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An Interactive Tool for Placing Curved Surfaces without Interpenetration

John M. Snydery

Microsoft Corporation
Abstract
We present a surface representation and a set of algorithms that allow in-
teractive placement of curved parametric objects without interpenetration.
Using these algorithms, a modeler can place an object within or on top of
other objects, find a stable placement for it, and slide it into new stable place-
ments. Novel algorithms are presented to track points of contact between
bodies, detect new points of contact, and delete vanishing contacts. Inter-
active speeds are maintained even when the moving body touches several
bodies at many contact points.

We describe a new algorithm that quickly brings a body into a stable
configuration with respect to a set of external forces, subject to the constraint
that it not penetrate a set of fixed bodies. This algorithm is made possible by
sacrificing the requirement that a body behave physically over time. Intuitive
control is still achieved by making incremental, "pseudo-physical" changes
to the body’s placement, while enforcing the non-interpenetration constraint
after each change.
CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling.
Key Words: object placement/assembly, collision detection, contact point.

1 Introduction
Geometric modeling can be dissected into two tasks: creating models for a
set of “parts” or basic objects, and then assembling these parts into virtual
combinations. For example, to model an automobile engine, one can first
create a set of parts including the engine block, pistons, nuts, and bolts,
and then assemble these into an engine. While the vast majority of work in
geometric modeling has focused on the part-creation task, part-assembly is
nonetheless an important and difficult problem. Parts can often be modeled
independently, perhaps by different people; assembling them means having
to deal explicitly with relationships between all the parts together, such as
the constraint that no solid object penetrate another. Increasingly in research
systems, a part is modeled not as a static geometric object, but as a high-
level parameterized model such as an elastic sheet with given initial geometry
and material properties [WITK87,META92]. This increases the complexity
of the part-assembly task, which must compute model parameters from
spatial relationships between the various parts (for example, the shape of the
tablecloth after it is dropped on the table).

This paper focuses on a subset of the part-assembly problem: interactive
placement of rigid, solid, curved objects into physically plausible configu-
rations (Figure 1). Parts in this context are rigid bodies parameterized by
a rigid motion in 3D (i.e., a rotation and translation). The goal is to arrive
at a statically balanced configuration of solids near a user-specified initial
configuration. Examples include placing a spoon in a cereal bowl or filling
it with cereal, placing a phone receiver on its hook, putting ice cubes in a
y1 Microsoft Way, Redmond WA 98052.
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Figure 1: The Placement Problem – The algorithms described here allow, for example,
repositioning of a bowl and spoon in an arbitrary configuration (left) to produce a
configuration with the spoon resting stably in the bowl and the bowl resting stably on
the floor (right). Points of contact computed by the algorithm are shown in yellow; the
spoon is rendered transparently to make these visible.

glass, modeling a pile of fruit, fitting oddly shaped objects into a rigid box,
etc.. Many applications exist for a tool that performs such interactive place-
ment: modeling of static virtual environments, interactive fitting/packing of
3D shapes, games (e.g. virtual 3D puzzles), and keyframe animation for
physically plausible but still controllable motions.

Even this restricted problem is difficult without special tools. Tradition-
ally, an object is placed by directly tying a graphics input device such as a
mouse, trackball, or set of dials to its orientation and translation parameters.
Users verify by eye that objects do not interpenetrate and are physically
balanced. Because curved objects resting on each other can have many
points of contact, modeling a configuration like the one in Figure 1 can take
many minutes of tedious interaction: one portion of the spoon is satisfacto-
rily placed only after some other part begins interpenetrating or pulls away.
Traditional methods also provide no help in reaching a stable configuration.

To assist the user in the placement task, one option is to take advantage
of the substantial work done in computer animation to make objects move
physically. These techniques can be used for the placement problem by
simulating through time until stability is achieved; that is, the objects stop
moving. Unfortunately, none of these techniques is suitable for interactive
placement of curved, non-convex, parametric shapes; the kind of shapes that
many commercial modelers can produce. Most approaches restrict the kinds
of shapes that can be simulated [MOOR88,BARA90,SCLA91, see SNYD93
for a survey of these restrictions]; another approach that handles general
parametric surfaces is too slow for interactive applications [SNYD93]. An
additional disadvantage is that physical behavior over time can actually
hinder the placement problem. A physical card house can fall flat when we
place the next card; a spoon dropped into a bowl accelerates, bounces, and
can end up far from where we wanted it.

However, the placement problem is concerned with quick production of
a desired configuration of objects, not with how they arrived there. We seek
an approach that arrives at a stable state from some arbitrary state, making
changes that are intuitive and controllable, but not necessarily physically
accurate. To make the approach fast, we deviate from accurate physical
simulation in several ways:

1. Bodies have no velocity. In fact there is no explicit notion of time in
the system at all. Instead, a body is moved through a series of discrete
states, each of which obeys the non-interpenetration constraint.

2. While forces and torques are solved for at each state, they aren’t the
real forces that a dynamic body would experience instantaneously.
They are chosen to speed convergence of the body to a “nearby” stable
placement, and are called pseudo-forces and pseudo-torques.
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3. The exact time when contact point transitions occur (e.g., vanishing
contacts) is not calculated. Instead, transitions are made after each
discrete step.

4. Small, non-physical adjustments are made to an active body’s position
and orientation in order to preserve the non-interpenetration constraint.

5. Only one body at a time, the active body, can move. As it moves,
it interacts with other bodies which remain fixed and are treated as
infinitely massive. The user can change which body is currently active
in order to move bodies sequentially into position.

As is implied in some of the above choices, the approach presented here
is a limited solution to the general placement problem of rigid bodies –
a very difficult problem for curved surfaces. Although the sequence of
intermediate states does not correspond to a real motion of the object, the
final state does represent a stable configuration according to static force
balance laws, assuming immovable non-active bodies. The algorithm thus
handles the common case of placing a single object on or within another
that is essentially fixed, like a teapot on a table or a spoon in a bowl. Force
balance is only maintained for the active body; the force it imparts to the
rest of the world is ignored. The algorithm therefore can not automatically
produce physically balanced heaps of multiple bodies. However, visually
plausible heaps can still be modeled “from the ground up”. A sequence of
bodies is added to the accumulated heap; after a body reaches a stable state,
it remains in that position as additional bodies are added (this technique was
used to make Figures 12, 14, 15, and 16). Automatic maintenance of the
non-interpenetration constraint and the ability to place the next object stably
at least provide useful tools in such a modeling task.

