
Stanford University’s Chinese-to-English Statistical Machine Translation
System for the 2008 NIST Evaluation

Michel Galley, Pi-Chuan Chang, Daniel Cer, Jenny R. Finkel, and Christopher D. Manning
Computer Science and Linguistics Departments

Stanford University
{mgalley,pichuan,cerd,jrfinkel,manning}@stanford.edu

1 Introduction

This document describes Stanford University’s first
entry into a NIST MT evaluation. Our entry to the
2008 evaluation mainly focused on establishing a
competent baseline with a phrase-based system sim-
ilar to (Och and Ney, 2004; Koehn et al., 2007). In
a three-week effort prior to the evaluation, our at-
tention focused on scaling up our system to exploit
nearly all Chinese-English parallel data permissible
under the constrained track, incorporating competi-
tive language models into the decoder using Giga-
word and Google n-grams, evaluating Chinese word
segmentation models, and incorporating a document
classifier as a pre-processing stage to the decoder.

This document is organized as follows: in Sec-
tion 2, we describe linguistic resources used for our
submission. In Section 3, we present the four main
components of our translation system, i.e., a phrase-
based translation system, a Chinese word segmenter,
a text categorizer, and a truecaser. Finally, we dis-
cuss our results in Section 4.

2 Data

2.1 Parallel data
Our translation models were trained using almost
all of the constrained track Chinese-English data,
leaving aside only the Multiple Translation Chinese
corpus (LDC2006T04), OntoNotes (LDC2007T21),
test data from previous NIST MT evaluations
(LDC2006E43, LDC2006E38, LDC2007E59), and
the ISI Chinese-English automatically extracted par-
allel texts (LDC2007T09). We only exploited a
four-million word subset of the public version of

the FBIS corpus (LDC2003E14). In total, the par-
allel training corpus contains 237.6 million English
words and 215.4 million Chinese words.

Our DARPA GALE collaborators at IBM Re-
search provided us pre-processed and sentence-
aligned parallel data. We further removed sentence
pairs deemed inappropriate for training, in particu-
lar sentence pairs with fertility larger than nine, sen-
tences longer than 100 words, and sentences with
errorful UTF-8 encoding. All words in both source
and target language texts were downcased.

We used the test set of the 2006 evaluation
(MT06, LDC2007E59) for parameter tuning, and
the test set of 2005 (MT05, LDC2006E38) as our
development test set.

2.2 Monolingual target-language data

The language models described in Section 3.1.2
were trained using Google n-grams (LDC2006T13)
and the Xinhua News and Agence France-Presse
(AFP) sections of English Gigaword, third edition
(LDC2007T07). Since the test periods of our de-
velopment sets (MT05 and MT06) overlap with the
Gigaword corpus, we manually removed stories re-
leased between November 2004 and February 2005,
and between January and March 2006. The tok-
enization of both Gigaword and Google n-grams was
roughly matched to the tokenization of the target
side of the parallel texts.

2.3 Other linguistic resources

For Chinese name transliteration, we extracted a
list of characters that are likely to be Chinese fam-
ily names, and also the corresponding translitera-

tions from the Chinese-English Name Entity Lists
v1.0 (LDC2005T34). When dealing with unknown
words, if they were of length 2 or 3 and started
with a character that’s likely to be a Chinese fam-
ily name, we looked up the transliteration table and
pre-processed the unknown word by a transliteration
module.

3 System

This section describes the four main components of
our system: a phrase-based translation system, a
Chinese word segmenter, a text categorizer, and a
truecaser. The purpose of the text categorizer is to
classify each test document as either newswire or
web, which allows us to run our phrase-based de-
coder with a set of log-linear parameters tuned on
the predicted genre.

3.1 Phrase-based translation system
Our phrase-based system employs a log-linear ap-
proach common to many state-of-the-art statistical
machine translation (SMT) systems (Och and Ney,
2004). Given an input Chinese sentence f, which is
to be translated into an English sentence e, the de-
coder searches for the most probable translation ê
according to the following decision rule:

ê = argmax
e

{P(e|f)} = argmax
e

{
M

∑
m=1

λmhm(f,e)}

(1)
hm(f,e) are M arbitrary feature functions over sen-
tence pairs, such as translation probabilities. The
search is performed with the Moses decoder (Koehn
et al., 2007).

