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Abstract. We generalize image-based rendering by exploiting texture-mapping graphics hard-
ware to decompress ray-traced “animations”. Rather than 1D time, our animations are param-
eterized by two or more arbitrary variables representing view/lighting changes and rigid object
motions. To best match the graphics hardware rendering to the input ray-traced imagery, we
describe a novel method to infer parameterized texture maps for each object by modeling the
hardware as a linear system and then performing least-squares optimization. The parameterized
textures are compressed as a multidimensional Laplacian pyramid on fixed size blocks of param-
eter space. This scheme captures the coherence in parameterized animations and, unlike previous
work, decodes directly into texture maps that load into hardware with a few, simple image opera-
tions. We introduce adaptive dimension splitting in the Laplacian pyramid and separate diffuse and
specular lighting layers to further improve compression. High-quality results are demonstrated at
compression ratios up to 800:1 with interactive playback on current consumer graphics cards.

1 Introduction

The central problem of computer graphics is real-time rendering of physically illumi-
nated, dynamic environments. Though the computation needed is beyond current capa-
bility, specialized graphics hardware that renders texture-mapped polygons continues to
get cheaper and faster. We exploit this hardware to decompress animations computed
and compiled offline. The decompressed imagery retains the full gamut of stochastic
ray tracing effects, including indirect lighting with reflections, refractions, and shadows.

For synthetic scenes, the time and viewpoint parameters of the plenoptic function
[1, 23] can be generalized to include position of lights, viewpoint, or objects, surface
reflectance properties, or any other degrees of freedom in the scene. For example, we
can construct a 2D space combining viewpoint movement along a 1D trajectory with
independent 1D swinging of a light source. Our goal is maximum compression of
the resulting arbitrary-dimensionalparameterized animation that maintains satisfactory
quality and decodes in real time. Once the encoding is downloaded over a network,
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Fig. 1. An 8 × 8 block of parameterized textures for a glass
parfait object is shown. In this example, dimension p1 repre-
sents a 1D viewpoint trajectory while p2 represents the swing-
ing of a light source. Note the imagery’s coherence.

the decoder can take advan-
tage of specialized hardware
and high bandwidth to the
graphics system to allow a
user to explore the parameter
space. High compression re-
duces downloading time over
the network and conserves
server and client storage.

Our approach infers and
compresses parameter depen-
dent texture maps for individ-
ual objects rather than com-
bined views of the entire
scene, illustrated in Figure 1.



To infer a texture map means to find one which when applied to a hardware-rendered
geometric object matches the offline-rendered image. Encoding a separate texture map
for each object better captures its coherence across the parameter space independently
of where in the image it appears. Object silhouettes are correctly rendered from actual
geometry and suffer fewer compression artifacts.
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Fig. 2. System Overview

Figure 2 illustrates our system.
Ray-traced images at each point in the
parameter space are input to the com-
piler together with the scene geometry,
lighting models, and viewing parame-
ters. The compiler targets any desired
type of graphics hardware by model-
ing the hardware as a linear system. It
then infers texture resolution and tex-
ture samples for each object at each
point in the parameter space to pro-
duce as good a match as possible on
that hardware to the “gold-standard” images. We use pyramidal regularization [20] in
our texture inference to provide smooth “hole-filling” for occluded regions without a
specialized post-processing pass. Per-object texture maps are then compressed using a
novel, multi-dimensional compression scheme that automatically allocates storage be-
tween different objects and their separated diffuse and specular lighting layers. The
interactive runtime consists of a traditional hardware-accelerated rendering engine and
a texture decompression engine that caches to speed decoding and staggers block origins
to distribute decompression load.

2 Previous Work
Image-Based Rendering (IBR). IBR has sought increasingly accurate approximations
of the plenoptic function [1, 23], including use of pixel flow [4], and tabulation of a
4D field, called a “ light field” or “ lumigraph” [18, 10] to interpolate views. Layered
depth images (LDI) [30] are another representation of the radiance field better able to
handle disocclusions and have found use in the rendering of glossy environments [2].
Extending to a 5D or higher field permits changes to the lighting environment [35, 27].
The challenge of such methods is efficient storage of the high-dimensional image fields.