The approach trades off robustness in order to achieve interactivity, as
compared to an approach like [SNYD93]. Problems can happen when an
object contacts another at a curve or surface, where one object is concave
in this contact region (e.g., a torus on a cone).1 Such configurations can
still be produced, but sometimes require user intervention (see Section 6
for further discussion). As in [BARA94], our algorithms make use of
heuristics for which a formal justification is lacking, but which seem to work
in practice. The main example involves converting collisions on polygonal
approximations to collisions on analytic surfaces using numerical iteration.
We have not found selection criteria for the approximation that provide a
theoretical guarantee for convergence of this iteration. In practice though,
heuristic selection of the approximation gives a workable solution.

The placement algorithm described in this paper shares characteristics
with optimization methods used previously [WITK87,BARZ88,GLEI92],
but specializes these methods to the problem of interactive placement. The
main difficulty with direct application of such methods involves handling
discontinuities in the energy functional that arise from collisions. This paper
explains how to slide downhill efficiently in the presence of collisions with-
out resorting to a full-blown and very slow physical simulation. Essentially,
the main contribution of this paper is a description of which physical char-
acteristics to sacrifice in order to get good performance, and which to keep
in order to get intuitive control. Several specific elements of the approach
are new: we use a new surface representation that employs both polygonal
and parametric representations, a new algorithm for fast tracking, creation,
and deletion of contact points, and a new method that quickly converges to a
stable, non-interpenetrating placement for a single body starting from some
arbitrary non-interpenetrating state and subject to a set of external forces.

2 Summary
An object is placed near its desired position such that it does not touch

any other objects. This is called a noninterfering state. Interactive collision
detection, described in Section 3, makes it easy for the user to select a
noninterfering initial state. In the simplest mode of interaction, the user
lets the body stabilize under the influence of a gravitational pseudo-force.
The body is automatically moved through a series of discrete states, each
of which obeys the non-interpenetration constraint, until a stable state is
reached. An independent pseudo-force calculation is made at each state
transition: external pseudo-forces are computed, components balanced by
contact pseudo-forces are subtracted away, and the residual is applied to
produce an incremental change in the body’s position. Contact points are

1Note that the problem arises only when the object is concave at the contact region. Concave
objects that contact at isolated points or are concave only away from the region of contact are handled
without difficulty.
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place body in a noninterfering initial state
loop

check for tracked point transitions
compute pseudo-forces at each contact point, and on body
update active body’s placement using � (solution step)
adjust tracked points for new placement

if unable, � �=2 and start loop again (loop failure)
while new polygonal collision exists and collisions < Nsimultaneous

if unable to convert collision to a contact point then
� �=2 and start loop again (loop failure)

else
add tracked point

endif
endwhile
if collisions were successfully added, restore old value of �
if objective function increases, � �=2 (loop failure)
if loop was completed successfully, increase � by � max(��; �max)

render current state
complete user interaction requests: interrupt, undo, direct repositioning,

force or parameter change, etc.
until stable

Figure 2: Automatic Placement Algorithm: This algorithm produces a series of place-
ments of the body that never violate the non-interpenetration condition and converge
to a stable state – a state in which contact forces balance user-specified external forces
such as gravity.

relocated where the body now touches other bodies; the body’s position
and orientation may also be slightly adjusted to preserve all contacts. The
relevant algorithms are described fully in Sections 4 and 5. The result of the
algorithm is the final position of the active body and a list of contact points.
The complete algorithm is outlined in Figure 2.

The sequence of state transitions generated by the automatic placement
algorithm can be interrupted at any point. The user can “undo” a portion of
the sequence and change the forces acting upon the body in order to reach
different resting states. In addition to turning gravity on or off, the user
can apply external pseudo-forces to nudge the object in any direction or
make it attach to specified points on other objects. Alternatively, the body
can be manually positioned relative to its current state,2 and the automatic
placement algorithm resumed from the new position. As in the case of
selecting an initial state for the body, the user must choose a noninterfering
state from which to resume automatic placement.

2.1 Surface Representation

A body is a rigidly movable solid object that interacts with other bodies. It
is represented as a set of patches, each of which is an analytic parametric
surface, whose union contains the boundary of the body. Each patch is
defined so that its surface normal points toward the exterior of the body.3

In choosing a representation for patches, we were faced with the problem
that polygonal collision detection is extremely efficient, but can’t be used
alone to find accurate collisions between smooth surfaces. We therefore use
a hybrid representation: a polygonal approximation is used to detect new
points of contact that arise between bodies, and a functional description is
used to adjust these points so that they lie on the actual curved surface, and
to track them as they move.

The polygonal description is a mesh of triangles with (u; v) parametric
coordinates per vertex. Each vertex lies on the analytic surface. The lo-
cation of a collision can then be approximated by finding two intersecting
triangles and, for each triangle, barycentrically interpolating the parametric
coordinates at each vertex to obtain the (u; v) coordinate at the point of in-
tersection. The two points are used as starting points in an iterative method
(multidimensional Newton-Raphson) which produces contact points on the
actual surfaces. The polygonal approximation is also used during manual
positioning to determine whether a body is in a noninterfering state. When
interference is detected, the body is made transparent and a small dot dis-
played at a point of intersection. The calculations take place at interactive

2In the prototype system, the active body is moved by turning a series of 6 dials which represent
translation and rotation around the coordinate axes.

