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ABSTRACT
We consider the problem of identifying sub-strings of input
text strings that approximately match with some member
of a potentially large dictionary. This problem arises in sev-
eral important applications such as extracting named enti-
ties from text documents and identifying biological concepts
from biomedical literature. In this paper, we develop a filter-
verification framework, and propose a novel in-memory fil-
ter structure. That is, we first quickly filter out sub-strings
that cannot match with any dictionary member, and then
verify the remaining sub-strings against the dictionary. Our
method does not produce false negatives. We demonstrate
the efficiency and effectiveness of our filter over real datasets,
and show that it significantly outperforms the previous best-
known methods in terms of both filtering power and com-
putation time.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Textual Data-
bases

General Terms
Algorithms

Keywords
Approximate Membership Checking, Filtering, String Match

1. INTRODUCTION
Given an input text string consisting of a sequence of to-

kens, the task of approximate membership checking (or, ap-
proximate dictionary lookup) is to identify all sub-strings
that approximately match with some string from a poten-
tially large dictionary. This problem has many applications.
Most comparison shopping sites (e.g., MSN shopping) have
backend databases with product dictionaries. It is impor-
tant for them to identify product mentions in documents (ei-
ther on the web or in internal customer support databases)
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for mining sentiment about specific products. Here it is re-
ally crucial to match mentions which approximately match
product titles in dictionaries. For instance, database entries
such as “canon EOS digital rebel xti digital SLR Camera”
are often concrete, while most web pages/reviews may not
use the full description. Phrases such as ”canon rebel xti dig-
ital SLR Camera” are commonly seen on web pages. Exact
dictionary lookup will not catch all these mentions. Other
applications include the dictionary-based biological concept
extraction [21] and lookup-based network intrusion detec-
tion [16].

As shown in the above examples, in many cases the dic-
tionary is known a priori, and the query strings are sub-
mitted on-the-fly. Suppose we are interested in sub-strings
with length up to L. All sub-strings with l (l ≤ L) tokens
are possible candidates to match with a dictionary string.
Since there are a large number of candidate sub-strings to
be considered, a membership checking system generally pre-
processes the dictionary and builds an efficient lookup struc-
ture such that candidates that do not match with any string
in the dictionary can be quickly pruned.

We emphasize that the membership checking problem is
different from the text document indexing and the string
similarity join problems. In text indexing, documents are
pre-processed and queries like “find all documents that con-
tain a query string” are answered. Unlike the membership
checking problem, in the text document indexing, long docu-
ments are given initially, and the incoming queries are short
phrases (similar to strings in the dictionary). The string
similarity join takes two collections of strings as input, and
identifies all pairs of strings, one from each collection, that
are similar to each other. Informally, we can consider one
collection of strings as dictionary, and the other as query
strings. The main task of string similarity is to find which
string in the dictionary best matches with the query string.
In contrast, membership checking problem identifies sub-
strings which approximately match with a dictionary string.

The membership checking problem has been studied under
the exact-match criterion [1, 4] and the approximate-match
criterion [20, 2, 5, 11]. We focus on the latter scenario since
it is very important in many real applications as described
above. Previous approaches for the general approximate
membership checking problem can be classified into two cat-
egories described below. The inverted index based approach
[7, 18] builds a rid (i.e., record id for dictionary strings) list
for each distinct token in the dictionary. At query time, it
retrieves and merges the rid lists of tokens in the query sub-
string. After merging, the inverted index based approach



directly identifies the dictionary string that best matches
with the query sub-string. However, the computational cost
of repeated list-merge is very high, especially for a large
dictionary. The signature based approach computes a set
of signatures from both dictionary strings and query sub-
strings. The signatures ensure that if a query sub-string is
similar to a dictionary string, then their sets of signatures
overlap. Examples of signatures include low frequent tokens
[8, 7], subsets of tokens [3], and some proximity preserv-
ing hash codes [11]. The signature based approaches avoid
merging at query time by matching signatures directly.

In this paper, we propose a new ISH filter based on a novel
structure called inverted signature-based hashtable. The key
insight we leverage is that ISH filter combines the benefit of
the inverted index based approach [7, 18] and of the signa-
ture based approach [8, 7, 3]. The ISH filter has a structure
similar to that of an inverted index, which stores a list of
rids per token. However, instead of a traditional inverted
index structure, the ISH filter stores a list of signatures per
token obtained by replacing each rid in the rid-list with
the set of signatures of the string corresponding to the rid.
The advantage is that we can quickly determine for a given
query sub-string m whether a token’s (in m) signature list
contains any of the signatures generated from m. Depending
on the number and weights of tokens which contain m’s sig-
natures we can quickly decide whether or not m can match
with any string in the dictionary. Observe that these checks
do not require us to merge the signature lists. We only
lookup in each token’s signature list whether m’s signatures
are present. This is a constant time operation per token in
m. In contrast, inverted index based approaches merge rid-
lists which is significantly more expensive and proportional
to frequencies of tokens. We further compress the signature
list using hashes. The resulting structure is small enough to
typically fit into main memory1.
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Figure 1: Overview of the framework

We refer to query sub-strings that are accepted by the
ISH filter as candidate members, among which those sub-
strings that really match with a string in the dictionary are
true members, and those that do not are false members. To
identify the true members, we further develop a verifica-
tion component. The complete system framework is shown
in Figure 1. At the offline building phase, we build the in
memory ISH filter; and assume that the complete dictionary
is stored and indexed in a relational database. We exploit

1For instance, for a product name dictionary which contains
10M dictionary strings with average length 7.3, the ISH
filter only requires around 70MB memory space, which is
fairly acceptable with modern computers.

previous methods for indexing the dictionary so as to al-
low approximate match queries [3]. At the online querying
phase, the input text string is first submitted to the filter;
and only those candidate members are further processed by
the verification component. The main contributions of our
paper are:

• We propose a novel filtering structure (the inverted
signature-based hashtable), based on which we develop
an effetive filter that is able to eliminate many candi-
date sub-strings for consideration;

• Our filter works with various similarity functions, in-
cluding string edit similarity, jaccard similarity and
weighted jaccard similarity;

• We develop a complete filter-verification system frame-
work, and compare the ISH filter with the best known
previous methods under the same framework.

The rest of this paper is organized as follows. The next
section reviews the related work on membership checking.
We give the formal problem statement in Section 3. Section
4 describes the inverted signature-based hashtable structure
and presents the details of the ISH filter. Section 5 dis-
cusses options for verification. The complete algorithm is
presented in Section 6. We report our experimental results
in Section 7. Section 8 discusses possible extensions of our
work. Finally, Section 9 concludes the study.

2. RELATED WORK
Previous work on membership checking includes exact-

match based and approximate-match based checking.

2.1 Exact Match
The Aho-Corasick algorithm [1] and the Bloom Filter [4]

are two well-known approaches used in exact-match based
dictionary lookup. The Aho Corasick algorithm constructs
a pattern matching machine (i.e., a finite state machine)
which simultaneously recognizes all occurrences of multiple
patterns in a dictionary in a single pass through an input
text. The trie-like automaton consists of two types of links:
goto link and failure link. At the lookup phase, all of the
matches are enumerated by moving along the input, follow-
ing the links and keeping the longest match.