While our general research direction is to apply
feature functions based on deep linguistic analy-
sis, the work for this submission concentrated on
features yielding a competent baseline phrase-based
SMT system, given the relatively short time at our
disposal before the evaluation. We finally incorpo-
rated the following 15 feature functions:

• Two phrase translation probabilities
Pml(e| f) and Pml(f |e), computed using the
(unsmoothed) relative frequency estimate

Pml(ē| f̄) = count(e, f)/
(
∑
e′

count(e′, f)
)
, (2)

where f and e constitute a pair of aligned
phrases.

• Two lexical translation probabilities
Plex(e| f) and Plex(f |e), similar to those
presented in (Koehn et al., 2003):

Plex(e| f ,a) =
n

∏
i=1

1
|{i|(i, j) ∈ a}| ∑

(i, j)∈a
p(ei| f j),

(3)
where n is the length of the phrase e, and a is
the internal word alignment between e and f .1

• Six lexicalized phrase re-ordering proba-
bilities, which distinguish three types of re-
orderings (monotone, swap, and discontinuous)
and model both left-to-right and right-to-left
re-orderings, and thus define six features func-
tions for each phrase pair. We applied Laplace
smoothing to lexicalized re-ordering probabili-
ties, with λ = 0.5.

• Two language models, from Gigaword and
Google n-grams.

• Word penalty as in (Koehn et al., 2007).

• Phrase penalty as in (Koehn et al., 2007).

• Linear reordering penalty as defined in
(Koehn et al., 2007).

The weights of these feature functions were set
using minimum error rate training (MERT) (Och,
2003). We divided our tuning set (MT06) into two
sets—newswire stories and newsgroup messages—
and discarded all other genres (broadcast news). We
ran MERT on each set, and used newswire MERT
parameters for decoding documents classified as
‘newswire’, and used newsgroup MERT parameters
for decoding documents classified as ‘web’. In each
case, we ran MERT twice: once with only one lan-
guage model (Gigaword and parallel data), and sec-
ond time with the addition of a Google language

1Distinct instances of a given phrase pair (e, f) may be ob-
served with different internal alignments. Similarly to Moses,
and in contrast to (Koehn et al., 2003), we select in such a case
the most frequent alignment. Since our implementation differs
from Moses in the way it breaks ties between alignment counts,
about 0.1% of our phrases have lexical translation probabilities
that differ from the ones computed by Moses, but this does not
impact MT performance.

model (see Section 3.1.2). The effect of the Google
language model is discussed in the results section
(Section 4).

3.1.1 Phrase tables
This section describes the computation of phrase

translation and lexicalized re-ordering probabilities,
which we computed for all observed phrases no
longer than seven words on each side. First, we
ran GIZA++ (Och and Ney, 2003) to produce word
alignments for the entire data set. We ran five itera-
tions of IBM Model 1 (Brown et al., 1993), five iter-
ations of the homogeneous HMM model described
in (Vogel et al., 1996), and three iterations of IBM
Model 4. Note that training with IBM Model 3 was
entirely skipped.

We built our own implementation of phrase-
extract (Och, 2002), which, as opposed to Moses,
builds phrase tables directly tailored to specific de-
velopment and test sets. This considerably reduces
the burden of computing normalization counts, since
our phrase extraction system can generally fit all rel-
evant phrase pairs into memory (as opposed to, e.g.,
Moses, which sorts large collections of phrases on
disk to compute normalization counts). This en-
abled us to quickly experiment with many phrase
extraction heuristics. On a 41 million English
word subset of the parallel data, we found that
the alignment symmetrization that worked best with
our system is the grow-diag heuristic (Koehn et al.,
2007). We pruned phrase tables produced with this
heuristic by deleting all phrases that do not sat-
isfy Pml(e| f)≥ .0001. This filtering typically yields
phrase tables 2 to 3 times smaller, with generally lit-
tle impact on MT performance (0.2% BLEU reduc-
tion at worst). Since all our language models are fil-
tered against the target side of our phrase tables, this
deletion of very unlikely translations allowed us to
considerably reduce n-gram count thresholds—i.e.,
the number of times each n-gram must be observed
to be included in the language model—and to inci-
dentally capitalize more on n-grams that are likely
to be seen at decoding time.

