
Stohasti Speeh Understandingfor Human-Computer DialogueDan Bohu�s� Marian BoldeaShool of Computer Siene Computer Siene DepartmentCarnegie Mellon University Politehnia University of Timi�soaraPittsburgh, PA 15213, USA Blvd. Pârvan 2, Timi�soara, Romaniadbohus+�s.mu.edu boldea�s.utt.roAbstratSpoken language dialogue systems are an important step on the way tothe ideal human-omputer interfae, and the semanti analysis of spontaneousspeeh plays a fundamental role in any suh system. This artile presents thedevelopment of a semanti analyzer for unonstrained speeh, independent ofthe appliation domain and the language spoken. A ase grammar formalismis used for knowledge representation, and the parsing is based on a hiddenMarkov model trained from annotated dialogue orpora. After desribing thearhiteture of the analyzer, together with details of its omponents, a series ofexperiments towards integrating it in a Romanian dialogue system for lassestimetable information retrieval are presented. Evaluations arried out duringthese experiments have shown performane �gures lose to the best previouslyreported in the literature.1 IntrodutionAlong the development of omputing systems, the human-omputer interfaes havealso ome a long way, evolving from one paradigm to another. On the road towardsan ideal multi-modal interfae, perfetly adapted to the human ommuniation style,the interative spoken dialogue systems represent an important step.One of the important problems to be solved by suh systems, besides speehreognition and synthesis, is that of understanding the meaning behind the users'pronuniations, based on whih their essential funtion { that of dialogue { an beperformed. Traditionally, the semanti analysis of human languages [1℄ dealt withtheir written form, and used quite rigid mehanisms, unable to handle spontaneousspeeh phenomena (false starts, restarts, �lled pauses, hesitations, stutters, repeats,interjetions, et.). Various tehniques have been proposed and tried to solve or�Work done while at Politehnia University of Timi�soara.



at least alleviate this problem. An early example is the MIT Tina parser [2℄, inwhih ideas from ontext free grammars, augmented transition networks, and lexialfuntional grammars were ombined with probabilities automatially assigned to arsbased on training sentenes. Another example is the PHOENIX parser [3℄, developedat Carnegie Mellon University, in whih small phrases were parsed and used to �llslots in semanti frames, with no onern for an overall sentene parse. More reently,other solutions have been proposed and tried [4, 5, 6, 7, 8, 9℄.This artile desribes the approah to the problem of speeh understanding takenas part of a larger e�ort [10, 11, 12, 13, 14℄ aimed at building a Romanian spokenlanguage dialogue system [15℄. After a brief overview of spoken dialogue systems(Setion 2) and a short disussion of some problems spei� to the semanti analysisof spoken language (Setion 3), we will present a domain and language independentsemanti analyzer. The analyzer uses ase frames for knowledge representation anda hidden Markov model as a semanti learning and parsing mehanism (Setion 4).The experiments performed and the results obtained during the �rst steps towardsits integration in a Romanian dialogue system are detailed in Setion 5. Conlusionsdrawn from the work so far, together with some plans for the future, end the artile.2 Spoken dialogue systemsAt this moment, due to limitations in the subjaent tehnologies, spoken languagedialogue systems are limited to ertain appliation domains, most often informationretrieval or/and simple ooperative problem solving. But regardless of the appliationdomain or language, the issues that have to be addressed are mainly the same. Thishas generally led to modular designs, and a generi struture for an informationretrieval spoken dialogue system an be identi�ed (Figure 1).