For spatially coherent scenes, it has been observed that geometry-based surface fields
better capture coherence in the light field, achieving a more efficient encoding than
view-based images like the LDI or lumigraph [33, 25, 14, 32, 27]. Our work generalizes
parameterizations based solely on viewpoint. We also encode an entire texture at each
point in parameter space that can be accessed in constant time independent of the size
of the whole representation. Other encoding strategies, such as Miller’s [25], must visit
an irregular scattering of samples over the entire 4D space to reconstruct the texture for
a particular view and thus make suboptimal use of graphics hardware.

Another IBR hybrid uses view-dependent textures (VPT) [6, 7, 5] in which geometric
objects are texture-mapped using a projective mapping from view-based images. VPT
methods depend on viewpoint movement for proper antialiasing - novel views are gener-
ated by reconstructing using nearby views that see each surface sufficiently “head-on” .
Such reconstruction is incorrect for highly specular surfaces. We instead infer texture
maps that produce antialiased reconstructions independently at each parameter location,
even for spaces without viewpoint change. We also use “ intrinsic” texture parameteri-



zations (i.e., viewpoint-independent (u, v) coordinates per vertex given as input on each
mesh) rather than view-based ones. We can then capture the view-independent lighting
in a single texture map rather than a collection of views to obtain better compression.

Interactive Photorealism. Another approach to interactive photorealism seeks to im-
prove hardware shading models rather than fully tabulating radiance. Diefenbach [8]
used shadow volumes and recursive hardware rendering to compute approximations to
global rendering. Even using many parallel graphics pipelines (8 for [34]) these ap-
proaches can only handle simple scenes, and, because of limitations on the number of
passes, do not capture all the effects of a full offline photorealistic rendering, including
multiple bounce reflections and refractions and accurate shadows.

Texture Recovery/Model Matching. The recovery of texture maps from images is
closely related to surface reflectance estimation in computer vision [29, 22, 39]. We
greatly simplify the problem by using known geometry and separating diffuse and spec-
ular lighting layers during the offline rendering. We focus instead on the problem of
inferring textures for particular graphics hardware that “undo” its undesirable proper-
ties, like poor-quality texture filtering. A related idea is to compute the best hardware
lighting to match a gold standard [38]. Separating diffuse from specular shading to
better exploit temporal and spatial coherence is a recurring theme in computer graphics
[36, 26, 16, 19].

Compression. Various strategies for compressing the dual-plane lumigraph parame-
terization have been proposed. Levoy et al. [18] used vector quantization and entropy
coding to get compression ratios up to 118:1 while Lalonde et al. [15] used a wavelet
basis with compression ratios of 20:1. Miller et al. [25] compressed the 4D surface light
field using a block-based DCT encoder with compression ratios of 20:1. Nishino et al.
[27] used an eigenbasis to encode surface textures achieving compression ratios of 20:1
with eigenbases having 8-18 vectors.

Another relevant area of work is animation compression. Standard video compres-
sion uses simple block-based transforms and image-based motion prediction. Wallach
et al. [37] used rendering hardware to accelerate standard MPEG encoding. Guenter et
al. [11] observed that compression is greatly improved by exploiting information avail-
able in synthetic animations. Levoy [17] showed how simple graphics hardware could
be used to match a synthetic image stream produced by a simultaneously-executing,
high-quality server renderer by exploiting polygon rendering and transmitting a residual
signal. We extend this work to the matching of multidimensional animations containing
non-diffuse, offline-rendered imagery using texture-mapping graphics hardware.

3 Parameterized Texture Inference

To infer the texture maps that best match the input gold-standard rendered frames, we
first model the graphics hardware as a large sparse linear system (Section 3.3), and
then perform a least-squares optimization on the resulting system (Section 3.4). To
achieve a good encoding, we first segment the input images (Section 3.1), and choose
an appropriate texture domain and resolution (Section 3.2).

3.1 Segmenting Ray-Traced Images

Each geometric object has a parameterized texture that must be inferred from the ray-
traced images. These images are first segmented into per-object pieces to prevent bleed-
ing of information from different objects across silhouettes. To perform per-object



segmentation, the ray tracer generates a per-object mask as well as a combined image,
all at supersampled resolution. For each object, we filter the portion of the combined
image indicated by the mask and divide by the fractional coverage computed by applying
the same filter to the object’s mask.

A second form of segmentation separates the view-dependent specular information
from the view-independent diffuse information for the common case that the parameter
space includes at least one view dimension. Figure 3 illustrates segmentation for an
example ray-traced image. We use a modified version of Eon, a Monte Carlo distribution
ray-tracer [31].