The bloom filter is a space-efficient probabilistic data struc-
ture that is used to test whether an element is a member of a
set. False positives are possible, but false negatives are not.
At the filter building phase, the bloom filter uses k different
hash functions to map a dictionary string to k array posi-
tions in a bit-array where each bit is set to 0 initially. At the
query time, the bloom filter uses the same set of hash func-
tions to compute k positions for a query sub-string. If any
bit on those positions is 0, the query sub-string is rejected.

2.2 Approximate Match
Similar to exact membership checking, approximate mem-

bership checking also has deterministic and probabilistic so-
lutions. The deterministic approach has been studied in the
context of d-queries: given a set of n binary strings with
length m, for each binary string α with length m, find if
there exists a string in the set with Hamming distance d
with α. Typically, for d = 1, Yao et al. [20] and Brodal et
al. [5] provided solutions by using trie-like data structures.



Manber et al. [14] proposed a solution that generates all
possible variations of each dictionary string, and insert all
variations into a Bloom filters. This solution only works for
very small d value (e.g., d = 1). For reasonably large d,
generating all variations is computational expensive.

For probabilistic solutions, Gionis et al. [11] proposed the
locality-sensitive hashing (lsh) method for the equivalent
nearest neighbor query problem. Their approach is approx-
imate such that it may miss some true results. Roughly
speaking, a locality sensitive hashing function has the prop-
erty that if two points are close, then they hash to same
bucket with high probability.

A closely related area of membership checking is the top-k
query problem, for which a rich family of algorithms have
been developed in the literature [10]. These methods gener-
ally construct an inverted index for each token in the dictio-
nary string, and progressively merge multiple lists to com-
pute the top-k results. Chandel et al. [7] studied the top-k
dictionary lookup problem for all sub-strings (using mov-
ing windows) from an input text document, and presented
a batch top-k algorithm.

The signature-based filtering idea was exploited in effi-
ciently implementing string similarity joins [8, 3]. Chaud-
huri et al. [8, 7] used low frequent tokens as signatures.
Arasu et al. [3] improved the filtering power by using a sub-
set of tokens as signatures.

3. APPROXIMATE MEMBERSHIP CHECK-
ING

In this section, we first give the formal definition of the ap-
proximate membership checking, and then present a unified
filtering condition for various similarity measures.

3.1 Problem Statement
A dictionary R is a set of strings r, each of which is a

sequence of tokens r = 〈tr
1, t

r
2, . . . , t

r
l 〉. In this paper, we use

the term token to refer to the basic element in a string. A
typical token is an English word. Alternative token types
include characters, q-grams, or their hash values. An input
string S (e.g., a document) is a sequence of tokens S =
〈ts

1, t
s
2, . . . , 〉. Any sub-string m = 〈ts

i , t
s
i+1, . . . , t

s
j〉 ⊆ S is

a candidate member. m is a true member if there exists
a dictionary string r such that similarity(r, m) ≥ δ. The
approximate membership checking problem can be formally
stated as follows.

Definition 1. Given a dictionary R and a threshold ε,
extract all true members m (|m| ≤ L) from input strings S
such that there exists r ∈ R, and similarity(r, m) ≥ δ.

In this paper, we focus on three similarity measures: edit
similarity, jaccard similarity and weighted jaccard similarity.

Definition 2. Given two strings r and m, the edit dis-
tance ED(r, m) between them is the minimum number of
edit operations (i.e., insertion, deletion, and substitution) to
transform r into m. We define the edit similarity ES(r, m) =

1− ED(r,m)
max(|r|,|m|) .

Definition 3. Given two strings r and m, each of which
is considered as a set, the jaccard similarity between them is

defined as JS(r, m) = |r∩m|
|r∪m| , and the weighted jaccard sim-

ilarity is defined as WJS(r, m) = wt(r∩m)
wt(r∪m)

, where wt(s) =∑
t∈s wt(t), and wt(t) ≥ 0 is the weight 2 of token t.

Example 1. Suppose R = { “canon eos 5d digital cam-
era”, “canon ef len” }, and S = “The Canon eos 5d digital
slr camera offers advanced photographers a lightweight, robust
digital slr that uses Canon ef len without a conversion fac-
tor.” m1 = “Canon eos 5d digital slr camera”, and m2 =
“Canon ef len” are two true members with jaccard similarity
(δ = 0.8).

Approximate match is essential to adapt the membership
checking problem in a noisy environment. However, it may
also lead to redundant results. For instance, by setting δ =
0.7, m3 = “uses Canon ef len” and m4 = “Canon ef len
without” become true but redundant (w.r.t. m2) results. In
general, if we slightly extend a true member to the left (or
to the right), the resulting sub-string may continue to be a
true member, but with lower similarity score. We call this as
boundary redundancy. To remove boundary redundancy, we
require that the first and last tokens of m must be present
in the corresponding dictionary string r.

3.2 A Unified Pruning Condition
For computational efficiency, a filter f avoids comparing

m with every dictionary string r ∈ R. Instead, f computes
a upper bound of similarity between the query m and any
r ∈ R. In order to do this, the similarity measures need to
be carefully rewritten. Interestingly, there exists a unified
pruning condition for all three similarity measures used in
the paper.

For edit similarity, Gravano et al. [12] concluded that if
r and m are within an edit distance of ε, then |r ∩ m| ≥
max(|r|, |m|)− ε. According to Definition 2, we have

ES(r, m) ≤ 1− max(|r|, |m|)− |r ∩m|
max(|r|, |m|) ≤ |r ∩m|

|m|
For (weighted) jaccard similarity, we have JS(r, m) ≤ |r∩m|

|m|
and WJS ≤ wt(r∩m)

wt(m)
, respectively.

Setting wt(t) = 1 for edit similarity and unweighted jac-
card similarity, we have a unified pruning condition for all
three measures. That is, a candidate m is pruned if:

max
r∈R

similarity(r, m) ≤ maxr∈R wt(r ∩m)

wt(m)
< δ (1)

Since wt(m) can be directly computed from the candidate
m, it turns out that the main task of f is to compute the up-
per bound of maxr∈R wt(r ∩m). This unified pruning con-
dition will be used in the rest of this paper, and unweighted
measures are considered as weighted ones by assigning uni-
form weights to all tokens.

4. FILTERING BY ISH
Given an input string S, all sub-strings with length up

to L are candidate members. In this section, we present
our new filtering strategy based on ISH (namely, Inverted
Signature-based Hashtable). The ISH filter is able to ef-
ficiently identify the queries which cannot match with any
dictionary string. Candidates that pass the filter f(R, δ)
will be verified (See Section 5).

2A typical weight configuration is the IDF [19] weight.



ISH filter is motivated by inverted indices [18, 7]. In
inverted index, each token t is associated with a list of
rids. Given a query m = 〈t1, t2, . . . , tl〉, one can merge rids
from the inverted indices of ti (i = 1, . . . , l), and aggregate
weights of token t to a rid that appears in t’s inverted index.
Since the aggregated weight is exactly the value of wt(r∩m),
the pruning condition (i.e., Eqn. (1)) can be tested.

The ISH filter has a structure similar to that of an in-
verted index, which stores a list of rids per token. The
ISH filter instead stores a list of signatures per token ob-
tained by replacing each rid in the rid-list with the set of
signatures of the string corresponding to the rid. The ad-
vantage is that we can quickly determine for a given query
sub-string m whether a token’s signature list contains any of
the signatures generated by m. Depending on the number
and weights of tokens which contain m’s signatures we can
quickly decide whether or not m can match with any string
in the dictionary. Observe that these checks do not require
us to merge the signature lists. We only lookup in each to-
ken’s signature list whether m’s signatures are present. This
is a constant time operation per token. In contrast, inverted
index based approaches merge rid-lists which is significantly
more expensive and proportional to frequencies of tokens.