3.1.2 Language models
Our system for this submission incorporates two

language models built using the SRI language mod-
eling toolkit (SRILM) (Stolcke, 2002). The first

model was trained using stories from Xinhua News
and AFP (see Section 2.2), as well as the en-
tire target-language side of the parallel data (Sec-
tion 2.1), which represent a total of about 970 mil-
lion English tokens, including punctuations. We
built a back-off 5-gram language model smoothed
with the modified Kneser-Ney algorithm (Chen and
Goodman, 1996). Due to memory constraints
(16GB of RAM), we discarded all 4-grams that oc-
curred only once and all 5-grams that occurred only
once or twice.

We also experimented with the four remaining
sections of the Gigaword corpus (Associated Press
Worldstream, Central News Agency, Los Angeles
Times, and New York Times), and built mixture
language models combining the different sources
(mixture parameters were tuned to either maximize
BLEU or minimize perplexity). Despite our obser-
vation that these sections helped significantly reduce
the perplexity of the English references of our tuning
set (6.7% relative perplexity reduction), these extra
sources did not yield any significant improvement on
the development test set (MT05) in terms of BLEU
scores, and so we didn’t use them.

We built a second language model using Google
n-grams. Since the Google collection does not con-
tain n-grams with counts lower than 40, it is imprac-
tical to utilize smoothing techniques (such as Good-
Turning or Kneser-Ney) that rely on “counts-of-
counts” statistics to estimate the probability of rare
events. We relied instead on Jelinek-Mercer smooth-
ing (Bahl et al., 1983) (known as a “count-based”
language model in SRILM), which implements a
mixture of count-based maximum-likelihood esti-
mators. In our experiments, the n-grams of each
order were partitioned by counts into 15 buckets
(each bearing a unique interpolation weight), and
maximum-likelihood estimates typically converged
after 3 to 5 iterations of expectation-maximization
(EM) (Dempster et al., 1977). Since SRILM falls
short of explicitly enumerating all n-grams of count-
based language models—inasmuch as such models
only contain a few distinct interpolation weights—
we converted our count-based language model into
the kind of back-off language model expected by our
decoder (an ARPA file).2 Since building a back-off

2One way to achieve this is to create an intermediate back-

Lexicon-based Features
(1.1) LBegin(Cn),n ∈ [−2,1]
(1.2) LMid(Cn),n ∈ [−2,1]
(1.3) LEnd(Cn),n ∈ [−2,1]
(1.4) LEnd(C−1)+LEnd(C0)+LEnd(C1)
(1.5) LEnd(C−2)+LEnd(C−1)

+LBegin(C0)+LMid(C0)
(1.6) LEnd(C−2)+LEnd(C−1)

+LBegin(C−1)
+LBegin(C0)+LMid(C0)

Linguistic Features
(2.1) Cn,n ∈ [−2,1]
(2.2) Cn−1Cn,n ∈ [−1,1]
(2.3) Cn−2Cn,n ∈ [1,2]
(2.4) Single(Cn),n ∈ [−2,1]
(2.5) UnknownBigram(C−1C0)
(2.6) ProductiveA f f ixes(C−1,C0)
(2.7) Reduplication(C−1,Cn),n ∈ [0,1]

Table 1: Features for the Chinese segmenter.

language model requires loading all n-grams at once
into memory, we limited our use to n-grams up to or-
der 3 and removed trigrams that appeared less than
300 times in the Google collection.