(a) Complete Image (b) Diffuse Layer (c) Specular Layer (d) Diffuse Table Layer (e) Specular Parfait Layer

Fig. 3. Segmentation of Ray-Traced Images. (a) Complete Image, (b,c) Segmentation into diffuse
and specular layers respectively, (d,e) Examples of further segmentation into per object layers.

3.2 Optimizing Texture Coordinates and Resolutions

Since parts of an object may be occluded or off-screen, only part of its texture domain is
accessed. The original texture coordinates of the geometry are used as a starting point
and then optimized so as to: 1) to ensure adequate sampling of the visible texture image
with as few samples as possible, 2) to allow efficient computation of texture coordinates
at run-time, and 3) to minimize encoding of the optimized texture coordinates. To satisfy
the last two goals, we choose and encode a parameter-dependent affine transformation
on the original texture coordinates rather than re-specify them at each vertex. One affine
transformation is chosen per object per block of parameter space (see Section 4).

The first step of the algorithm finds the linear transformation, R(u, v), minimizing
the following objective function, inspired by [21]

R(u, v)=
[
a b
c d

][
u
v

]
, f(x) =

∑
edges i

Wi

(
si − ‖R(ui0 , vi0) − R(ui1 , vi1)‖

min (si, ‖R(ui0 , vi0) − R(ui1 , vi1)‖)

)2

(1)

where si represents the length on the screen of a particular triangle edge, i0 and i1
represent the edge vertices, and Wi is a weighting term which sums screen areas of
triangles on each side of the edge. At each point in the parameter block, the sum in f
is taken over visible triangle edges determined by rasterizing triangle identifiers into a
zbuffer after clipping to the view frustum.

This minimization choses a mapping that is as close to an isometry as possible by
minimizing length difference between triangle edges in texture space and projected to
the image. We divide by the minimum edge length so as to equally penalize edges
that are an equal factor longer and shorter. ∇f(x) is calculated analytically for use in
conjugate gradient minimization.

In the second step, we ensure that the object’s texture map contains enough samples
by scaling the R found previously. We check the greatest local stretch (singular value)



across all screen pixels in which the object is visible, using the Jacobian of the mapping
from texture to screen space. If the maximum singular value exceeds a threshold, we scale
R by the maximum singular value in the corresponding direction of maximal stretch, and
iterate until the maximum singular value is reduced below the threshold. This essentially
adds more samples to counteract the worst-case stretching of the projected texture.

Finally, the minimum-area bounding rectangle on the transformed texture coordi-
nates determines the resulting texture resolution and affine texture transformation.

3.3 Modeling Hardware Rendering as a Linear System

A simple texture inference algorithm maps each texel to the image and then filters the
neighboring region to reconstruct the texel’s value [22]. One problem with this approach
is reconstruction of texels near arbitrarily-shaped object boundaries and occluded regions
(Figure 3-d,e). Such occluded regions produce undefined texture samples which com-
plicates building of MIPMAPs. Finally, the simple algorithm does not take into account
how texture filtering is performed on the target graphics hardware.

A more principled approach is to model the hardware texture mapping operation in
the form of a linear system:

A︷ ︸︸ ︷


s0,0 filter coefficients
s0,1 filter coefficients

...

sm−1,n−1 filter coefficients




x︷ ︸︸ ︷
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(2)

where vector b contains the ray-traced image to be matched, matrix A contains the filter
coefficients applied to individual texels by the hardware, and vector x represents the tex-
els from all l−1 levels of the MIPMAP to be inferred. Superscripts in x entries represent
MIPMAP level and subscripts represent spatial location. This model ignores hardware
nonlinearities in the form of rounding and quantization. All three color components of
the texture share the same matrix A.

Each row in matrix A corresponds to a particular screen pixel, while each column
corresponds to a particular texel in the texture’s MIPMAP pyramid. The entries in a
given row of A represent the hardware filter coefficients that blend texels to produce the
color at a given screen pixel. Hardware filtering requires only a small number of texel
accesses per screen pixel, so the matrix A is very sparse. We use hardware z-buffering
to determine object visibility on the screen, and need only consider rows (screen pixels)
where the object is visible. Filter coefficients should sum to one in any row.