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Semanti Analyzer { generates a formalized meaning representation of the textreeived from the Speeh Reognizer (the main objet of this artile).Dialogue Manager { lies at the ore of the system, ontrolling the interation withthe user, and oordinating the other omponents.Response Generator { produes the appropriate system replies, using informationfrom an appliation domain knowledge database.Speeh Synthesizer { onstruts the aousti form of the system replies produedby the Response Generator.3 Spoken Language Semanti AnalysisSemanti analysis plays an essential role in any spoken dialogue system: it extratsand partly disambiguates the information ontained in the text generated by thespeeh reognizer, produing a formalized representation of this information, �t forfurther proessing by the dialogue management algorithms.Two deisions have to be made when designing a semanti analyzer: the �rstonerns the formalism employed to represent the meaning of user utteranes; theseond regards the parsing tehnique used to extrat this meaning from the text.3.1 Representation FormalismThe links between syntax and semantis have led to the development of semantianalysis tehniques based on a syntati analysis. Although suh methods were usedwith relative suess for the semanti analysis of written natural language [1℄, theirextension to unonstrained speeh raises some problems, generated mainly by therigidity of the various formalisms on whih they are based, and whih fail to aountfor ill-formed utteranes or spontaneous speeh phenomena: false starts, restarts,disuenies, �lled pauses, hesitations, et. Most of these formalisms are therefore notappropriate hoies for semanti analysis in spoken dialogue systems.Muh more appropriate for meaning extration and representation in this domain,as already demonstrated [3, 7, 9℄, is a ase grammar formalism. It operates aroundthe entral notion of ase frame, whih onsists of a �xed onept, identifying a aseframe, and a number of optional ases (slots) whih ontain information representingthe knowledge available in relation with that onept.Figure 2 illustrates the use of a ase frame to represent the meaning of a userquestion from a hypothetial onversation with a dialogue system for informationretrieval, operating in the lasses timetable domain. The onept is represented inangular parentheses (<when>) on the �rst line, and the ases (slots) and their valueson subsequent separate lines; missing ase values are represented as \-".Another essential entity in a ase grammar formalism is the ase marker. This issimply a word or phrase whih onstrains the possible ase values used to instantiatethe assoiated ase in a frame (e.g., in Figure 2 the word professor is a ase marker for



when does professor Smith teah Algebra<when>year = -group = -subgroup = -subjet = "Algebra"faulty = "Smith"Figure 2: A sample utterane and its ase frame representation (puntuationand apitalization an not be generated by the speeh reognizer unless expliitlyverbalized and/or ontained in the reognition lexion).the faulty ase, indiating the loation of the orresponding ase value in the text).The ase markers impose therefore limitations upon the strutures allowed by a asegrammar formalism, modeling to some extent the syntax of the language. And sinethey indiate the loation of meaningful information, they also play a fundamentalrole in parsing and information extration.(er) what professor holds the AI lab with (er) the seond group<who><identifiation>group = 2... (uninstantiated ases and/or subframes)<subjet-speifiation>laboratory = "Artifiial Intelligene"... (uninstantiated ases and/or subframes)Figure 3: Another utterane and the resulting ase frame system. The (er)sdenote �lled pauses as examples of spontaneous speeh phenomena; other suhphenomena are false starts, restarts, disuenies, hesitations, et.Case frames an be linked together, forming a frame system. This inreases theoniseness and expressive power of the ase frame representation. Figure 3 gives anexample of an instantiation of suh a frame system, used in this ase to represent themeaning of a slightly more omplex, atual user question. The onept in the mainframe (<who>) indiates that the user is trying to identify a faulty member, while thesubframes (<identifiation> and <subjet-speifiation>) hold other pieesof information from the question, useful in reasoning about the onept.



3.2 Parsing MethodOne a ase grammar hosen as representation formalism, the next step is to seleta tehnique to derive the struture (parse) of an analyzed utterane in terms of itsentities: onepts (and hene ase frames), ase markers, and ase values. Here, thesolutions fall essentially in two ategories: rule-based or stohasti.The rule-based parsing over a ase grammar formalism implies writing rules whihontrol the identi�ation of onepts and ase values [9℄. Typially, the rules arelexialized, de�ning word families that identify the onepts and the ase markers.Rules must also desribe the links between ase markers and ase values.The stohasti parsing [9℄ uses a probabilisti model to identify onepts andase markers and values, to represent links between ase markers and values, and tosemantially deode users' utteranes. The model is built during a training (learning)phase, in whih its parameters apture the orrespondenes between the input textsand their semanti representations. One the training ompleted, the model is usedin deoding mode to generate the most likely semanti representation of the input.A stohasti semanti analyzer presents several advantages over a rule-based one:�rst, the need for de�ning a set of rules (whih usually is a ostly and error-proneproess) is eliminated, the rules being learned from the training set. Seondly, theexibility and robustness of the system are inreased as the rules are aquired by anautomati learning proess from orpora of real-world data. Moreover, the stohastiapproah allows for the implementation of a generi analyzer, whose ustomizationto a ertain language and appliation domain implies just a model rede�nition andtraining using spei� orpora.During the last deade, stohasti parsers for speeh understanding were realizedusing hidden Markov models [4, 7, 8℄ and neural networks [5, 6℄, with the �rst showingbetter results. Given this and the experiene we already had with them from speehreognition work [11℄, the hidden Markov models were hosen for our analyzer.The hidden Markov models (HMM) are stohasti �nite state automata, in whihboth the transitions between states and the input or output symbols our with ertainprobabilities. Most important for their use in speeh and language proessing is thefat that these probabilities an be learned from appropriate training orpora usingsimple algorithms, and that the parsing of an input sequene of symbols an be donein a simple, time-eÆient manner through the Viterbi deoding algorithm. For moredetails, the reader is referred to the relevant literature [16, 17, 18℄.4 The Stohasti Semanti AnalyzerThe semanti analyzer uses a ase grammar formalism for knowledge representationand a hidden Markov model as a semanti learning and deoding mehanism, andits struture is presented in Figure 4. It was implemented as a C++ lass library,already used to build a set of tools for HMM, orpora, and ditionary manipulation,and is easily integrable into a dialogue system. Next, we will present in more detaileah of the omponent modules.