3.2 Chinese word segmenter

In Section 2.1 we mentioned that we used the par-
allel data provided by IBM Research. However, in-
stead of use the original segmentation, we trained
a segmenter with features for better segmentation
consistency. Our segmenter is using a CRF model
(Lafferty et al., 2001), and we treated Chinese word
segmentation as a binary decision task where each
character is labeled either as the first character of a
word or not (Peng et al., 2004).

The features we are using are listed in Table 1.
The segmenter was trained on all of Chinese Tree-
bank (LDC2005T01). In order to evaluate the per-
formance of the segmenter, we also trained on the
SIGHAN Bakeoff 2006 training data (the UPUC
data) and evaluate on the test data. The overall
F measure was 0.940. The OOV recall rate was
0.729, and the IV recall rate is 0.970, which is very
close to the best result of SIGHAN Bakeoff 2006.

off ARPA language model containing all n-grams of interest
(e.g., those that may be applicable at decoding time), then
rescore this model with our count-based language model using
ngram -rescore-ngram in SRILM.

3.3 Text categorizer

The text categorizer is a linear regression classifier
trained to distinguish three genres: newswire, news-
groups, and weblogs. At test time, the newsgroup
and weblog categories were merged into one ‘web’
class (training directly a two-way classifier turned
out to particularly less effective). Data sources
for training included: 600 documents randomly se-
lected from Xinhua News stories of 2006, and all
newsgroup and weblog documents in LDC2006E34,
LDC2006E24, LDC2006E92, LDC2006E85, and
LDC2005E83 (GALE data). Features included aver-
age sentence length and all words of the document.
We tried several other features, which did not help.

3.4 Truecaser

Our truecaser is a CRF classifier with four classes:
all lowercase (LC), first letter uppercase (UC), all
letters uppercase (CA), and mixed case word (MC)
(cf. (Lita et al., 2003)). For building the CRF clas-
sifier, we used a subset of the features used in the
Stanford Named Entity Recognizer (Finkel et al.,
2005). Our truecaser was trained on LDC2005E83,
LDC2006E24, LDC2003E14, and part of the Xin-
hua data (LDC2007T07).

After running the truecaser, we applied 4 different
post-processing steps. First, we disambiguate the
mixed case words by looking up a list we extracted
from a larger set of training data. Second, since the
training data we are using actually put many city
names into all uppercase (CA), we post-processed
those cases to make them in the UC category. Third,
we made the first non-punctuation word of every
sentence in the UC category. Fourth, we capital-
ized the first sentence of newswire data (categorized
by our categorization tool. We tested the truecaser
on the four references of MT06 newswire and news-
group data. The total per-word accuracy is 96.13%.
To further analyze the truecaser, we look at accu-
racy for each class: 99.73% for MC, 98.67% for LC,
82.37% for CA, 81.79% for UC. We can see from
the results that the worst performing category is UC,
in which 18.02% were mistaken as LC. This is the
place where out truecaser needs to be improved the
most. Finally the spacing between tokens was nor-
malized to resemble standard English spacing rules.

BLEU[%]
Set Google LM newswire web

MT06 no 31.58 26.75
MT06 yes 31.48 27.68
MT05 no 32.90 -
MT05 yes 32.92 -
MT08 no 28.43 19.53
MT08 yes 29.24 20.39

Table 2: Machine translation performance by genre
(true genre, not the genre predicted by our classifier).
The “Google LM” column indicates whether or not the
Google language model was incorporated into the de-
coder. BLEU scores were computed with the script
mteval-v11b.pl available from NIST.

uncased
Set Google LM BLEU[%] BLEU[%]

MT05 no 32.90 35.01
MT05 yes 32.92 34.96
MT08 no 24.63 26.30
MT08 yes 25.47 27.23

Table 3: Test set machine translation performance.