Obtaining Matrix A. A simple but impractical algorithm for obtaining A examines
the screen output from a series of renderings, each setting only a single texel of interest
to a nonzero value, as follows:



Initialize z-buffer with visibility information by rendering entire scene
For each texel in MIPMAP pyramid,

Clear texture, and set individual texel to maximum intensity
Clear framebuffer, and render all triangles that compose object
For each non-zero pixel in framebuffer,

Divide screen pixel value by maximum framebuffer intensity
Place fractional value in A[screen pixel row][texel column]

Accuracy of inferred filter coefficients is limited by the color component resolution of
the framebuffer, typically 8 bits.

To accelerate the simple algorithm, we observe that multiple columns in the matrix
A can be filled in parallel as long as texel projections do not overlap on the screen and
we can determine which pixels derive from which texels. An algorithm that subdivides
texture space and checks that alternate texture block projections do not overlap can be
devised based on this observation. A better algorithm recognizes that since just a single
color component is required to infer the matrix coefficients, the other color components
(typically 16 or 24 bits) can be used to store a unique texel identifier that indicates the
destination column for storing the filtering coefficient. With this algorithm, described
in-depth in [12], the matrix A can be inferred in 108 renderings, independent of texture
resolution.

3.4 Least-Squares Solution

Removing irrelevant image pixels from Equation (2), A becomes an ns × nt matrix,
where ns is the number of screen pixels in which the object is visible, and nt is the
number of texels in the object’s texture MIPMAP pyramid. Once we have obtained the
matrix A, we solve for the texture represented by the vector x by minimizing a function
f(x) defined via

f(x) = ‖Ax − b‖2, ∇f(x) = 2AT (Ax − b) (3)

subject to the constraint 0 ≤ xk
i,j ≤ 1. Given the gradient, ∇f(x), the conjugate gradient

method can be used to minimize f(x). The main computation of the solution’s inner
loop multiplies A with a vector x representing the current solution estimate and, for the
gradient, AT with Ax − b. Since A is a sparse matrix with each row containing a small
number of nonzero elements (exactly 8 with trilinear filtering), the cost of multiplying
A or AT with a vector is proportional to ns. Another way to express f(x) and ∇f(x)
is:

f(x) = xAT Ax − 2x · AT b + b · b, ∇f(x) = 2AT Ax − 2AT b (4)

In this formulation, the inner loop’s main computation multiplies AT A, an nt × nt

matrix, with a vector. Since AT A is also sparse, though less so than A, the cost of
multiplying AT A with a vector is proportional to nt. We use the following heuristic to
decide which set of equations to use:

if (2ns ≥ Knt) Use AT A method: Equation (4) else Use A method: Equation (3)

where K is a measure of relative sparsity of AT A compared to A. We use K = 4. The
factor 2 in the test arises because Equation (3) requires two matrix-vector multiplies
while Equation (4) only requires one.

The solver can be sped up by using an initial guess vector x that interpolates the
solution obtained at lower resolution. The problem size can then be gradually scaled



up until it reaches the desired texture resolution. Alternatively, once a solution is found
at one point in the parameter space, it can be used as an initial guess for neighboring
points, which are immediately solved at the desired texture resolution.

Segmenting the ray-traced images into view-dependent and view-independent layers
allows us to collapse the view-independent textures across multiple viewpoints. To
compute a single diffuse texture, we solve the following problem:

A′︷ ︸︸ ︷


Av0

Av1

...
Avn−1




[
x

]
=

b′︷ ︸︸ ︷


bv0

bv1

...
bvn−1


 (5)

where matrix A′ concatenates the A matrices for the individual viewpoints v0 through
vn−1, vector b′ concatenates the ray-traced images at the corresponding viewpoints, and
vector x represents the single diffuse texture to be solved.

Regularization. One of the consequences of setting up the texture inference problem
in the form of Equation (2) is that only texels actually used by the graphics hardware are
solved, leaving the remaining texels undefined. To support movement away from the
original viewpoint samples and to make the texture easier to compress, all texels should
be defined. This can be achieved with pyramidal regularization of the form:

freg(x) = f(x) + ε

(
ns

nt

)
Γ(x) (6)
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Fig. 4. Pyramidal regularization is com-
puted by taking the sum of squared dif-
ferences between texels at each level of
the MIPMAP with the interpolated im-
age of the next higher level.

where Γ(x) takes the difference between texels at
each level of the MIPMAP with an interpolated
version of the next coarser level as illustrated in
Figure 4. The objective function f sums errors in
screen space, while the regularization term sums
errors in texture space. This requires a scale of
the regularization term by ns/nt. We compute
∇freg analytically. This regularizing term essen-
tially imposes a filter constraint between levels of
the MIPMAP, with user-defined strength ε ≥ 0.
We currently define Γ using simple bilinear in-
terpolation.