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Figure 4: Semanti analyzer arhiteture and utterane proessing example. Forthe utterane in Figure 3, various representations are illustrated: speeh reognizeroutput (SRO), normalized text (NOR), semanti parse (PRS), and ase frame (FRM).Only the most likely hypothesis output by the speeh reognizer is onsidered.The parse onsists of semanti labels for onepts { <onept> , ase markers {(m:ase) , and ase values { (v:ase) .4.1 Text PreproessingThe role of the text preproessor is to transform the speeh reognizer output into anappropriate sequene of input symbols for the hidden Markov model (for more detailsabout this, see Setion 4.2). The transformation is implemented in several steps, andit essentially aomplishes a voabulary redution that does not signi�antly a�etthe semanti ontent of the utterane.The preproessing steps, exempli�ed with referene to Figure 4, are:� Non-lexial aousti event redution: eliminates various aousti eventsthat might have been aptured by the speeh reognizer, but whih do not arryany linguisti information: �lled pauses, oughs, noises, et. { in Figure 4, thetwo �lled pauses transribed as \(er)".� Number normalization: transribes the numbers from the speeh reognizeroutput into the orrespondent Arabi form (e.g. \seond" beomes "2").



� Inetion redution: replaes various ineted word forms with their baseforms { espeially e�etive for highly inetional languages, suh as Romanian.� Expression uni�ation: lusters into unitary expressions groups of wordsthat onstitute semanti units (e.g. \what professor" beomes \who").� Alias substitution: replaes various words and word forms with standardequivalents. This is used mainly to aount for synonyms and abbreviations(\AI" turns into "Arti�ial Intelligene", \lab" { into \laboratory").� Category uni�ation: groups words or expressions into wider ategories (mostoften database reord �elds { e.g. \Arti�ial Intelligene", being a value of theSUBJECT �eld, is transformed into \[SUBJECT:\Arti�ial Intelligene"℄" { orother general ategories, e.g. \2" beomes \[NR:"2"℄").� Out-of-domain word elimination: �lters out words whih are onsiderednot to be relevant for the appliation domain (\holds", \the", \with"), on thebasis of a domain voabulary built during the training phase.These steps were implemented using rather simple, deterministi approahes likereplaement lists and voabulary heks. More sophistiated statistial (e.g. hiddenMarkov models) and deterministi (e.g. �nite state transduers) tehniques exist forsolving some of these problems [18, 19℄, but given the limited domain of our dialoguesystem, we found the simple approahes mentioned above to be suÆient for the timebeing, and left the more elaborate methods for future work.4.2 Semanti DeodingTo understand how semanti analysis is performed based on hidden Markov models,onsider the example in Figure 4: the normalized form of the utterane inludes �veunits (who, [SUBJECT: "Arti�ial Intelligene"℄, laboratory, [NR: "2"℄, group), eahwith a orrespondent semanti label in the parse.