Note that the number of signatures per token in the ISH
filter is typically greater than the number of rids. However,
we hash the signatures (at the cost of a few more false pos-
itives) to a bit array to further compress the signature list.
Thus signature lists are represented compactly.

Previous signature schemes are all binary such that as
soon as one signature is shared by a query string and a dic-
tionary string, they query string is considered a candidate
for match. In ISH, we require multiple signatures to be
matched simultaneously by extending the binary signature
scheme to weighted signature scheme. That is, for each to-
ken in a candidate member, we count the number of matched
signatures that occur in the token’s signature list. Based on
the weights associated with each signature we are now able
to derive stronger pruning conditions than obtained by bi-
nary signature schemes. In the remaining of this section, we
first extend the traditional signature scheme to the weighted
signature scheme, and then present the details of the ISH
filter. To begin with, Table 1 summarizes the notations.

Symbol Meaning
δ similarity threshold

wt(t) the weight of a token t
m a query string
r a dictionary string
k a parameter to control the number of

prefix signatures
λ(m) number of prefix signatures generated by m

Sig(m) set of signatures generated by m
τ(m) derived threshold for signature merging

Table 1: Notations and Their Meanings

4.1 Weighted Signatures
We first give the general introduction on weighted sig-

natures, and then demonstrate it by the prefix signature
scheme [8, 7].

Concept: We classify the signature as binary signa-
ture and weighted signature. Informally, a binary signature

scheme ensures that highly similar strings match on at least
one signature. A weighted signature scheme on the other
hand requires that highly similarity strings match on mul-
tiple signatures such that the “sum of weights” is greater
than a threshold.

Given two string r and m, a binary signature scheme
generates a set of signatures Sig(r) for r and Sig(m) for
m. If similarity(r, m) ≥ δ, then Sig(r) ∩ Sig(m) 6= φ.
lsh-signatures [11] is one example of binary signature. In
weighted signature scheme, each signature s is associated
with a weight wt(s). If similarity(r, m) ≥ δ, then wt(Sig(r)∩
Sig(m)) =

∑
s∈Sig(r)∩Sig(m) wt(s) ≥ τ(m, δ), where τ(m, δ)

is a threshold determined by the signature scheme, m and
δ. As we show below, prefix-signatures can be extended to
weighted signatures. When the context is clear, we use τ(m)
to notate τ(m, δ).

Example: Given a string r, prefix signature scheme
sorts r in weights decreasing order, and extracts the prefix
tokens whose aggregated weight is larger than (1−δ)×wt(r).
Each prefix token is a signature. The prefix signatures are
generated for each candidate m in the same way. Prefix
signatures are weighted signatures, and the weight of each
signature is the weight of the corresponding token. The
value of τ(m) is defined in the following Lemma.

Lemma 1. Let the prefix signatures for two string r and
m be Sig(r) and Sig(m). If similarity(r, m) ≥ δ, then
τ(m) = wt(Sig(m))− (1− δ)wt(m)

Example 2. Suppose r = “canon eos 5d digital camera”,
m = “Canon eos 5d digital slr camera”, and the weights of
tokens (digital, camera, canon, eos, 5d, slr) are (1, 1, 2, 2,
7 ,9), respectively. Assume δ = 0.8, thus WJS(r, m) =
0.909 ≥ δ. Let k = 3, the prefix signatures3 for r is Sig(r) =
{5d, eos, canon}, and that for m is Sig(m) = {5d, slr, eos}.
We have τ(m) = wt(Sig(m)) − (1 − δ)wt(m) = 18 − (1 −
0.8)× 22 = 13.6, and wt(Sig(r) ∩ Sig(m)) = 16 ≥ τ(m).

Number of Signatures: Note that for the same thresh-
old, one can choose different number of prefix signatures.
The minimal number of signatures corresponds to the short-
est prefix such that wt(Sig(r)) ≥ (1 − δ) × wt(r). In the
above example, the minimal number of signatures for r is
Sig(r) = {5d}. The maximal number of signatures is to in-
clude all tokens. Intuitively, generating more signatures re-
quires more signature-matches at query time, and thus leads
to stronger filtering power (this is contrast to earlier binary
signatures). On the other hand, it needs more space. We
use a parameter k to control the number of signatures. Let
λ(r, k) be the number of prefix signatures generated from r,
we have:

λ(r, k) =





λmin(r) if λmin(r) > k
λmax(r) if λmax(r) < k
k otherwise

where λmin(r) and λmax(r) are the minimal and maximal
number of prefix signatures from r. We will further explore
the issue of configuring k in Section 4.3. For simplicity, we
use λ(m) to notate λ(m, k) when the context is clear.

3Ties are broken according to the reverse order in (digital,
camera, canon, slr, eos, 5d)



4.2 Inverted Signature-based Hashtable
We are now ready to present the ISH filter. While ISH

can take any signature schemes, we demonstrate our tech-
nique by the prefix signature in this paper. Extensions to
other signature schemes are discussed in Section 4.4. We
discuss the building phase and the querying phase.

Building Phase: In ISH, each token is associated with
a signature hash table. The hash table is implemented as a
bit-array. There is one bit-array for each distinct token. Let
BA(t) be the bit-array corresponding to token t (details on
how to assign spaces for bit-arrays are discussed in Section
4.3.1). The ISH is created by unioning all the hashed signa-
tures (i.e., bits) for each token across all dictionary strings
(Figure 2):

1. For each string r = 〈t1, t2, . . . , tl〉 ∈ R, compute λ(r)
signatures for r: Sig(r) = {s1, s2, . . ., sλ(r)};

2. Compute the hash value for all signatures si (i =
1, . . . , λ(r)), and get l × λ(r) array positions: pij cor-
responds to the position of si on bit array BA(tj)
(j = 1, . . . , l);

3. Set the bit at position pij on BA(tj) to 1 (all bits on
BA(tj) are 0 initially).

t1         t2        t3                  tl< t1 t2 t3 ... tl >

Sig1

Sig2

Sig3

h(Sig1)

h(Sig3)

Figure 2: Inverted Signature-based Hashtable

Example 3. Suppose prefix signatures are used, and k is
set to 3. Let R = {r1 = “canon eos 5d digital camera”,
r2 =“nikon digital slr camera”}, and the weights of tokens
(digital, camera, canon, nikon, slr, eos, 5d) be (1, 1, 2, 2, 2,
7 ,9), respectively. Sig(r1) = {5d, eos, canon}, Sig(r2) =
{slr,nikon,camera}. The signatures and their hash values are
shown in Table 2. For simplicity, we assume that all tokens
are assigned the same bit-array size. After inserting r1 and
r2, the bit-arrays of tokens are shown in Table 3 (assuming
the bit-array index position starts from 0). Note the token
canon appears in string r1, and it co-occurs with signatures
5d, eos, canon. Thus, in Table 3, canon has value 1 on bit
positions 0,3,5. The tokens canon, eos, and 5d all appear in
the same set of strings (here, only r1), and have the same
set of signatures, and identical bit-arrays. Note that digital
appears in two strings, and hence has a different (signature
set and) bit-array from that of 5d.

