacCartney B, Manning CD (2006) Generating typed dependency parses from phrase
structure parses. In: Fifth international conference on language resources and evaluation (LREC 2006),
pp 449–454

Doddington G (2002) Automatic evaluation of machine translation quality using n-gram cooccurrence
statistics. In: Proceedings of HLT, pp 128–132

Fabrigar LR, Krosnick JA, MacDougall BL (2005) Attitude measurement: techniques for measuring the
unobservable. In: Brock T, Green M (eds) Persuasion: psychological insights and perspectives, Chap
2. 2nd edn. Sage, Thousand Oaks

Giménez J, Márquez L (2008) Heterogeneous automatic MT evaluation through non-parametric metric
combinations. In: Proceedings of IJCNLP, pp 319–326

Hoang H, Birch A, Callison-Burch C, Zens R, Aachen R, Constantin A, Federico M, Bertoldi N, Dyer
C, Cowan B, Shen W, Moran C, Bojar O (2007) Moses: open source toolkit for statistical machine
translation. In: Proceedings of ACL, pp 177–180

Kauchak D, Barzilay R (2006) Paraphrasing for automatic evaluation. In: Proceedings of HLT-NAACL,
pp 455–462

Koehn P, Och F, Marcu D (2003) Statistical Phrase-Based Translation. In: Proceedings of HLT-NAACL.
pp 127–133

Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):1–55

123



Measuring machine translation quality as semantic equivalence 193

Lin C-Y, Och FJ (2004) ORANGE: a method for evaluating automatic evaluation metrics for machine
translation. In: Proceedings of COLING. pp. 501–507

Lin D (1998) Extracting collocations from text corpora. In: First workshop on computational terminology,
pp 57–63

Liu D, Gildea D (2005) Syntactic features for evaluation of machine translation. In: Proceedings of the
ACL workshop on evaluation measures, pp 25–32

MacCartney B, Grenager T, de Marneffe M-C, Cer D, Manning CD (2006) Learning to recognize features
of valid textual entailments. In: Proceedings of NAACL, pp 41–48

Miller GA, Beckwith R, Fellbaum C, Gross D, Miller K (1990) WordNet: an on-line lexical database. Int
J Lexicogr 3:235–244

Och FJ (2003) Minimum error rate training in statistical machine translation. In: Proceedings of ACL,
pp 160–167

Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Linguist
29(1):19–51

Owczarzak K, van Genabith J, Way A (2008) Evaluating machine translation with LFG dependencies. Mach
Transl 21(2):95–119

Padó S, Galley M, Jurafsky D, Manning C (2009) Textual entailment features for machine translation
evaluation. In: Proceedings of the EACL workshop on machine translation, pp 37–41

Papineni K, Roukos S, Ward T, Zhu W-J (2002) BLEU: a method for automatic evaluation of machine
translation. In: Proceedings of ACL, pp 311–318

Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted
human annotation. In: Proceedings of AMTA, pp 223–231

Snow R, O’Connor B, Jurafsky D, Ng A (2008) Cheap and fast—but is it good? evaluating non-expert
annotations for natural language tasks. In: Proceedings of EMNLP, pp 254–263

Stolcke A (2002) SRILM—an extensible language modeling toolkit. In: Proceedings of the international
conference on spoken language processing, pp 901–904

Takayama Y, Flournoy R, Kaufmann S, Peters S (1999) Information retrieval based on domain-specific
word associations. In: Proceedings of PACLING, pp 155–161

Tseng H, Chang P-C, Andrew G, Jurafsky D, Manning C (2005) A conditional random field word seg-
menter for the SIGHAN bakeoff 2005. In: Proceedings of the SIGHAN workshop on chinese language
processing, pp 32–39

Zhou L, Lin C-Y, Hovy E (2006) Re-evaluating machine translation results with paraphrase support. In:
Proceedings of EMNLP, pp 77–84

123


	Measuring machine translation quality as semantic equivalence: A metric based on entailment features
	Abstract
	1 Introduction
	2 The relation of textual entailment and MT evaluation
	2.1 The stanford entailment recognizer

	3 Experiment 1: Predicting human judgments
	3.1 Setup
	3.2 Results

	4 Experiment 2: MT model optimization via MERT
	4.1 Experimental setup
	4.2 Results

	5 Related work
	6 Conclusion and outlook
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