3.5 Texture Inference Results

Figure 6 (see appendix) shows results of our least squares texture inference on a glass
parfait object. The far left of the top row (a) is the original image to be matched. The
next three columns are hardware-rendered from inferred textures using three filtering
modes: bilinear, trilinear, and anisotropic.1 The corresponding texture maps are shown
in the first three columns of the next row (b). These three examples did not use pyramidal
regularization.2 Most of the error in these examples is incurred on the parfait’s silhouettes
due to mismatch between hardware and ray-traced rendering.

1Results were achieved with the NVidia Geforce chip supporting anisotropy factors up to 2.
2Without pyramidal regularization, we find that another regularization term is needed to ensure that the

texture solution lies in the interval [0, 1]. Refer to [12] for details.



Bilinear filtering provides the sharpest, most accurate result because it uses only the
finest level MIPMAP and thus has the highest frequency domain with which to match the
original. Trilinear MIPMAP filtering produces a somewhat worse result, and anisotropic
filtering is in between. Observe (Fig.6b) that more texture area is filled from the finest
pyramid level for anisotropic filtering compared to trilinear, especially near the parfait
stem, while bilinear filtering altogether ignores the higher MIPMAP levels. Bilinear
filtering produces this highly accurate result only at the exact parameter values (e.g.,
viewpoint locations) and image resolutions where the texture was inferred. The other
schemes are superior if viewpoint or image resolution are changed from those samples.

The next two columns show results of pyramidal regularization with anisotropic
filtering. Inference with ε=0.1 is almost identical to inference with no pyramidal regu-
larization (labeled “anisotropic” ), but ε=0.5 causes noticeable blurring. Regularization
makes MIPMAP levels tend toward filtered versions of each other; we exploit this by
compressing only the finest level and re-creating higher levels by on-the-fly decimation.

Finally, the far right column in (a) shows the “ forward mapping” method in which
texture samples are mapped to the object’s image layer and interpolated using a high-
quality filter (we used a separable Lanczos-windowed sinc function). To handle oc-
clusions, we first filled undefined samples with a simple boundary-reflection algorithm.
Forward mapping produces a blurry and inaccurate result because it does not account for
how graphics hardware filters the textures. In addition, reflection hole-filling produces
artificial, high-frequency information in occluded regions that is expensive to encode.

4 Parameterized Texture Compression
The multidimensional field of textures for each object is compressed by subdividing
into parameter space blocks as shown in Figure 1. Larger block sizes better exploit
coherence but are more costly to decode during playback; we used 8 × 8 blocks in our
2D examples.

8x8

8x2

2
x
8

4x4

4x1

2x2

1x4

1x1

level 0 level 1 level 2 level 3

Fig. 5. Adaptive Laplacian Pyramid

Adaptive Laplacian Pyramid. We encode pa-
rameterized texture blocks using a Laplacian
pyramid [3] where the “samples” at each pyra-
mid level are entire 2D images. We use standard
2D compression (e.g., JPEG and SPIHT [28] en-
codings) to exploit spatial coherence over (u, v)
space. Each level of the Laplacian pyramid thus
consists of a series of encoded 2D images. Pa-
rameter and texture dimensions are treated asym-
metrically because parameters are accessed along
an unpredictable 1D subspace selected by the
user at run-time. We avoid processing large fractions of the representation to decode a
given parameter sample by using the Laplacian pyramid with small block size, requiring
just log2(n) simple image additions where n is the number of samples in each dimen-
sion of the block. Furthermore, graphics hardware can perform the necessary image
additions using multiple texture stages, thus enabling on-the-fly decompression.

Image coders often assume that both image dimensions are equally coherent. This
is untrue of parameterized animations where, for example, the information content in a
viewpoint change can greatly differ from that of a light source motion. To take advantage
of differences in coherence across different dimensions, we use an adaptive Laplacian
pyramid that subdivides more in dimensions with less coherence, illustrated in Figure
5. Coarser levels still have 4 times fewer samples.