Querying Phase: To test a candidate m = 〈t1, t2, . . . , tl〉,
we generate λ(m) signatures for m, and apply the same hash
function on signatures si (i = 1, . . . , λ(m)) to get l × λ(m)
array positions: pij corresponds to the position of si on
bit-array BA(tj) (j = 1, . . . , l). Let P be a l × λ(m) bit-
matrix where row i (i = 1, . . . , λ(m)) corresponds to si, and

Signature Hash
5d 3
eos 5

canon 0
slr 4

nikon 3
camera 4

Table 2: Signatures
and Hash Values

Token Bit Array
canon 100101
eos 100101
5d 100101

digital 100111
camera 100111
nikon 000110
slr 000110

Table 3: Tokens and Bit-
arrays

coloum j (j = 1, . . . , l) corresponds to tj . Cell P [i, j] = 1
if the bit array BA(tj) is set to 1 at position pij , other-
wise, P [i, j] = 0. The bit-matrix can be seen as a small
working-set corresponding to the current query. The num-
ber of columns in the bit-matrix is the number of tokens
in the query. The number of rows in the bit-matrix is the
number of signatures generated from the query string.

canon eos 5d digital slr camera
s1=5d 1 1 1 1 1 1
s2=eos 1 1 1 1 0 1
s3=slr 0 0 0 1 1 1

Table 4: Bit-matrix P (Sig(m1), m1)

canon digital slr camera
s1=slr 0 1 1 1

s2=canon 1 1 0 1
s3=camera 0 1 1 1

Table 5: Bit-matrix P (Sig(m2), m2)

Example 4. Given the dictionary R and the ISH filter
built in Example 3, Table 4 (the matrix P (Sig(m1), m1)) and
Table 5 (the matrix P (Sig(m2), m2)) correspond to the query
strings m1 = {“canon eos 5d digital slr camera”}, and m2 =
{“canon slr digital camera”}, respectively. Suppose δ = 0.8.
Using the same prefix signatures, Sig(m1) = {5d,eos,slr},
and Sig(m2) = {slr,canon,camera}. Forthermore, In Table
4, the bit on column canon and row 5d is 1 because the bit
corresponding to hash(5d) on the bit-array of canon is 1 (in
Table 3).

Each row in the matrix P corresponds to a set of signa-
tures (the mapping is one-to-many due to the hash collision),
and each signature maps to a set of dictionary strings where
the signature is generated. Hence, every row in the matrix
P represents a subset of dictionary strings that can possibly
match with the query string. Suppose the subset of dictio-
nary strings corresponding to the ith row is Ri. Cells with
value 1 indicate that the corresponding token is shared by
the query string and one of the dictionary strings in Ri. Let
m′ = m∩Ri (i.e., m′ is the set of tokens whose corresponding
bits are set to 1). The aggregated weight wt(m′) is a upper
bound of wt(m∩ r) for all r ∈ Ri. Thus, a necessary condi-
tion for m to match with any r ∈ Ri is wt(m′) ≥ δ×wt(m).

The weighted signature scheme requires multiple signa-
tures to be matched simultaneously. That is, instead of
looking for each individual row in the matrix P , we need to
examine multiple rows at the same time. Let Sig′ ⊆ Sig(m)
and m′ ⊆ m. P (Sig′, m′) is a sub-matrix of P by selecting



rows in Sig′ and columns in m′. We say P (Sig′, m′) is
solid if all cells P [i, j] ∈ P (Sig′, m′) are set to 1. Using
P (Sig′, m′), we can derive a necessary condition for m if
m matches with a string r in the dictionary, as stated in
Theorem 1.

Theorem 1. Suppose an ISH filter has been built based
on the dictionary R and the similarity threshold is δ. For
any candidate m, if there exists r ∈ R and similarity(r, m) ≥
δ, then there must exist a solid sub-matrix P (Sig′, m′), such
that:

1. wt(m′) ≥ δ × wt(m);

2. wt(Sig′) ≥ τ(m).

where m′ ⊆ m and Sig′ ⊆ Sig(m).

Example 5. Continue on Example 4, we look for solid
sub-matrices. From matrix P (Sig(m1), m1), we find Sig′ =
{5d,eos}, and m′ = {canon, eos, 5d, digital, camera} such
that P (Sig′, m′) is a solid sub-matrix, wt(Sig′) = 16 ≥
τ(m) = 13.6, and wt(m′) = 20 ≥ δ × wt(m) = 16. Hence,
m1 is accepted as a candidate member. On the other hand,
m2 is pruned because there does not exist a sub-matrix that
satisfies Theorem 1.

4.3 Adapting to Memory Budget
Here we discuss how to determine the value of k. We

first consider the case where the given memory budget M
is sufficient to store the filter, and then consider the case
where M is not large enough to hold the complete filter.

4.3.1 Complete Filter
We present a simplified analysis, which works well in se-

lecting k in our experiment. Given the memory budget M ,
the computational factor that we consider is to achieve the
best filtering power (e.g., least rate of false positives). As
shown in the last subsection, given a value of k, the space
requirement of the ISH Filter is N(k) =

∑
t∈T n(t, k), where

T is the set of distinct tokens in R, and n(t, k) is the total
number of signatures generated by all r ∈ R such that t ∈ r.

We set the size of the bit-array BA(t) to be M×n(t,k)∑
t∈T n(t,k)

.

For each signature, we assume that a hash function selects
each position on a bit-array with equal probability. For each
k value, let γ(t, k) represent the expected proportion of bits
in BA(t, k) still set to 0 after all r ∈ R have been inserted.

γ(t, k) = (1− N(k)

M × n(t, k)
)n(t,k) ≈ 1− N(k)

M

The rightmost term does not contain t, and we notate γ(k) =

1− N(k)
M

thereafter.
Given a candidate m = 〈t1, t2, . . . , tl〉, let the set of signa-

tures be Sig(m) = {s1, s2, . . . , sλ(m)}, and P be the l×λ(m)
bit matrix where row i (i = 1, . . . , λ(m)) corresponds to si,
and column j (j = 1, . . . , l) corresponds tj . There are two
cases that lead to cell P [i, j] = 1: signature collision and
hash collision. The former happens if there exists an r such
that tj ∈ r and si ∈ Sig(r), and the latter happens if a cor-
responding bit on BA(t) was set to 1 by other signatures.
In our problem configuration, we want to control the mem-
ory requirement (e.g., M is 2-3 times larger than N(k)). The
probability of hash collision is then much larger than that of
the signature collision. Thus, we consider the hash collision
only, and the probability that P [i, j] = 1 is 1− γ(k).

The weights of tokens and signatures of m may be chosen
arbitrarily. Here, we use expected weights for tokens and sig-
natures, which simplify our problem to the unweighted case.
Consequently, the pruning conditions in Theorem 1 can be
rewritten as follows. A candidate m = 〈t1, t2, . . . , tl〉 that
does not approximately match with any r ∈ R will be falsely
accepted if there exists a solid sub-matrix P (Sig′, m′), such
that |m′| ≥ δ|m| and |Sig′| ≥ τ(m, δ). Typically, for un-
weighted prefix signature τ(m, δ) = |Sig(m)| − (1− δ)|m|.