3Although the system does not currently support open bodies, the changes required are straight-
forward. Contact points must record whether they are on surfaces, edges, or vertices. The systems of
equations used in tracking must then make use of this information. Alternatively, surface boundaries
can be handled by placing thin tubes around edges and spheres around vertices.
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Figure 3: Collision Inconsistencies for Analytic Surfaces vs. Polygonal Approxima-
tions: (a) shows a collision between polygons but not surfaces, (b) shows a collision
between surfaces but not polygons.

rates as the user moves the body. Finally, the polygonal approximation is
used to select a body or a point on a body, using a ray casting algorithm as
in [KAY86].

Functional descriptions for parametric surfaces are created with a sym-
bolic language, as described in [SNYD92]. It is also possible to develop
special purpose code for classes of parametric surfaces such as bicubic
patches. Evaluation of surface points and derivatives up to second order is
required.

Handling Inconsistencies

Since analytic surfaces are approximated by triangles for collision detec-
tion, two sorts of errors can occur as shown in Figure 3. When one of the
objects is concave, a collision can happen between polygonal approxima-
tions but not the analytic surfaces (Figure 3a). This is detected by a failure
in the numerical iteration to move the contact point onto the analytic sur-
faces (see Section 4.3) and ignored.4 A collision between analytic surfaces
can also be missed with the polygonal approximations (Figure 3b). There
are three cases for what then happens: the surfaces can continue to inter-
penetrate until the polygonal approximations eventually collide, they can
“tunnel” through each other, or they can reach a stable state in this situation.
The first case is the typical one and causes no problem since the collision is
eventually found. Users can ignore tunneling since the objects no longer vi-
olate the non-interpenetration condition, or undo tunneled placement states
and restart the algorithm with a smaller � (solution step) parameter, making it
more likely a polygonal collision will be detected. The third case reduces the
accuracy of the final placement: the objects violate the non-interpenetration
condition by a distance bounded by the approximation errors of the two
meshes. A conservative test for noninterpenetration can be developed using
polygonal approximations for offset surfaces where the mesh is known to
enclose the analytic surface.

Why not just use polygons?

There are three advantages of employing an analytic description of curved
surfaces. First, much better accuracy can be achieved. The location of a
surface is computed where it rests on points mathematically on the surface
rather than on faces or edges of a faceted approximation. This can be
important for CAD applications, or cases in which the camera is close to the
resulting model. More accuracy is also achieved in reaching a stable state;
meta-stable configurations that rest on facets are avoided.

Second, using the smooth surface makes it easier to incrementally change
a body’s state while enforcing the non-interpenetration condition. When
one curved body can continuously slide over the surface of another, many
states are unreachable when a polygonal approximation is used. Consider
a cylinder approximated as an extruded regular polygon of n sides resting
lengthwise on a flat plane. Only n discrete rotations of this cylinder around
its axis are stable (where it rests on one of the extruded edges of the regular
polygon); the real cylinder is stable for any such rotation.

Third, faster convergence to stability can be achieved. The analytic
surfaces provide the exact normal vector at points of contact unavailable
with a polygonal approximation. Using these normals in a force balance
computation, we can move the surface a significant amount between steps.
The size of the step used with a purely polygonal approximation would
necessarily be tied to the size of polygonal facets in the neighborhood of

4As will be discussed further in Section 4.3, such a collision is not really ignored, but is initialized
as an extremal point: a point where surfaces are close but not in contact. Extremal points are tracked
along with contact points. An extremal point is deleted if the separation distance increases, or is
converted to a contact point if the distance becomes� 0.
2

Figure 4: Spheres of neglect: A sphere is placed around current contact points within
which collisions are disregarded, so that only new contact points are found.

the contact: an accurate approximation with many polygons would require
a large number of steps.

3 Detecting Collisions Quickly
Our method for detecting collisions between triangulated bodies is similar to
that presented in [GARC94], with several differences that tailor the algorithm
to the interactive placement problem. See that reference for a detailed
description of the collision detection problem.

We approximate each body with a set of triangles organized in an object-
partitioning bounding box hierarchy as in [KAY86]. At the terminal nodes of
the hierarchy are the triangles, each of which is marked with a (body,patch)
identifier. Each node of the tree contains a bounding box in the form
(xmin; xmax; ymin; ymax; zmin; zmax), and a list of child nodes, or information
for a triangle in the case of a terminal node. Nodes can also contain infor-
mation specifying a rigid motion for the subtree. In this case, the node’s
bounding box is in the post-transformed space; each of its child nodes store
bounding boxes in local (pre-transformed) space. Bounding boxes are dy-
namically transformed during traversal of the hierarchy (see Section 3.2).

A similar hierarchy is then constructed for the set of bodies in the system
(the world). The world is maintained by incrementally adjusting the active
body’s position in it; this is easier in an object partitioning hierarchy than
in a spatial hierarchy. When a body moves, a transformation at a single
node must be changed and bounding box changes propagated up the tree;
the object’s hierarchy remains unchanged.5 Because a body’s hierarchy is
constructed just once, we can afford to use substantial computation organiz-
ing its triangles in a hierarchy that is efficient for collision detection. This
processing is done before interaction begins (see Section 3.1).

Two forms of collision detection are required for interactive placement.
Simple collision detection computes whether an object interferes with any
other objects, and is used in choosing a noninterfering state from which
to begin or resume convergence to stability. A second form of collision
detection is used to compute whether a body already in contact with other
bodies intersects at any additional points. To do this, we define spheres
of neglect around the current contact points, as in [SNYD93]. During
traversal, potential collisions within the spheres of neglect are discarded; the
algorithm thus locates new collision points (Figure 4). The radius for each
sphere is a small value determined by the distance the contact point moves
from polygonal approximation to analytic surface during the contact creation
process (Section 4.3). This is done because contact points are tracked on
analytic surfaces but are used to discard polygonal collisions. Note that
spheres of neglect are used only to ignore polygonal collisions; they do not
effect contact point tracking or force calculations.