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Assuming that a trained model M is available, the Viterbi algorithm [20℄ an beemployed to determine the sequene S of states (semanti labels) whih maximizesthe probability P (OjS,M), and whih (in the statistial sense) is the most likely toorrespond to the input sequene O.The use of an HMM as a stohasti learning and parsing mehanism is justi�edby the optional presene of ases in ase frames, and the fat that it is not alwayspossible to know a priory the relations between ase markers and values, or whihsemanti label a normalized text unit should be mapped to. Eah normalized textunit is assumed to orrespond to a single semanti label, but the identity of thatlabel an be highly ontext-dependent. For example, in Figure 6, the [NR:"2"℄ and[SUBJECT:"Arti�ial Intelligene"℄ normalized text units, also present in the previousexample utterane, are mapped this time to other semanti labels.SRO: when does the seond year have the AI ourseNOR: when [NR:"2"℄ year [SUBJECT:"Artifiial Intelligene"℄ oursePRS: <when> (v:year) (m:year) (v:ourse) (m:ourse)Figure 6: Another sample utterane transription, together with its normalizedform and semanti parse. Although some normalized text units are the same as inthe previous example, their semanti labels have hanged.To learn the ase grammar for a ertain appliation, an HMM is trained from aorpus of spei� normalized and semantially labeled user utteranes. The modelsize is determined by the number of semanti labels in the ase grammar (number ofstates) and the dimension of the normalized text voabulary (number of observationsymbols1). Maximum likelihood estimates (MLE) of the HMM parameters (initialstate, state transition, and observation symbol probabilities) are then omputed asrelative frequenies in the training orpus.The downside of the MLE method is that it does not reliably estimate probabilitiesof rare but nevertheless possible events: it is likely that some valid semanti labelsequenes will not appear in the training orpus (given its limited size), and theorresponding initial state or state transition probabilities will be estimated to zero.Furthermore, the probability estimates for events whih our in the orpus a verysmall number of times will be biased up. This is a well studied problem in statistiallanguage modeling, and a number of di�erent methods exist for dealing with it [18℄.In our system, we employed the Turing-Good smoothing [21, 22, 18℄. This replaesthe maximum likelihood estimates of unreliable parameters (probabilities of initialstates and state transitions that our less than a ertain number of times in thetraining orpus) with their Turing-Good disounted estimates. The probability massreleased in this proess is then uniformly redistributed among the unseen events, andthe result is an ergodi hidden Markov model.1Reduing the normalized text voabulary, the preproessing redues therefore the HMM size.



4.3 Frame GenerationThe last module in the semanti analysis hain is the frame builder. It produesthe atual ase frame representation of the input utterane, based on the normalizedtext and the sequene of semanti labels reeived from the semanti deoder. Thealgorithm employed is relatively simple: the onept labels from the parse identifythe frames to be instantiated, and the ase values are used to �ll the slots.Given its stohasti nature, the semanti deoding may generate a parse withno onept label. In this ase, a frame is built after the deoding is repeated usingsupplementary information, reeived from the dialoguemanager, about the most likelyonepts (ase frames) expeted from the user at that point in the dialogue.5 Experiments and ResultsThis setion desribes the �rst steps towards integrating the semanti analyzer into aspoken dialogue system for lasses timetable information retrieval, and illustrates thedevelopment of the resoures needed to ustomize the generi analyzer for a partiularappliation. Intermediate and �nal performane �gures are also presented.First, a preliminary appliation domain analysis was performed. The onepts thatthe system operates with were identi�ed: subjets, professors, lasses, lassrooms,student identi�ation information (speialization, year, group, subgroup), and timeinformation (days, time intervals, and time spei�ers). The intended dialogue systemapabilities and limits were also learly spei�ed (for more details, see [23℄).The dialogue orpora used in these experiments were olleted using a Wizardof Oz environment [14℄. To ensure a minimal domain overage and to allow at thesame time for spontaneous user utteranes, 42 subjets { mainly omputer sieneundergraduate students and a few faulty members { sustained both senario-drivenand free dialogues. Three training orpora were olleted, ontaining 182 dialogues(130 senario-based and 52 free). From the 1088 user utteranes in these orpora, 37out-of-domain utteranes were eliminated, so 1051 utteranes with a lexion of 400words were atually used. A test orpus of 45 dialogues (283 utteranes) was alsoolleted, and all user utteranes were manually transribed.The resoures needed to ustomize the analyzer for a spei� appliation are thepreproessor ontrol �les (one for eah preproessing stage), the HMM, and the framesystem spei�ation. In these experiments, they were developed in three suessivestages, using the three training orpora in a bootstrap proess.In the �rst stage, the 352 utteranes in the �rst training orpus were manuallypreproessed and semantially labeled, and an initial set of preproessor ontrol �leswas developed. Eight ategories were identi�ed: 3 generi { [DAY RELATIVE℄,[TIME OF DAY℄, and [NR℄ { and 5 orresponding to �elds in the lasses timetabledatabase { [SUBJECT℄, [DAY℄, [GROUP℄, [PROFESSOR℄, and [SPECIALTY℄.A lexion of about 230 words was extrated from the orpus, and replaement listswere reated. Next, ase frames and semanti labels were identi�ed, and a �rst versionof the frame system was developed. It ontained 12 frames and subframes: <yes>,<no>, <identifiation>, <when>, <who>, <time-spe>, <subjet-spe>,