For any signature si ∈ Sig, we use the notation hit(si) =
true if there are at least δ× |m| 1s on the ith of row P . For
a given k, the probability of p(hit(s) = true) is:

β(|m|, k) =

|m|∑

h=δ|m|

( |m|
h

)
(1− γ(k))hγ(k)|m|−h

To compute the probability of the presence of a solid sub-
matrix with multiple signatures is rather complicated. We
present a recursive method in Appendix. Let η(k) be the
probability of existing a solid sub-matrix P (Sig′, m′), such
that |m′| ≥ δ|m| and |Sig′| ≥ τ(m, δ). We choose

k = argmini(η(i))

4.3.2 Partial Filter
Here we describe solutions when M is not sufficient to hold

the complete filter. Our solution is to remove bit-arrays be-
longing to high frequent tokens. That is, we sort tokens
in n(t, k) decreasing order, and progressively remove BA(t)
until the remaining bit-arrays fit in M . Intuitively, high
frequent tokens are similar to stop words. They appear in
many strings in the dictionary, and are associated to a large
number of signatures. Thus the probability of signature col-
lision for high frequent tokens is relatively larger (the ex-
pected hash collision is same for all tokens). On the other
hand, the high frequent tokens consume significant amount
of memory space. In many applications, the frequency dis-
tribution of tokens follows the power-law distribution [7, 6].
We expect that by removing small number of tokens, the
memory requirement of ISH filter reduces quickly. To avoid
false negatives, for each t that BA(t) is removed, any query
against BA(t) returns 1 (e.g., assuming BA(t) is full of 1).
Hence, the reduced memory configuration may introduce ad-
ditional false positives.

4.4 Other Signature Schemes
As we stated earlier, ISH filter is a framework which sup-

ports multiple signature schemes. We have demonstrated
the filter by prefix signatures. Here we discuss how to incor-
porate other signature schemes in the framework. We use
locality-sensitive hashing (i.e., lsh) [13, 9, 15] as example.
The extension to other signature schemes (e.g., partenum
[3]) should be similar.

The key idea in lsh is to hash a sequence of tokens as
to ensure that for each hash function, the probability of
collision is much higher for similar sequences than for dis-
similar sequences. The process is probabilistic, and intro-
duces both false positives and false negatives. In order to
reduce the false negatives, l different signatures are com-
puted. The classic implementation of lsh is minhash-based
that concatenates g minhashes as a signature (details on
minhashes can be found in [13, 9, 15]). To achieve false
negative rate ω, l can be chosen as the minimal integer that
satisfies (1−δg)l ≤ 1−ω, where δ is the similarity threshold.



Note that lsh is a binary signature scheme. By setting
wt(s) = 1 for each lsh signature, and τ(w) = 1 for the hit
signature threshold, we can directly replace prefix signatures
by lsh signatures in the building and querying phases.

5. VERIFICATION
For the sake of procedure completeness, we discuss ver-

ification in this section. One option is to use the batch
verification that takes the complete set of candidate mem-
bers and the dictionary input, and output 〈m, r〉 pairs where
similarity(r, m) ≥ δ. This is basically a string similarity
join problem [3, 8] discussed in Section 2.

Besides batch verification, we also want to support one-at-
a-time verification, which is implemented as follows. Similar
to the filtering module, the verification module also consists
of two phases: the building phase and the querying phase. In
the building phase, we create λ(r) tuples 〈id, r, hash sig, wt〉
for each dictionary string r and each signature generated
by r. Where hash sig is the hash code of the signature,
and wt is the weight of the string r. We store all tuples
in a relational table V , and create a clustered index on
〈hash sig, wt〉. In the querying phase, we need to identify
all matched signatures and compute the upper and lower
bounds of wt(r) to retrieve dictionary strings. Ideally, this
should be computed from all solid sub-matrices that satisfy
Theorem 1. This requires us to enumerate all sub-matrixes.
An alternative solution is as follows.

For any candidate m that was accepted by the filter, let m̃
and S̃ig be the set of conditional hit tokens and conditional
hit signatures as defined below.

Definition 4. Given a candidate m, for each token t ∈
m, t is a conditional (on m) hit token if there exists a set of
signatures {s1, . . . , si} ⊆ Sig(m), such that the cells corre-
sponding to t and s1, . . . , si are set to 1 and wt(s1) + . . . +
wt(si) ≥ τ(m, δ). For each signature s ∈ Sig(m), s is a con-
ditional (on m) hit signatures if there exists a set of tokens
{t1, . . . , tj} ⊆ m, such that the cells corresponding to s and
t1, . . . , tj are set to 1 and wt(t1)+ . . .+wt(tj) ≥ δ×wt(m).

Clearly, for any solid sub-matrix P (Sig′, m′) that satisfies

Theorem 1, Sig′ ⊆ S̃ig and m′ ⊆ m̃. Thus, for each s ∈ S̃ig,
we retrieve the dictionary strings by:

Select ∗ from V where

hash sig = hash(s) and δ × wt(m) ≤ wt ≤ wt(m̃)
δ

m is verified against the retrieved dictionary strings.

6. THE COMPLETE ALGORITHM
This section presents the complete algorithm for approx-

imate membership checking. Given an input string S, the
algorithm tests all sub-strings with length up to L using the
filter, and those candidate members are further submitted
for verification. A high level description of the framework is
illustrated in Algorithm 1.

We explain the algorithm line by line. Lines 1-2 construct
the filter and index dictionary strings in the dictionary R.
This procedure is conducted offline. The compact filter re-
sides in memory, and we assume the dictionary is stored on
disk. Lines 3-5 generate query strings with length up to L.
The filter f is applied on lines 6. Finally, candidate mem-
bers passed f are verified in line 7. Note Algorithm 1 ver-
ifies each candidate member one-at-a-time. Alternatively,

Algorithm 1 Approximate Membership Checking

Input: R, δ, S = 〈t1, t2, . . . , 〉

1: Build the filter f(R, δ) ; //offline
2: Index R for verification; //offline
3: for (start = 1 to |S| − L + 1)
4: for (length = 1 to L)
5: m ← 〈tstart, tstart+1, tstart+length−1〉;
6: if (f.prune(m) == true) continue; //filter
7: if (∃r ∈ R, s.t. similarity(r, m) ≥ delta) //verify
8: Output m;

one can keep all candidate members in a candidate set, and
then issue a batch verification at the end of the execution.

7. PERFORMANCE STUDY
We now report our experimental results. We compare

the performance of the ISH filter (referred as ISH-Filter)
with two state-of-the-art methods: the lsh-signature based
filter [3] (referred as LSH-Signature) and the segmented in-
dex merging [7] (referred as Segmented-Merging). All the
experiments are conducted on a 2.4GHz Intel Core 2 Duo
PC with 4GB RAM. We use Microsoft SQL Server 2005.

We use real data sets for the experiments. The dictionary
set is a collection of 10M product names (e.g., electronics,
book titles, furniture, etc). Example dictionary strings are
“The Food of the Western World An Encyclopedia of Food
from North America and Europe” and “Microsoft Wireless
Notebook Optical Mouse 400”. Table 6 shows some statistics
on the product name data set.

Parameter value
Number of Dictionary Strings 10, 000, 000
Distinct Number of Tokens 2, 421, 627

Maximal Length 40
Minimal Length 1
Average Length 7.3

Table 6: Statistics on Product Name Data Set

The input string is a collection of 10, 000 documents. On
average, each document contains 3, 689 tokens (each token
is an English word).