3.1 Constructing the Bounding Box Hierarchy
To construct a bounding box hierarchy for a body, we apply the recursive
algorithm maketree to the flat list of triangles comprising it:

maketree(L)

partition L into set of n lists Li
create root node R
for each i, insert maketree(Li ) as child of R
return R

5We note that lazy evaluation of bounding box changes improves efficiency in the general case.
When a transformation changes, the appropriate node’s dirty flag is set and propagated up the tree until
the root or a node previously marked dirty is reached. At collision time, a dirty node’s transformation
is updated using a callback function, and its bounding box updated as the union of its children (which
must be recursively updated if marked dirty). This sort of lazy evaluation avoids needless union-of-
bounding-box computations as child nodes are sequentially marked dirty. A node’s bounding box and
transformation is updated exactly once, no matter how many of its children have changed. Of course,
these subtleties are unimportant when only a single body is moved.
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Figure 5: Object partitioning by gap finding: The bounding boxes around four objects
(A; B;C; D) have a gap, a, when projected onto the horizontal axis. Partitioning around
this gap yields the two lists (A; B) and (C;D). Note that the objects have no gap when
projected onto the vertical axis.

At each invocation of maketree, the bounding box for the result node R is
taken as the union of the bounding boxes of its child nodes.

The heart of the construction process is the partitioning of a list of nodes
L into sublists Li. Grouping nodes that are close together greatly improves
culling during collision detection. We have used the following heuristic:
the bounding boxes of each list element are projected into each of the three
coordinate axes to form three lists of intervals. These lists are sorted in
increasing order of interval lower bound, and then are searched for gaps (see
Figure 5). We partition the list into two by using the coordinate axis that
generates the gap of greatest width. All elements whose projected interval
is less than the gap center are placed in one list, the rest in the other. If no
gaps exist, which happens fairly frequently, we partition around the center
of the interval in which projected bounding box centers have the greatest
variance. The projection axis is chosen as the coordinate axis for which the
standard deviation of interval centers is greatest. This kind of partitioning
gives us a branching ratio n = 2 in the resulting hierarchy; other branching
ratios are possible by partitioning along multiple axes. We have not tried
other branching ratios.

3.2 Traversing the Bounding Box Hierarchy
Collision detection is computed by traversing the bounding box hierarchy
of a pair of nodes to be collided, NA and NB. In our system, the active
body is collided against the world, although the algorithm described here
can compute collisions between any two collections of bodies or within a
single collection.

Pairs of nodes from the two hierarchies are examined in depth-first order
according to the following basic algorithm:

traversetrees(NA ,NB)

initialize stack of active pairs with (NA;NB)
while stack is nonempty

pop off next pair (A; B)
loop through child nodes of A and B: (Ai; Bj)

if (Ai; Bj) collide
if both are triangles, record collision
else push pair onto active list

Associated with each pair of nodes on the active stack is a transformation
which transforms the second element of the pair into the coordinate system
of the first. This transformation is updated whenever child nodes are inserted
that contain transformations. Relatively few of these nodes are encountered
during traversal since bodies typically contain hundreds or thousands of
triangles, all of which are moved by changing one node’s transformation.

Three types of collision computations occur: bounding box vs. bounding
box, bounding box vs. triangle, and triangle vs. triangle. If both nodes
are nonterminal, a bounding box vs. bounding box collision is done by
transforming the bounding box of the second object to the coordinate system
of the first, and testing whether the two bounds overlap. If only one is
nonterminal, a bounding box/triangle collision test is done, again in the
coordinate system of the first object. Otherwise, a test for the intersection
of two triangles is done. When two triangles collide, the location of the
collision and pointers to the two triangles are recorded.6

Several changes to the basic algorithm are needed. The first is to cull nodes
based on a list of spheres of neglect. To do this, we test the intersection of the

6The algorithm currently records an arbitrary point of intersection between the two triangles.
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Figure 6: Types of interface points: Two non-interpenetrating bodies in close prox-
imity, A and B, can have two types of interface points. On the left, the bodies are in
tangent contact at a contact pair. On the right, the bodies are slightly apart; the pair of
points at minimal distance is the extremal pair.

bounding boxes of A and B to see whether it is entirely inside some sphere
of neglect. If so, we discard the pair. We also discard a collision between
triangles if it lies within any sphere of neglect. The second change improves
performance: when one node’s bounding box is small with respect to the
other, we do not subdivide it into its children, but compare it unsubdivided
with the children of the bigger node. In our experiments, this sped up the
algorithm up by factors of 2-10, the larger number attained when a very
small object is collided against a much larger one.

4 Computing Points of Contact
As in [SNYD93], places where bodies interact are handled using a finite

set of points even when the region of contact forms a curve or surface. In
[SNYD93], points were uniformly distributed over the contact region; the
approach here creates only enough points to prevent interpenetration and
reach a stable state. These points are called interface points and consist of
a pair of points on two bodies. Interface points are tracked (incrementally
updated) as the body moves from state to state using numerical iteration.
During collision detection, a sphere of neglect is placed around each interface
point to avoid detecting collisions already being handled. We therefore
store, for each interface point, a (u; v) parametric coordinate pair, a pair of
(body,patch) identifiers for the surfaces in contact, and a radius for the sphere
of neglect.

Two types of interface points are used: contact pairs and extremal pairs,
shown in Figure 6. Bodies actually touch at contact pairs. Forces that balance
external forces such as gravity are applied at the contact pairs. These forces
are only applied to push objects away from interpenetrating, not to “glue”
objects together. When such a gluing force is obtained, it is not applied but
instead causes the contact pair to transition to an extremal pair.

Extremal pairs are points on a pair of bodies at minimal distance. The
bodies do not contact in a neighborhood around the extremal pair. Forces are
not applied at extremal pairs. Extremal pairs allow interface points to vanish
gradually. When a gluing contact force is detected, the contact pair is con-
verted to an extremal pair, allowing the two bodies to separate. Contact can
quickly be resumed if the separation distance becomes negative. Extremal
pairs are deleted when the separation distance becomes large enough.