<what-subjet>, <what-ourse>, <what-laboratory>, <what-seminar> and<what-projet>. Using the utteranes in the manually labeled orpus, a �rst HMMwith 40 states and 46 observation symbols was trained through maximum likelihoodestimation. All these resoures de�ned an initial analyzer version named MLE-1.In the next stage, this �rst analyzer version was used to automatially proess theseond training orpus (369 utteranes). On this oasion, eah analyzer module andthe analyzer as a whole were evaluated (Table 1). Errors an our in eah of the threeanalysis stages: preproessing, deoding, and frame building. Moreover, it is possiblethat some errors from one stage be orreted by the following stage(s). The analysiserrors were manually orreted, performane evaluated, and the preproessor ontrol�les and the frame system spei�ation re�ned to math the newly observed data: anew ategory { [LOCATION℄ { and a new onept { <where> { were added to handlenew types of questions not met in the �rst training orpus. The seond HMM versiongrew aordingly to 46 states and 56 input symbols. The �rst two training orpora(721 utteranes) were used together to ompute the maximum likelihood estimates ofthe new HMM parameters, and thus the MLE-2 analyzer version was obtained.Table 1: Semanti Analyzer Performane Evaluations.Version Train Test Preproessor Deoder Frame Globaluttr. uttr. errors errors errors errorsMLE-1 352 369 35 9.5% 44 11.92% 1 0.3% 80 21.68%MLE-2 721 330 0 0.0% 46 13.93% 0 0% 45 13.63%MLE-3 1051 283 0 0.0% 26 9.18% 0 0% 23 8.12%Final 1051 283 0 0.0% 19 6.71% 0 0% 18 6.36%Similarly, the third (and last) stage started with an automati proessing of thethird training orpus (330 utteranes) using the seond analyzer version, followed bya manual errors analysis and orretion, and performane evaluation (Table 1). Asno more preproessing or frame building errors ourred, no further ontrol �les orframe system re�nements were neessary.Using all three training orpora, new maximum likelihood estimates of the HMMparameters were omputed, resulting in the MLE-3 version. Turing-Good disountingwas applied to the initial state and state transition probabilities, and a smoothedversion of the MLE-3 model, deemed the Final one, was obtained. These two versionswere evaluated on the test orpus (283 utteranes). The errors were again manuallyanalyzed and reti�ed, and the performane was assessed, as summarized in Table 1.Examining the performane �gures, a ouple of remarks an be made. A �rstinteresting result was that the last three analyzer versions were able to repair deodingerrors in the frame building phase. There were ases when, although the deoding wasnot totally aurate, the frame builder onstruted the orret frame orrespondingto the user input. In our opinion, this demonstrates the robustness of the hosenknowledge representation formalism, due to its exibility.



A seond important observation is that the Turing-Good smoothing brings a 21.7%relative redution in error rate (from 8.12% to 6.36%). This redution is even largerfor the deoding errors (26.9% relative redution, from 9.18% to 6.71%), of whihsome are repaired in the frame building proess.Last but not least, the almost onstant fall of error rates2 gives us hope thatthe performane ould be improved even further by training with new data as thesebeome available. At this point, another advantage of the HMM approah showsup: the model an be trained with unlabeled data using an expetation-maximizationalgorithm { the Baum-Welh proedure [16, 17, 18℄. And although this proedure issuseptible to loal maxima, the model developed up to this point should be a goodinitialization point for it, so that further improvements in auray an be expetedwithout the expense of manually labeling more data.6 ConlusionsThis artile desribed the development of a stohasti semanti analyzer for a spokendialogue system. Although diret omparisons with semanti analyzers presentedpreviously in the literature are not possible due to di�erenes of priniples, languages,appliation domains, and training and test orpora, the �nal 6.36% global error rateis quite lose to the 5.8% obtained by the AT&T CHRONUS system [24℄ in similaronditions (i.e. on manual transriptions), allegedly the best ever, and indiates arobust analyzer, whih an be suessfully integrated into a dialogue system.However, the main advantage of this semanti analyzer lies in its generality and isonferred by the stohasti approah used for parsing. The analyzer is both languageand domain independent, and ustomizing it for a spei� appliation domain an bedone relatively easy, as illustrated in Setion 5 (for more details, see [23℄).Future work will follow two diretions: �rst, we will seek to improve analyzer'sperformane both at the general level (through better preproessing, training, anddeoding algorithms) and in the spei�ed appliation domain (by further trainingwith more data). The seond and �nal goal is to integrate the developed semantianalyzer into a omplete operational information retrieval spoken dialogue system.7 AknowledgementsWe thank Cosmin Munteanu for his help with the Wizard-of-Oz environment andexperiments, without whih this work would have not been possible, and the twoanonymous reviewers whose helpful and onstrutive omments ontributed to the�nal form of this artile.2The only exeption was an inrease in the deoding error rate, from 11.92% to 13.93%, betweenthe �rst and the seond version, due to the new, larger HMM.
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