7.1 Preliminary Filtering Techniques
Before we discuss the experimental configuration for all

three methods, we first describe two basic filtering tech-
niques. These methods may not achieve the desired filter-
ing power of any approach used in our experiment. But
they have very low computational overhead, and can be in-
tegrated with any advanced filters.

7.1.1 Filtering by Token-table
The first method maintains a token hash table of all dis-

tinct tokens appearing in R (notated as TT (R)). In general,
even for very largeR, the number of distinct tokens may still
be much smaller. We assume TT (R) can fit in memory.

Hit Tokens: For each token t in the candidate m, we call
t is a hit token if t ∈ m ∩ TT (R). Clearly, m can be safely
pruned if

∑
t∈TT (R)∩m wt(t) < δ × wt(m).



Strong Tokens: Given a string r ∈ R, all tokens t ∈ r
can be sorted in decreasing order of their weights, and then
divided into two parts: strong and weak (as suggested by
[7, 8, 17]). The strong set consists of the shortest prefix
of tokens whose aggregated weight is larger than (1 − δ) ×
wt(m). Intuitively, for any candidate m, if there exists a
string r such that similarity(r, m) ≥ δ, then there is at least
one token t from the strong set of r, and t ∈ r ∩m. Based
on this observation, for each token t ∈ TT (R), we maintain
a boolean value strong(t) such that strong(t) = true if and
only if t belongs to the strong set in at least one r ∈ R.
Consequently, a candidate m can be pruned if no token in
m is strong.

7.1.2 Handling Short Candidates
The second method applies exact-match module to match

short candidates m against a set of pre-computed variations
of all r ∈ R. Let lE be the maximal candidate length for
exact-match (e.g., lE = 3). We discuss how to handle can-
didate whose length is no larger than lE for unweighted and
weighted measures separately.

Unweighted Measures: Intuitively, for a short candi-
date m, even the smallest difference (i.e., by differing one to-
ken) from a string r may lead to similarity(r, m) < δ. More
specifically, let l(δ) = δ

1−δ
. For any m 6= r, and |m| < l(δ),

we have similarity(r, m) ≤ |m|
|r| < l(δ)

l(δ)+1
= δ. Let lE < l(δ),

then for any candidates m (|m| ≤ lE), m is a true member
if and only if there exists r ∈ R, such that r = m. This is
an exact-match problem. We can apply exact-match based
membership checking methods [1, 4] to store all strings r
(|r| ≤ lE), and extract true members whose length is no
longer than lE efficiently.

Weighted Measures: Unlike the unweighted measures,
weighted similarity (i.e., WJS measure) can not be bounded
by the length of candidates due to different token weights,
and thus all strings in R should be considered for approxi-
mately matching to m (|m| ≤ lE). For each string r ∈ R,
we enumerate all r′ ⊆ r, such that wt(r′) ≥ δ × wt(r), and
|r′| ≤ lE . We then store pairs 〈r′, wt(r)〉 in the exact match-
ing structure.

For a candidate m (|m| ≤ lE), the matching scenario can
be divided into two categories:

1. There exists an r′ such that r′ = m. Since wt(r′)
wt(r)

≥ δ,

m is a true member.

2. There exists an r′ and a m′ ⊆ m such that r′ = m′.
m is true member if wt(r′)

wt(r)+wt(m)−wt(r′) ≥ δ.

7.2 Experimental Configuration
We apply the basic filtering techniques described above

for all three methods. The maximal length lE for exact
match module is set to 3. The maximal candidate length
is set to max len

δ
, where max len is the maximal length of

dictionary strings. Thus, the candidate queries submitted
to all methods have length from 4 to max len

δ
.

LSH-Signature: We implement an in-memory structure by
combining the lsh-signature scheme used in [3] and a Bloom
Filter [4]. For lsh-signatures, we set the false negative
rate ω to 0.95, which means only 95% of correct results will
be output. The observed accuracy is close to the expected

one in our experiments. The performance of lsh-signature
depends on the parameters g and l. We report the results
from the optimal setting (i.e., the one achieves the best filter-
ing power). For each string in the dictionary, we generate
l signatures, and insert them into a bloom filter, which is
configured as follows: the size (in bits) of the bloom filter is
8 times the total number of signatures, and the number of
hash functions used by the bloom filter is 5, which is derived
from the optimal ratio of hash-functions to bits [4].

Segmented-Merging : We implemented an improved ver-
sion of the segmented index merging approach proposed
by [7], which was developed for a batch top-k query prob-
lem for an input string. The segmented merging strategy
was shown to be more efficient than the traditional top-k
merging [10] and progressive merging that shares computa-
tion among neighboring query sub-strings. The main idea
of Segmented-Merging is to only build inverted indices for
strong tokens. Since it loses rid lists from weak tokens, the
Segmented-Merging also has false positives. For fair com-
parison, we store all inverted indices in memory. At the
query phase, only strong tokens are merged, and non-strong
tokens are considered as “hit”. An upper bound similarity
score can be computed for a candidate. The original algo-
rithm was developed for top-k retrieval, where the rid lists
are maintained sorted according to the aggregated similarity
score. Since the membership checking problem only needs
to know whether the candidate presents in the dictionary or
not, we avoid sorting by maintaining a maximal aggregate
score.

ISH-Filter : We use prefix signatures in the experiments
for two reasons. First, they are simple and efficient to com-
pute; and second, they can be extended to weighted ver-
sion which generally performs better than binary signatures.
We also compare the performance of prefix-signature based
ISH and lsh-signature based ISH. Let the total number of
tokens in the dictionary be D. We configure the memory
budget in terms of the dictionary size. By default, we allo-
cate b = 8 bits for each token. Hence, M is set to b × D
(bits). For our product name dictionary, D = 73, 000, 000,
and M ≈ 70MB. For ISH-Filter, we need to determine the
parameter k for signature generation. We use the estimation
method described in Section 4.3.1. k = 3 is the best choice
for most cases (by varying δ and dictionary size). Therefore,
we fix k = 3 for ISH-Filter.

We briefly discuss how to remove boundary redundancy
for all three methods. First, all methods can use the token
table to identify hit tokens. A candidate is directly pruned
if either the first token or the last token is not a hit token.
Secondly, for Segmented-Merging, we only consider strings
that contain both the first and the last tokens (e.g., rids
appearing in the both lists of the first and last tokens). Fi-
nally, for ISH-Filter, we require both first and last tokens to
be conditional hit tokens (Definition 4).

7.3 Experimental Results
The computational factors that we consider are: execution

time, memory requirement and filtering power. The filter-
ing power is measured by the numberof candidate members.
This is also directly related to verification cost. We con-
duct experiments on both filter-only and filter-verification
configurations.
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Figure 3: Execution Time w.r.t. |R|,
Weighted Measure, δ = 0.85
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Figure 4: Filtering Power w.r.t. |R|,
Weighted Measure, δ = 0.85
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Figure 5: Filtering Power w.r.t. |R|,
Unweighted Measure, δ = 0.85

We summarize the experimental results as follows. In
terms of the execution time, Segmented-Merging is signif-
icantly slower (by two order of magnitude) than the other
two alternatives, and ISH-Filter is slightly (around 2 times)
faster than LSH-Signature. In terms of the filtering power,
ISH-Filter generates much less candidate members (often,
by an order of magnitude). Segmented-Merging uses the
most memory space, and ISH-Filter uses 2 times more mem-
ory than LSH-Signature by default configuration. We also
conduct experiments by further reducing the memory re-
quirement of ISH-Filter, and show that even using 1

10
of

the default memory, the filtering power of ISH-Filter is still
comparable to LSH-Signature.