4.1 Tracking Contacts
After the active body is moved, the automatic placement algorithm must
track the interface points from their previous positions. The following
two-phase tracking algorithm yields excellent numerical stability. The first
phase, called the conditioning phase, is not necessary from a theoretical
perspective, but makes the resulting system easier to solve in the next phase.7

In this phase, each interface point, represented as a pair of (u; v) parametric
locations, is independently adjusted to satisfy the extremal point conditions
using numerical iteration (the equations are described in Section 4.4). The
initial condition for this iteration is the parametric location of the interface
point before the body was moved.

In the second phase, called the contact adjustment phase, we adjust both
the body’s rigid motion parameters and the locations of all the interface
pairs to preserve the contact or extremal conditions. Numerical iteration
takes place to simultaneously satisfy the extremal or contact conditions for
all interface points. Initial conditions for this iteration are the body’s current
placement, and the parametric locations of the interface points after the
conditioning phase. Note that the second phase may slightly alter the body’s

7We are able to move bodies much more between states and still maintain the contact conditions
with the use of the conditioning phase.
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Figure 7: Steps in converting a polyhedral collision into a contact point.

placement in order to satisfy the contact point conditions.
When the numerical iteration in either tracking phase fails, the placement

algorithm tries a smaller move of the active body from its last correct state
(Figure 2).

4.2 Detecting Contact Transitions
Before a body is moved, the placement algorithm checks for transitions of
contact points. When a transition is detected, the interface point is either
deleted in the case of a vanishing transition, or switched between contact and
extremal. The following transitions (with their conditions for occurrence)
are detected:

1. extremal to contact – separation distance between bodies becomes
negative

2. contact to extremal – contact force attracts rather than repels the bodies

3. extremal vanishes –

� separation distance exceeds threshold

� conditioning phase iteration fails

� point becomes too close to another interface point

� point falls off parametric domain of its patch

4. contact vanishes –

� point becomes too close to another interface point

� point falls off parametric domain of its patch

The user can optionally disable contact to extremal transitions to assure
that the active body will stay in contact as it’s moved. This effectively makes
the selected contacts “sticky”.

4.3 Creating Contacts
The automatic placement algorithm converts collision points on polygonal

bodies to contact points on analytic parametric surfaces. A series of steps,
illustrated in Figure 7, is performed, each of which uses the results of the
previous step as the initial condition in a numerical iteration:

1. Interpolate the polygonal collision point to yield a pair of parametric
points (u1; v1; u2; v2). The (body,patch) identifier for each of the inter-
secting triangles allows retrieval of the appropriate surface functions
used in the following steps (Figure 7a).

2. Iterate onto the analytic intersection (Figure 7b).

3. Do a few steps of gradient descent to nudge the pair toward the points
of maximal penetration (Figure 7c). This is necessary so that the next
step iterates in the right direction (i.e., toward maximal penetration
rather than maximal separation). The objective function is defined in
Section 4.4, Equation 2.

4. Iterate onto the extremal pair (Figure 7d). This is a conditioning step
exactly like the conditioning phase of tracking.

5. Iterate onto a contact pair (Figure 7e). In this step, the active body’s
position parameters and the locations of all interface points are adjusted.
Equations for all interface points must be satisfied simultaneously,
since the active body’s placement affects the contact conditions of the
previous interface points.
21
Steps 2, 4, and 5 involve numerical iteration which can fail. A failure
in Step 2 may occur because the polygonal approximations intersect but
the analytic surfaces do not (refer to Figure 3a). If failure occurs, we try
iterating onto an extremal pair. If this succeeds, and the resulting separation
distance (defined in Section 4.4) is positive, the interface point is added
as an extremal pair rather than a contact pair. This allows the polygonal
collision to be ignored during the next collision detection query. If a failure
in Step 4 occurs, we disregard what amounts to a conditioning step, and go
on to step 5. A failure elsewhere, or after taking the above measures, results
in a collision failure and causes the placement algorithm to try a smaller
solution step in its next iteration. After a successful contact point creation,
the sphere of neglect radius is determined by the distance the point moved
from Step 1 to Step 5. A collision failure is returned if this distance exceeds
a user-settable threshold.

4.4 Contact Point Iteration
Interface point tracking and contact point creation both use multidimensional
Newton iteration on a system of equations (see [PRES86] for a complete
description).8 Given a system of nonlinear equations F(x) = 0 and a point
near the solution, x0, a successive approximation to the true solution is
achieved by solving the linear system of equations

0 = F(x0) +
@F

@x
(x0)(x1 � x0) (1)

where @F=@x is the Jacobian of F. We solve the above linear system using
the singular value decomposition (or SVD, see [PRES86]), which allows
non-square systems to be solved and is numerically robust.9 The process is
then repeated to improve the approximation, yielding a sequence of iterates
xi. The iteration fails if F(xi) does not get closer to 0 or a maximum number
of iterations is exceeded without yielding a point sufficiently close (in the
residual sense) to a solution.

It only remains to describe the relevant systems of equations (F from Equa-
tion 1), and their parameters, x, for each iterative procedure. In the follow-
ing, we have two points each on a rigidly movable surface Si(Qi;Xi; ui; vi),
i = 1; 2, where Qi is a rotation in 3D10 and Xi is a translation in 3D:

Si(Qi;Xi; ui; vi) � Qi si(ui; vi) + Xi

si(ui; vi) represents the surface in its local coordinate system. There are three
systems of equations used in the above Newton iteration:

1. intersection [iteration over (u1; v1; u2; v2)]:

S1 � S2 = 0

The pair of parametric points is moved to become a true intersection
of the bodies, used in Step 2 of the contact point creation sequence.
Note that this is a non-square system of equations: 3 equations in 4
variables, which is handled using SVD-augmented Newton iteration.

2. extremal [iteration over (u1; v1; u2; v2)]:

(S1 � S2) � N1 = 0

N1 + N2 = 0

where N1 and N2 are the outward-pointing unit normals of the two
surfaces. These conditions imply that the distance between the point
pair is a local extremum (the vector between the points is in the direction
of one surface’s normal, and the two normals are anti-parallel). If the
bodies are separated by a small distance, the iteration will cause the
two points to become the points of minimum distance between the two
surfaces. If the bodies interpenetrate, the iteration will cause the two
to become the points of furthest penetration. This iteration is used in
tracking and in Step 4 of the contact point creation sequence.