Automatic Storage Allocation. To encode the Laplacian pyramid, storage must be as-
signed to its various levels. We apply standard bit allocation techniques from signal com-
pression [9]. Curves of mean squared error (MSE) versus storage, called rate/distortion
curves, are plotted for each pyramid level and points of equal slope on each curve selected
subject to a total storage constraint. We effectively minimize the sum of MSEs across
all levels of the pyramid, because a texture image at a given point in parameter space is
reconstructed as a sum of images from each level, so an error in any level contributes
equally to the resulting error.

There is also a need to perform storage allocation across objects; that is, to decide
how much to spend in the encoding of object i’s texture vs. object j’s. We use the same
method as for allocating between pyramid levels, except that the error measure is AiEi,
where Ai is the screen area and Ei the MSE of object i. This minimizes the sum of
squared errors on the screen no matter how the screen area is decomposed into objects.
When objects have both specular and diffuse reflectance, our error measure sums across
these lighting layers, each with an independent rate distortion curve.

5 Runtime System
The runtime system decompresses and caches texture images, applies affine transforma-
tions to vertex texture coordinates, and generates rendering calls to the graphics system.
Movement off (or between) the original viewpoint samples is allowed by rendering
from that viewpoint using the closest texture sample. Higher-order interpolation would
improve smoothness at the expense of more texture map accesses.

The texture caching system decides which textures to keep in memory in decom-
pressed form. Because the user’s path through parameter space is unpredictable, we use
an adaptive caching strategy that reclaims memory when the number of frames since
last use exceeds a given lifetime. Images near the top of the pyramid are more likely to
be reused and are thus assigned longer lifetimes. See [12] for more details.

If blocks of all objects are aligned, then many simultaneous cache misses occur
whenever the user crosses a block boundary, creating a computational spike as multiple
levels in the new blocks’ Laplacian pyramids are decoded. We mitigate this problem by
staggering the blocks – using different block origins for different objects.

6 Results

6.1 Demo1: Light × View

Compression Results. The first example scene (Figure 8 in appendix, top) consists
of 6 static objects (4384 triangles): a reflective vase, glass parfait, reflective table top,
table stand, walls, and floor. The 2D parameter space has 64 viewpoint samples circling
around the table at 1.8◦/sample and 8 different positions of a swinging, spherical light
source. The image field was encoded using eight 8×8 parameter space blocks, each
requiring storage 640×480×3×8×8= 56.25MB/block.

Our least-squares texture inference method created parameterized textures for each
object. The resulting texture fields were compressed using a variety of methods, includ-
ing adaptive 2D Laplacian pyramids of both DCT- and SPIHT-encoded levels. To test
the benefits of the Laplacian pyramid, we also encoded each block using MPEG on a
1D zig-zag path through the parameter space varying most rapidly along the dimension
of most coherence. A state-of-the-art MPEG4 encoder [24] was used. Finally, we com-
pared against direct compression of the original images (rather than renderings using
compressed textures), again using MPEG4.



Figure 8 shows the results at two targeted compression rates: 384:1 (middle row)
and 768:1 (bottom row). All texture-based images were generated on graphics hardware
using 2 × 2 antialiasing; their MSEs were computed from the framebuffer contents,
averaged over an entire block. Both Laplacian pyramid texture encodings (right two
columns) achieve reasonable quality at 768:1, and quite good quality at 384:1. The
view-based MPEG encoding, “MPEG-view” , is inferior with obvious block artifacts
on object silhouettes, even though MPEG encoding constraints did not allow as much
compression as the other examples.

For MPEG encoding of textures we tried two schemes: one using a single I-frame per
block, and another using 10 I-frames. The decoding complexity for 10I/block is roughly
comparable to our DCT Laplacian pyramid decoding. Single I-frame/block maximizes
compression. The 10I/block MPEG-texture results have obvious block artifacts at both
quality levels especially on the vase and background wallpaper. The 1I/block MPEG-
texture results are better3, but still inferior to the pyramid schemes at the 768:1 target
as MPEG only exploit coherence in one dimension. Unlike the MPEG-view case, the
MPEG-texture schemes use our novel features: hardware-targeted texture inference,
separation of lighting layers, and optimal storage allocation across objects.