7.3.1 Filter-only
This subsection reports the experimental results with filter-

only approaches. Since we use a unified pruning condition,
the filter-only configuration does not involve specific sim-
ilarity measures. Instead, we report results for weighted
and unweighted measures. For weighted measures, we as-
sign each token the standard IDF weights [19] derived from
the dictionary. To study the scalability of the method, we
vary the size of dictionary by using 500k, 1M , 5M and 10M
dictionary strings from the product name data set. Figure
3 to 9 show the execution time, filtering power and memory
usage. All experiments use all 10, 000 documents as query
string. The performance on weighted and unweighted filter-
ing is similar.

Filter Building Time: Here we briefly report the costs
to build filters for each method. For weighted measure, ISH-
Filter, LSH-Signature and Segmented-Merging use 980, 820,
290 seconds (for δ = 0.85), respectively, to build a filter for
10M dictionary strings. The corresponding building time
for unweighted measure are 840, 590 and 270 seconds. All
building times include the cost to build the basic filter. ISH-
Filter uses slightly more time because it needs an additional
dictionary scan to compute N(k) to determine the best k
value and initialize space for bit arrays. For ISH-Filter and
LSH-Signature, the construction time slightly increases (de-
creases) when δ decreases (increases).

Execution Time: Figure 3 shows the execution time
for the weighted measure. First of all, We observe that
Segmented-Merging runs significantly slower than the other
two alternatives. The computation complexities of both
LSH-Signature and ISH-Filter are independent of the dic-

tionary size. Figure 3 shows that the execution time of
both LSH-Signature and ISH-Filter slightly increases. This
is because when the dictionary is small, the basic filtering
techniques are more effective. Segmented-Merging, although
only retaining the strong tokens, has computational cost
proportional to the dictionary size. We only report results of
segmented index merging for dictionary size 500k and 1M .
The experiments on dictionary size 5M and 10M did not
finish within our time limit.

The execution time of LSH-Signature and ISH-Filter are
similar for unweighted measure, while that of Segmented-
Merging is even worse. For instance, setting |R| = 1M , the
Segmented-Merging finishes in 63, 233 seconds (versus 4, 592
seconds on weighted measure). This is because there are
more strong tokens for unweighted measure.

The advantage of index merging is that it keeps rid in in-
verted indices, and thus it is possible to compute the exact
similarity score for a candidate member without verification.
On the other hand, this verification-free configuration need
to keep inverted indices for all tokens (instead of only strong
tokens in Segmented-Merging), which is obviously more com-
putational expensive. As we show in the next subsection,
even including on-disk verification, the LSH-Signature and
ISH-Filter are orders of magnitude faster than Segmented-
Merging (without verification).

Note both LSH-Signature and ISH-Filter can be imple-
mented more efficiently by applying progressive computa-
tion: the LSH-Signature may be further improved by pro-
gressively computing minhashes; and the ISH-Filter may be
further improved by keeping the previous bit-lookup results
since it is highly likely that some prefix signatures are shared
by the neighboring candidates. We will further explore the
progressive computation in Section 8. As shown in Figure
3, ISH-Filter is about two times faster than LSH-Signature.
This is because: (1) the computation of prefix-signatures is
cheaper than that of minhashes in lsh-signature; and (2) the
bit-lookups against ISH are also cheaper than that against
the Bloom Filter (i.e., involving multiple hash computation).

The execution time is also related to the similarity thresh-
old δ. For instance, by varying the similarity threshold from
0.8 to 0.9, the execution time of ISH-Filter decreases from
141 seconds to 109 seconds (with dictionary size 10M).

Filtering Power: Figure 4 and Figure 5 compare the
number of candidate members generated by all three meth-
ods. We exclude the outputs generated by the exact match
module since they do not need verification. We observe that
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Figure 10: Filtering Power w.r.t.
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Weighted Measure, |R| = 10M

ISH-Filter is almost one order of magnitude better than
the other two alternatives, and Segmented-Merging performs
similarily to LSH-Signature. As we stated earlier, leveraging
more tokens is beneficial to prune false members. Although
Segmented-Merging does not have false positives introduced
by hash collision (i.e., it keeps exact rids), it is only able to
access the subset of strong tokens. Hence, its pruning power
is weaker than ISH-Filter, but close to LSH-Signature. The
false positives of LSH-Signature may be introduced by ei-
ther signature collision or hashing collision in bloom filter.
In our experiment, we observe that only a very small portion
of the false positives is due to hash collisions. For instance,
when |R| = 10M , only 0.002% of total signature hits are
introduced by the bloom filter.

Figure 6 and Figure 7 show the number of candidates
with respect to candidate length (for |R| = 10M). Both
LSH-Signature and ISH-Filter are more effective in pruning
long candidates. The zig-zag patterns are mainly because
of the integer rounding of error threshold. For instance,
if on un-weighted measure the similarity threshold is 0.8,
only 1 token error is allowed for queries to match with a
9-token strings. 2 token errors are allowed for queries to
match with 10-token strings. Consequently, we observed
that the filtering power for 9-token strings is stronger than
the 10-token strings.

If the filter is built solely based on signatures, [3] shows
that for string similarity join, the lsh-signature performs
much better than the prefix-signature. By introducing in-
verted signature-based hashtable, we show that the filtering

power can be significantly improved. We further examine
the filtering power by integrating the lsh-signature to the
ISH-Filter. The results are shown in Figure 8, where the
dictionary size is 10M , and the similarity threshold is var-
ied from 0.8 to 0.9. Interestingly, we observe that the per-
formance of the lsh-signature based ISH (i.e., ISH-LSH ) is
worse than the prefix-signature based ISH (i.e., ISH-Prefix ).
The main insight is that we use the weighted extension of
prefix-signatures. In the original proposal [3], the prefix
signatures are used as binary signatures such that as soon
as there is one signature-hit, the candidate passes the fil-
ter. While in the weighted extension, it requires multiple
signature-hits. It is not clear to us how to extend the lsh-
signature to the weighted version.

Memory Requirement: The last factor is the memory
requirements which are shown in Figure 9. With the default
setting, ISH-Filter is more compact than the Segmented-
Merging and roughly uses two times more memory space
than LSH-Signature. As we discussed in Section 4.3, we can
further reduce the memory requirement for ISH-Filter. The
experiment is presented in Figure 10, where we reduce the
memory requirement by progressively removing the largest
bit arrays, until the memory space is no larger than rM . We
set the reducing rate r to 0.5 and 0.1, and run ISH-Filter
for dictionary size 10M with δ = 0.8. We observe that
when r = 0.5, where the ISH-Filter uses the same memory
space as LSH-Signature the filtering power of ISH-Filter is
still more than 4 times better than that of LSH-Signature.



Their performance becomes close when r = 0.1. At that
time, ISH-Filter uses 5 times less memory space.

An alternative solution to reduce the memory requirement
of ISH-Filter is to simply assign less space for each bit-array,
and possibly use smaller k (i.e., parameter to control the
number of signatures) value. For instance, we can assign
b = 4 (i.e., number of bits per token), and the memory
requirement of ISH -Filter is same as r = 0.5. The number
of candidate members for the same membership checking
task is 1.4M (versus 2.0M by setting r = 0.5 in Figure 10).