4 Results

Results by genre for the tuning set (MT06), develop-
ment test set (MT05), and evaluation test set (MT08)
are displayed in Table 2. Overall test set perfor-
mance is displayed in Table 3. As mentioned previ-
ously, we ran MERT on MT06 to generate two sets
of weights for each genre, one with the Google LM
and one without. Models tuned on web data tend to
favor the Google LM more than for newswire data,
as shown in Table 4. We then relied on our text cate-
gorizer to classify each document of MT06 as either
‘newswire’ or ‘web’, and then used MERT parame-
ters tuned for the predicted genre. Text categoriza-
tion performance is shown in Table 5.

We can see from Table 2 that the Google LM pro-
vides a significant improvement on web data (0.93
and 0.86 BLEU points on MT06 and MT08, re-
spectively). While the Google LM did not pro-
vide any significant improvement on the newswire
sections of MT05 and MT06, we nevertheless de-
cided to incorporate this language model into our
newswire system. We hypothesized that one reason
the Google LM did little to improve the Gigaword
LM on newswire was because documents of Giga-
word used for training are close to the MT05 and
MT06 test periods (some training documents were

Feature name newswire web
Pml(f |e) .0333 .0060
Pml(e| f) .0256 .0727
Plex(f |e) .0343 .0818
Plex(e| f) .0275 .0169
primary LM .0641 .0568
Google LM .0156 .0289
linear re-ordering .0192 .0556
forward monotone .0679 .0834
forward swap .0773 −.0081
forward discontinuous .0942 .0794
backward monotone .1004 .0416
backward swap .0299 .0996
backward discontinuous .1005 .0390
word penalty −.2083 −.2496
phrase penalty .1018 .0808

Table 4: MERT parameters for newswire and web genres.

MT06 newswire (true) web (true)
newswire (predicted) 51 1

web (predicted) 1 11
MT08 newswire (true) web (true)

newswire (predicted) 67 4
web (predicted) 9 29

Table 5: Text categorization confusion matrices. Classifi-
cation accuracy is 96.9% on MT06, and 88.1% on MT08.

released just one month prior to or after the two test
periods), and that the situation would be different on
true test data (MT08). This decision turned out to be
good, since MERT parameters with the Google LM
(primary submission) outperform MERT parameters
without Google LM by 0.84 BLEU point.

Acknowledgements

We thank our collaborators at IBM Research, in
particular Niyu Ge, for pre-processing the parallel
data used in this work. We thank the developers
of Moses, and in particular Philip Koehn, for their
generosity in making Moses open source and hence
enabling much MT research. This paper is based
on work funded in part by the Defense Advanced
Research Projects Agency through IBM. The con-
tent does not necessarily reflect the views of the U.S.
Government, and no official endorsement should be
inferred.

References
Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer.

1983. A maximum likelihood approach to continuous
speech recognition. IEEE Trans. Pattern Analysis and
Machine Intelligence, 5(2):179–190.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation. Comput. Linguist., 19(2):263–311.

Stanley F. Chen and Joshua Goodman. 1996. An empiri-
cal study of smoothing techniques for language model-
ing. In Proceedings of the Thirty-Fourth Annual Meet-
ing of the Association for Computational Linguistics,
pages 310–318.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Se-
ries B (Methodological), 39(1):1–38.

Jenny Rose Finkel, Trond Grenager, and Christopher D.
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In ACL.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In NAACL
’03: Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology.
Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch Mayne,
Christopher Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine
translation. In Annual Meeting of the Association
for Computation Linguistics (ACL), Demonstration
Session.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc.
18th International Conf. on Machine Learning.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. tRuEcasIng. In Proceed-
ings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 152–159.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4):417–449.

Franz Josef Och. 2002. Statistical Machine Transla-
tion: From Single-Word Models to Alignment Tem-
plates. Ph.D. thesis, RWTH Aachen.

Franz Josef Och. 2003. Minimum error rate training for
statistical machine translation. In ACL 2003: Proc. of
the 41st Annual Meeting of the Association for Com-
putational Linguistics.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detection
using conditional random fields. In Proceedings of
Coling 2004.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. In Proc. Intl. Conf. on Spoken Lan-
guage Processing (ICSLP–2002).

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of the 16th conference on Com-
putational linguistics, pages 836–841.