System Performance. Average compilation and preprocessing time per point in pa-
rameter space is shown in Table 1. It can be seen that total compilation time is a small
fraction of the time to produce the ray-traced images.

To determine playback performance, we measured average and worst-case frame
rates (fps) for a diagonal trajectory that visits a separate parameter sample at every
frame, shown in Table 2.4 The performance bottleneck is currently software decoding
speed. Reducing texture resolution by an average of 91% using a manually specified
reduction factor per object provides acceptable quality at about 31fps with DCT.

Table 1. Compilation time
texture coord. opt. 1 sec
solving for textures 4.83 min
compression .58 min
total compilation 5.43 min

ray tracing 5 hours

Table 2. Runtime performance
Encoding Texture Worst fps Average fps
Laplacian undecimated 2.46 4.76
DCT decimated 18.4 30.7
Laplacian undecimated 0.27 0.67
SPIHT decimated 2.50 5.48

6.2 Demo2: View × Object Rotation
In the second example, we added a rotating, reflective “gewgaw” on the table. The
parameter space consists of a 1D circular viewpoint path, containing 24 samples at
1.5◦/sample, and the rotation angle of the gewgaw, containing 48 samples at 7.5◦/sample.
Results are shown in Figure 7 (appendix) for encodings using MPEG-view and Laplacian
SPIHT.

In this example, the parameter space is much more coherent in the rotation dimension
than in the view dimension, because gewgaw rotation only changes the relatively small
reflected or refracted image of the gewgaw in the other objects. MPEG can exploit this
coherence very effectively using motion compensation along the rotation dimension, and
so the difference between our approach and MPEG is less than in the previous example.
Though our method is designed to exploit multidimensional coherence and lacks motion
compensation, our adaptive pyramid produces a slightly better MSE and a perceptually
better image.

Real-time performance for this demo is approximately the same as for demo1.
3MSE=25.9 at 768:1 target and MSE=10.1 at 384:1 target compression. See [12].
4Measured with Nvidia Geforce 256 chip, 32MB video/16MB AGP memory on Pentium III 733Mhz PC.



7 Conclusions and Future Work
Synthetic imagery can be very generally parameterized with combinations of view, light,
or object positions, among other parameters, to create a multidimensional animation.
While real-time graphics hardware fails to capture full ray-traced shading effects, it does
provide a useful operation for decoding such animations compiled beforehand: texture-
mapped polygon rendering. We encode a parameterized animation using parameterized
texture maps, exploiting the great coherence in these animations better than view-based
representations. This paper describes how to infer parameterized texture maps from seg-
mented imagery to obtain a close match to the original and how to compress these maps
efficiently, both in terms of storage and decoding time. Results show that compression
factors up to 800:1 can be achieved with good quality and real-time decoding.

Our simple sum of diffuse and specular texture maps is but a first step toward more
predictive graphics models supported by hardware to aid compression. Examples in-
clude parameterized environment maps, hardware shadowing algorithms, and per-vertex
shading models. The discipline of measuring compression ratios vs. error for encoding
photorealistic imagery is a useful benchmark for proposed hardware enhancements.

Other extensions include use of perceptual metrics for guiding compression and
storage allocation, handling nonrigidly deforming geometry and photorealistic camera
models, and automatic generation of texture parameterizations. Finally, we are interested
in measuring storage requirements with growing dimension of the parameter space and
hypothesize that such growth is quite small in many useful cases. There appear to be
two main impediments to increasing the generality of the space that can be explored:
slowness of offline rendering and decompression. The first obstacle may be addressed
by better exploiting coherence across the parameter space in the offline renderer, using
ideas similar to [13]. The second can be overcome by absorbing some of the decoding
functionality into the graphics hardware. We expect the ability to load compressed
textures directly to hardware in the near future. A further enhancement would be to load
compressed parameter-dependent texture block pyramids.
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Fig. 6. Texture Inference Results: (a) shows close-ups of the projected texture, compared to
the original rendering on the far left. The highlight within the red box is a good place to ob-
serve differences. The next row shows the inverted error signal, scaled by a factor of 20, over
the parfait. The bottom row contains the mean-squared error (MSE) from the original image.
(b) shows corresponding texture maps. Pink regions represent undefined regions of the texture.
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Fig. 7. Demo2 Compression Results
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Fig. 8. Demo1 Compression Results