7.3.2 Filter-Verification
Here we report the experimental results with verification.

The Segmented-Merging is excluded in this set of experi-
ments since it is not competitive to the other two approaches.
We use a hybrid verification strategy that verifies candidate
members in a batch for each document, using the one-at-a-
time verification interface. Given the fact that some mem-
bers are repeated in the same document, the hybrid veri-
fication can reduce the number of disk access by catching
previously retrieved dictionary strings.

The verification module for LSH-Signature is implemented
exactly same as that for ISH-Filter. Specifically, at the filter
building phase, for each signature s that is generated by a
dictionary string r, we store 〈rid, s, r, wt(r)〉 in a relational
table. We do not need to hash the signature again since
the lsh uses minhashes as signatures. A clustered index on
(s, wt(t)) is created. At the querying phase, when the bloom
filter returns hit for a signature s′ (generated by a candidate
m), we will retrieve dictionary strings that satisfy s′ = s and

δ × wt(m) ≤ wt(t) ≤ wt(m)
δ

.

Number of True Members: Figure 11 and 12 show
the number of true members (represented by Optimal) for
weighted and unweighted measures, respectively. The sim-
ilarity threshold is varied from 0.8 to 0.9, and the number
of dictionary strings is 10M . In Figure 12, since we use the
unified pruning condition for both jaccard similarity and
edit similarity, the number of candidate members (and thus
the number of verification call) are exactly same for jaccard
similarity and edit similarity.

Execution Time: The overall execution time including
verification is shown in Figure 13 (weighted jaccard) and
Figure 14 (unweighted jaccard), where we set δ = 0.85 and
vary |R| from 500k to 10M . The curves demonstrate the
same trend as those in Figure 4 and Figure 5, validating
that the verification costs are proportional to the number of
candidate members. When |R| = 10M , ISH-Filter uses 408
seconds for weighted measure (versus 121 seconds in filter-
only), and 788 seconds for unweighted measure (versus 119
seconds in filter-only). LSH-Signature uses 3001 seconds for
weighted measure (versus 396 seconds in filter-only), and
6921 seconds for unweighted measure (versus 204 seconds in
filter-only).

8. DISCUSSION
Here we discuss two extensions of the proposed methods:

(1) leveraging progressive computation for efficient filtering;
(2) integrating different tokenization scheme.

Progressive Computation: In membership checking
problem, every possible sub-string from the input string is
a candidate. In general, we first fix a start position of query

sub-strings, and then progressively expand the query sub-
string by including more tokens, until the maximal length is
reached. Progressive computation refers to the possible com-
putation share among neighboring query sub-strings. Pro-
gressive computation has been a main focus of previous pro-
posals [1, 20, 5] in exact-match (or small error) based sub-
string lookup. Those methods build an in-memory struc-
ture that directly outputs the true members. Since no ver-
ification is involved, applying progressive computation can
significantly improve the algorithm efficiency. To support
flexible similarity thresholds in our problem, we use a filter-
verification framework, where the verification cost becomes
the main component in the overall computational cost. There-
fore, we did not explore the progressive computation with
ISH-Filter throughout the paper.

For some application where verification is not required,
or cheap verification methods are available, we can apply
progressive computation for ISH-Filter as follows. First,
the prefix-signature generation can be made progressive. In
fact, it is very likely that the prefix-signatures (or major-
ity of them) keep the same when more tokens are included
in the query sub-string. Second, the bit-array lookup for
each signature can be made progressive. Suppose the cur-
rent candidate length is |m|, and the number of signatures
is |Sig|. Without progressive computation, it may involve
|m| × |Sig| bit-lookups. Assume we keep the lookup results
of the previous candidate (with length |m − 1|). When we
move |m|−1 to |m|, we will generate at most one new prefix-
signature. Hence, the number of incremental bit-lookups is
at most |m| + |Sig| (|m| bit-lookups for the new signature,
and |Sig| bit-lookups for the new token).

Tokenization Scheme: We use individual English words
as tokens to demonstrate our method. In fact, the tokeniza-
tion module is orthogonal to the inverted signature-based
hashtable structure. For instance, we can use q-gram that
combines q English words as a token, and builds a bit-array
for each q-gram. In order to find bit-array entries, the al-
gorithm may need to maintain a q-gram table, which could
be significantly larger than the table for distinct words. To
remedy this, one can hash q-grams to a smaller range and
only keep entries for the hash codes. This is equivalent to
randomly group multiple q-grams. Another method is to
simply create a big bit-array with size M (e.g., the complete
memory budget), and insert 〈q − gram, signature〉 pairs to
the bit-array.

9. CONCLUSIONS
In this paper, we considered the problem of identifying all

sub-strings in an (long) input string which approximately
match (according to one of several popular similarity mea-
sures) with some member string in a large dictionary. The
characteristic of this scenario is that most input sub-strings
do not match with any member of the dictionary. We de-
veloped a compact filter which efficiently filters out a large
number of sub-strings which cannot match with any dictio-
nary member. The sub-strings which pass our filter are then
verified by checking for membership. At the same time, our
filter is exact in that any input sub-string which matches
with a dictionary member will not be filtered out. We
demonstrate using real datasets that our approach signifi-
cantly outperforms both current best exact methods (often,
by an order of magnitude) as well as probabilistic methods,
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which may not identify a small percentage of matching sub-
strings.

10. APPENDIX
Here we discuss how to compute η(k): the probability of

existing a solid sub-matrix P (Sig′, m′), such that |m′| ≥
δ|m| and |Sig′| ≥ τ(m, δ), where Sig′ ⊆ Sig and m′ ⊆
m. For simplicity, let r = |Sig|, c = |m| and p(x, y) be
the probability of the presence of a solid matrix with exact
x rows and y columns. Here each row corresponds to a
signature and each column corresponds to a token. The
probability for a cell to be set to 1 is γ(k) (Section 4.3.1).

For x = 1, we have:

p(1, y) =

(
c
y

)
γ(k)y(1− γ(k))c−y

For x > 1, we iteratively compute the probabilities by:

p(x, y) =

(
r
x

) ∑

y≤i,j≤c

p(x− 1, i)p(1, j)prob(i, j, c, y)

Intuitively, the above equation means that any solid sub-
matrix with x rows and y columns comes from the intersec-
tion results of a solid sub-matrix A with x − 1 rows and i
columns (i ≥ y), and a solid sub-matrix B with 1 row and
j columns (j ≥ y). prob(i, j, c, y) is the probability that the
intersection of A and B generates a solid sub-matrix with
exact y columns.

prob(i, j, c, y) =





0 if i + j − c > y
 j

y





 c− j

i− y





 c

i




otherwise

Note for unweighted case, the number of signatures λ(m, k)
and the signature threshold τ(m, k) only depends on |m|.
For simplicity, we directly rewrite them as λ(|m|, k) and
τ(|m|, k), respectively. Given a candidate length |m|, we
have,

η(k, |m|) =
∑

τ(|m|,k)≤x≤λ(|m|,k),δ|m|≤y≤|m|
p(x, y)

Since |m| is uniformly chosen from lE + 1 (candidates
whose length no large than lE go to exact match module

directly) to L (the maximal lookup length). Thus,

η(k) = (
∑

lE<y≤L

η(k, y))
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