8We use the numerical package LAPACK to compute the SVD.
9To solve the linear system Ax = b, the SVD of matrix A is first computed. This yields three

matrices whose product is A, A = UDVT , where U and V are orthonormal, and D is a diagonal matrix.
An ill-conditioned system is adjusted by setting to 0 those elements for which Di=Dmax < �, where

Dmax is the largest diagonal element. We then compute x = VD�1UT taking into account the
rank of D, since some elements have been set to 0. The result is a numerically robust solution that
minimizes the solution, kxk, if solutions exist, and minimizes the residual, kMx � bk, if not.

10We use a unit quaternion, Q = (q1; q2; q3; q4), to represent this rotation. The coordinate system
origin is at the center of mass of the body.
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3. contact [iteration over (Q1;X1; u1; v1; u2; v2)]

S1 � S2 = 0

N1 + N2 = 0

We change the position and orientation of the first body as well as the
parametric location of the point of contact in order to achieve a true
contact point where the surfaces touch and are tangent. This iteration
is used in tracking and in Step 5 of the contact point creation sequence.

Note that the position and orientation of the second body (Q2;X2) is held
constant for all systems of equations.

Contact point creation also involves gradient descent iteration in Step 3.
The objective function whose gradient is descended, the signed separation
distance function G, is given by

G � (S2 � S1) � N1 (2)

If the bodies don’t touch, this function is positive within a neighborhood of
the points of maximal separation. If the bodies interpenetrate, the function
is negative inside the region of interpenetration.

5 Converging to a Stable Configuration
Convergence to a stable state is achieved by the application of pseudo-
forces that cause an incremental change in the position of the active body.
Using force-like quantities accomplishes two things: it leads to changes
in object placement that the user can predict, and it provides much faster
convergence to stable placement than other update rules.11 Pseudo-forces
differ from physical forces because they are solved for statically and do not
accelerate the object but are applied directly to update the object’s position
(see Section 5.3).

Three kinds of pseudo-forces are used: external, which represent gravity
and user-specified “nudges”, contact, which are applied at contact pairs to
balance the external forces as much as possible, andresidual, which represent
the resulting force (external - contact) applied to adjust the body’s position.
The body is considered to be at rest and automatic placement halted when
the residual force is sufficiently small.

It sometimes happens that exact force balance can not be achieved.12 We
therefore use a second criterion to determine stability: the psuedo potential
energy objective. The placement algorithm tries to minimize the energy
objective: a state that increases the objective is rejected. When gravity is the
sole external force, the energy objective is simply the height of the center of
mass of the active body. The placement algorithm thus drops the object as
far as possible. When the change in energy objective is sufficiently small, the
automatic placement algorithm is terminated.13 Other forces have different
objectives, discussed in Section 5.1. The total energy objective is the sum
of the energy objectives for all external psuedo-forces.

5.1 Computing External Pseudo-Forces
The user can apply combinations of three types of external pseudo-forces

to the active body: gravity, local, and connection forces (Figure 8). Pseudo-
forces from these three categories can be added or deleted at any time during
automatic placement to position the active body. For each external pseudo-
force, the algorithm computes three quantities: a force (F) and torque (T)
on the body, and an objective term (E). These are summed to produce the
total force, torque, and objective.

In the following, the current location of the active body is represented
by the rotation/translation pair (Q;X), as in Section 4.4. Force parameters
in capital letters are in world coordinates; noncapitalized parameters are
in body coordinates. External pseudo-forces always have unit length; the

11For example, to stabilize an object under the influence of gravity, the first update rule we tried
was to translate the body down in z (direct gradient descent). Iteration was then done to satisfy the
interface point conditions, which typically moves the body back up in z. In many experiments this
algorithm was more than 10 times slower then the one proposed, which balances gravity with an
approximation to the contact forces.

12For example, consider dropping a torus onto a flat ground plane such that the contact region in the
resting state forms a circle. The approach advocated here will create a number of contact points whose
configuration depends on the polygonal approximation used for the torus. It can easily happen that
two contact points arise that do not form an exact diameter of the circle of contact. Any assignment
of contact forces at these points will therefore produce a residual torque (note that the contact forces
point up, normal to the plane).

13Using the torus/plane example, this termination criterion guarantees that the torus comes to rest
in a stable state as soon as more than one contact point is generated. This is because it can no longer
move in z; the energy objective remains unchanged, triggering the termination condition.
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Figure 8: Types of external pseudo-forces.

amount of movement is determined by the body movement step (� from
Figure 2). Length measurements are scaled relative to the radius of the
smallest enclosing sphere around the active object, R.

A gravity pseudo-force is applied at the body’s center of mass in a given
direction D (e.g., D = (0; 0;�1)). It thus produces no torque, and tends to
translate the body along the D direction. The force, torque, and objective
terms for this pseudo-force are given by:

Fgravity � D

Tgravity � 0

Egravity � �(D � X)=R

A local pseudo-force is applied at a given point on the active body, p, in
some direction d in its local coordinate system. It allows the user to push
and pull on the body. The force, torque, and objective terms are:

Flocal � Qd

Tlocal � (Qp)=R � Flocal

Elocal � 0

To specify a local pseudo-force, the user picks a point p on the active body
and specifies a “push” or “pull” force. A push force assigns to d the negative
of the unit normal vector at p; a pull force assigns it the unnegated normal
vector. The user can also directly control the direction with a 3D widget.
Note that the objective term for a local pseudo-force is 0. In fact, the user
typically turns off objective function processing when using local pseudo-
forces, so that objects can be moved freely against gravity or other external
forces without causing a loop failure when the objective function increases
(refer to Figure 2).14

A connection pseudo-force is applied at a local point on the body, p in
order to connect that point to a given point in world space P. The force,
torque, and objective terms are:

Fconnect �
P � (Qp + X)

kP � (Qp + X)k

Tconnect � (Qp)=R � Fconnect

Econnect � kP � (Qp + X)k=R

5.2 Solving for Contact and Residual Pseudo-Forces
Let the total external pseudo-force and pseudo-torque on the body be given
by Fe and Te. The contact pseudo-forces are given by n scalars fi where
n represents the number of contact pairs. The direction of these forces is
given by Ni where Ni is a unit vector representing the negative of the normal
vector on the active body at the point of contact. To find the fi’s, we solve
the linear system of force balance equations given by:

nX

i=1

fi Ni = Fe

nX

i=1

fi (pi � Ni) = Te

where pi is the vector from the body’s center of mass to the contact point.
This system has no solution if the the body isn’t in a balanced state. We solve
using SVD to obtain a solution which minimizes the L2 norm of the residual.

14In a typical placement scenario, the user first lets a body drop under the influence of gravity.
When it is stable, objective function processing is turned off and local pseudo-forces are used to
slide the contacting body where it’s desired. Then local pseudo-forces can be deleted and objective
processing re-enabled to reach a truly stable placement.
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While the contact forces produced in this way are a coarse approximation,
unstable objects still fall over much as they might in the real world.

To solve for the residual pseudo-force and pseudo-torque, Fr and Tr , we
subtract the sum of the previously computed contact forces from the external
pseudo-forces and pseudo-torques:

Fr � Fe �

nX

i=1

fi Ni

Tr � Te �

nX

i=1

fi (pi � Ni)

The termination criterion kFrk < �; kTrk < � stops the body when it
is balanced with respect to purely normal contact forces. Note that this
criterion implies the body is physically stable, since a static force balance
has been achieved.

The user may also want to stop the body when it is stable with respect
to frictional forces.15 To do this, we compute a frictional pseudo-force
and pseudo-torque residual, Ff and Tf , by first solving the frictional force
balance problem

nX

i=1

f U
i Ui + f V

i Vi = Fr

nX

i=1

f U
i (pi � Ui) + f V

i (pi � Vi) = Tr

where Ui and Vi are independent tangent vectors at each contact point, and
f U
i and f V

i are the 2n frictional forces along these directions to be solved for.
This problem is solved using SVD and the resulting minimal L2 solution
subtracted from Fr and Tr respectively to yield the new residual Ff , Tf . This
approximation to the frictional force and torque is simpler, and less physical,
than used in [BARA94].

When allowing friction forces in the termination criteria, we make the
additional constraint that the magnitude of the frictional pseudo-force at
each contact must be less than a fixed ratio of the magnitude of the normal
pseudo-force (Coulomb model of friction).16 The final pseudo-force and
pseudo-torque applied to the active body, FN and TN , is given by

FN � (1 � �)Fr � �Ff

TN � (1 � �)Tr � �Ff

where � is a user-specified constant related to the amount of friction desired.

5.3 Updating Body Placement
The active body’s position is updated by rotating through a small angle �
in radians around an axis A and translating through a small displacement
�. The total amount of change is governed by the scale-invariant parameter
� – the maximum distance to move the active body in one step, relative to
the radius of its smallest enclosing sphere, R. Actual values for the update
parameters are obtained from the rigid body equations of motion assuming
the body was at rest before applying forces, which implies that the linear
and angular velocities of the body are 0.

We first scale the pseudo-forces and pseudo-torques to be applied, FN and
TN , by the sum of their lengths so that roughly the same amount of change
happens at each step:

F̂N �
FN

kFNk + kTNk

T̂N �
TN

kFNk + kTNk

Since for small �, sin(�) � �, normalizing by kFNk + kTNk implies that the
amount of movement of a point on the active body’s enclosing sphere due
to both rotation and translation, scaled by 1=R, will be roughly �.

15This allows a body to lean on others even though external forces are unbalanced by purely normal
contact forces.

16Note that an assignment of friction forces that produces a very small residual and does not violate
the Coulomb constraint may exist, yet we may not find it. To find such a friction force assignment
would require solving a quadratic optimization problem. In practice, we frequently find an acceptable
force assignment with this simple method. The user can also stop the system at any time manually.
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experiment time iterations

torus on cone 9.89 13
block into goblet 8.0 25
goblet sideways on ground 6.34 28
knot on ground 3.86 12
jack on ground 6.6 36
bumpy sphere on ground 3.43 14
torus on ground 10.72 37
cone on ground 16.15 23
teapot on ground 6.89 20
lid on teapot 51.23 29
straw in glass 14.03 40
ice cube in glass 13.78 39
44th ball in bowl 6.58 9
bumpy sphere on cone 21.26 50
apple on ground 3.1 12

Figure 9: Results for Various Experiments. Each experiment was run until the place-
ment algorithm terminated. Time is clock time in seconds on a SGI Indigo Extreme
2 workstation (R4400 150MHz processor). Iteration counts are the number of main
loops, including failure loops, from the placement algorithm in Figure 2.

We then derive the linear and angular accelerations from the normalized
force and torque. The linear acceleration, a, is given by

a � F̂N

assuming the body has unit mass. The derivative of the angular velocity, _!,
(under the at-rest assumption) is given by

_! � I�1 T̂N

where I is the inertia tensor of the body in world coordinates.17

A differential update is obtained through direct use of the linear and
angular accelerations, scaled by �, to yield

� � �R a

� � � k _!k

A �
_!

k _!k

This provides a “memoryless” change to the body placement, akin to simu-
lation in an extremely viscous fluid. Note that � is scaled by R since it is a
length parameter in world coordinates. As before, the body state is encoded
by a quaternion/vector pair (Q;X). After moving by �, the new body state,
(Q0;X0), is given by

Q0 � (sin(�=2); cos(�=2) A) � Q

X0 � X + �

where � denotes quaternion multiplication.

6 Results
Figure 9 shows performance results for some simple experiments. In

these experiments, time per iteration on an SGI Indigo Extreme 2 worksta-
tion varied from 0.1 seconds to several seconds. A few tens of iterations are
typically necessary to stabilize an object from a nearby placement. Propor-
tionally more iterations are required when an object must traverse a circuitous
route over many bodies and contacts. The majority of the computation time
(more than 90% excluding rendering) is consumed by collision detection
and numerical iteration involved in contact point creation and tracking.

Figure 1 and Figures 10-16 show some results of the placement algorithm.
The placement tool allows the user to replicate the active body, making it
easy to place multiple instances like the ice cubes or balls in Figures 14
and 15. Parameter values used in both the performance experiments and
the modeling examples were � = 1:33, Nsimultaneous = 3, � = 0, and
�max = 0:05. The recovery parameter, � from Figure 2, was chosen so that
the solution step size recovers somewhat more slowly than it is refined.18

Using Nsimultaneous = 3 handles the vast majority of simultaneous collisions,
17The inverse of the inertia tensor I�1 in world coordinates is equal to QI�1

b
Q�1 where Q is

the rotation of the body, and I�1
b

is the inertia tensor in body coordinates. Ib is appropriately scaled

so that the body has unit mass. Note that an accurate inertia tensor is often not required for computer
graphics applications in which only the appearance of stability matters. The identity tensor often
suffices.

18Recall from Figure 2 that � is halved if a loop failure occurs.
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but when regions of contact form curves or surfaces, allows the algorithm
to check for stability without distributing points over the entire contact
manifold. The value �max = 0:05 is a good compromise between speed
of convergence and predictability of movement. User setting of �max is
sometimes useful to increase the speed of convergence or progress more
slowly through a portion of the optimization in which there is an undesirably
large change in the body’s placement.

Polygonal tessellations of surfaces were computed by uniform sampling
in parameter space. The sampling density was typically chosen so that
the surfaces appeared mostly free of polygonal artifacts when viewed from
distances convenient for modeling. For example, the sphere used in the test
of Figure 15 was tessellated using a 41�21 mesh, the bowl with a 81�121
mesh. We have reason to believe that the algorithm functions over a wide
range of mesh accuracy. In one experiment, a knot-like shape was repeatedly
dropped from the same position on a plane, using successively coarser
uniformly sampled polygonal meshes. A stable placement involving three
contact points was achieved using meshes containing from 9600 triangles
to 56 triangles. Time to convergence varied for these experiments varied
from 7.27 seconds to 6.12 seconds. Below 56 triangles (mesh size 15� 5),
the mesh was too poor an approximation to allow convergence of polygonal
collisions to analytic contacts. A reasonable deterministic heuristic for
tessellation would be to bound a measure of the approximation error such as
maximum length of deviation; we have not investigated such a heuristic.

The placement algorithm has been surprisingly robust in our experiments:
almost all modeling tasks in the figures were performed without interrupting
the algorithm and without changing parameters from their default values.
Occasional problems do occur. The algorithm can get “stuck” when it is
not able to convert a polygonal collision to a contact point, so that � goes
to 0. This happened in certain experiments when dropping a torus over a
cone and the lid over the teapot. Both situations involve bodies that form a
curve of contact at the stable configuration, where one body is concave at
the contact. The problem occurs after one contact has been created. As the
body approaches the stable state, additional polygonal collisions are found
and converted to analytic contact points. The iteration often moves the
contact point a significant distance over the surface, violating the maximum
distance threshold. If the distance threshold is increased, the large radius of
neglect for the point may cause missed collisions. If the radius of neglect
is manually decreased, too many polygonal collisions can be computed,
slowing the algorithm to a crawl.

With additional intervention though, modeling tasks can still be performed
in these situations. When the problem occurs, the user can interrupt the
placement algorithm. Increasing the distance threshold parameter and then
resuming often solves the problem, though the user must watch out for
missed collisions. Collision detection can also be temporarily disabled after
interruption and convergence attempted with the current contacts. Again,
missed collisions are a possibility. Since the problems often occur very
near to the stable position, a third strategy is to interactively reposition the
object slightly from its stuck position and try again. If the problem is not
corrected or results in missed collisions, the user can undo the bad states
and try different strategies. The desired placement is usually achieved after
two or three attempts. Such measures, although clearly not ideal, may not
be intolerable in an interactive modeling environment.

As might be expected, the algorithm also suffers from convergence to
meta-stable placements. For example, when a sphere is dropped onto another
precisely underneath, the algorithm converges with the sphere balanced on
top. This is easily remedied by interactively giving the sphere a nudge (by
applying a local force for one step) and resuming.

7 Conclusion
Placing curved objects in physically plausible configurations has always
been a difficult task for modeling systems, but one that can add much
visual richness. This paper describes a new tool for interactive placement
of non-interpenetrating curved objects that makes this task easier and more
accurate. Two ideas make such a tool practical. The first is the use of
a hybrid surface representation. A polygonal approximation allows quick
detection of contacts that arise; a functional description converts these using
numerical iteration to accurate points where the analytic surfaces touch. The
second idea is to reach stability using an optimization technique that passes
through a discrete series of states, based on a simple static force balance law
21
rather than a dynamic simulation. This paper describes a way of moving a
body toward a stable state which is predictable and fast.

A number of areas for extending this work remain. Handling multiple
active bodies is a straightforward extension. A slightly more general contact
force solver is needed; the collision detection and interface point tracking
algorithms described here require no modification. We believe such an
extension would be practical in an interactive setting only for a limited
number of active bodies. For example, simultaneously manipulating all 44
balls from the model in Figure 15, including well over a hundred tracked
contact points, does not seem practical for the near future. Nevertheless, the
extension would be useful for placement of mechanical linkages containing
a few curved parts. Handling interactions between rigid and flexible bodies
may also be possible. Another problem we have only begun to investigate is
placement from an interfering initial state to allow a tool that can extricate
a penetrating body. Finally, we are investigating ways to automatically
handle the problem case discussed in Section 6 without resorting to user
intervention.
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Figure 10: Sticking bodies together with connection forces.

Figure 11: Dropping straws into a glass.

Figure 12: Cluttered scene. Figure 13: Fallen teapot.
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Figure 14: Ice in a glass. Figure 15: 44 balls in a bowl.

Figure 16: Still life with fruit.
218


