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ABSTRACT
Modern DRAM systems rely on memory controllers that
employ out-of-order scheduling to maximize row access lo-
cality and bank-level parallelism, which in turn maximizes
DRAM bandwidth. This is especially important in graphics
processing unit (GPU) architectures, where the large quan-
tity of parallelism places a heavy demand on the memory
system. The logic needed for out-of-order scheduling can
be expensive in terms of area, especially when compared to
an in-order scheduling approach. In this paper, we propose
a complexity-effective solution to DRAM request schedul-
ing which recovers most of the performance loss incurred by
a naive in-order first-in first-out (FIFO) DRAM scheduler
compared to an aggressive out-of-order DRAM scheduler.
We observe that the memory request stream from individual
GPU“shader cores” tends to have sufficient row access local-
ity to maximize DRAM efficiency in most applications with-
out significant reordering. However, the interconnection net-
work across which memory requests are sent from the shader
cores to the DRAM controller tends to finely interleave the
numerous memory request streams in a way that destroys
the row access locality of the resultant stream seen at the
DRAM controller. To address this, we employ an intercon-
nection network arbitration scheme that preserves the row
access locality of individual memory request streams and,
in doing so, achieves DRAM efficiency and system perfor-
mance close to that achievable by using out-of-order mem-
ory request scheduling while doing so with a simpler de-
sign. We evaluate our interconnection network arbitration
scheme using crossbar, mesh, and ring networks for a base-
line architecture of 8 memory channels, each controlled by
its own DRAM controller and 28 shader cores (224 ALUs),
supporting up to 1,792 in-flight memory requests. Our re-
sults show that our interconnect arbitration scheme coupled
with a banked FIFO in-order scheduler obtains up to 91%
of the performance obtainable with an out-of-order memory
scheduler for a crossbar network with eight-entry DRAM
controller queues.
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1. INTRODUCTION
In contemporary many-core compute accelerator architec-

tures, such as today’s graphics processing units (GPUs), the
DRAM system is shared among many threads and/or cores,
each of which generates a stream of independent memory
requests. In such a shared memory system, multiple mem-
ory access streams interleave and interact in a way that fre-
quently destroys the inherent row access locality present in
each individual memory access stream, thereby reducing the
efficiency at which DRAM can transfer data across its data
bus. Consequently, overall system throughput can suffer.

DRAM efficiency, which we define as the percentage of
time that a DRAM chip spends transferring data over its
data pins divided by the time when there are memory re-
quests pending, has a direct correlation with the achievable
off-chip bandwidth, so maximizing the efficiency is crucial
to obtain the full off-chip bandwidth throughput. In order
to maximize DRAM efficiency, a variety of memory con-
trollers have been designed for superscalar and multi-core
processors, all based around the principle of out-of-order
scheduling, where the memory controller will search through
a window of pending DRAM requests to make a schedul-
ing decision that will maximize the row access locality and
bank-level parallelism [18, 13, 17, 11, 12]. Alternatively, an
in-order scheduling memory controller will schedule mem-
ory requests in the order in which it receives them from
either the processor or the interconnection network if there
are multiple processors. Only applications that already have
memory access patterns exhibiting high spatial locality will
perform well with an in-order scheduler. Recently proposed
techniques for effective DRAM scheduling [13, 17, 11, 12]
are extensions of First-Ready First-Come First-Serve (FR-
FCFS) [18], an out-of-order memory scheduling technique
that exploits row access locality among multiple pending
requests buffered waiting to be serviced in the memory con-
troller. This is primarily done to minimize the total number
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Figure 1: Row access locality versus number of shader

cores in a crossbar network
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Figure 2: IPC when using FR-FCFS DRAM scheduler

vs FIFO scheduler (HM = harmonic mean)

of row buffer switches required by DRAM during the run-
time of an application. Each time a DRAM bank switches
rows, it must pay a precharge and activate overhead during
which time it is unavailable to service pending requests, and
thus unable to immediately do any useful work. Poor row ac-
cess locality results in frequent switching and can drastically
reduce DRAM efficiency resulting in a loss of performance.

Modern graphic processing unit (GPU) architectures are
now capable of running certain highly parallel general pur-
pose applications (GPGPU) [15, 21, 1]. These GPUs present
a different challenge for effective DRAM access since modern
GPU architectures support at least an order of magnitude
more concurrent threads than CPUs. The NVIDIA GTX
285 has 30“Streaming Multiprocessors”(which we refer to as
shader cores), each capable of supporting 1024 active threads
for a total of 30720 threads [15]. Any technique for DRAM
scheduling must effectively handle large numbers of threads.

In this paper, we make the key observation that emerging
highly-parallel non-graphics applications run on these GPU
architectures typically have high DRAM row buffer access
locality memory access patterns at the level of individual
shader cores. However, the interconnection network that
connects the multiple shader cores to the DRAM controllers
serves to interleave the memory request streams from multi-
ple shader cores, destroying their row access locality.

We illustrate this in Figure 1, measuring the row access
locality of the memory request streams from the individual
shader cores before they feed into the interconnection net-
work (Pre-Icnt Row Access Locality) and that of the mem-
ory request streams received at each memory controller af-
ter they come out of the interconnection network (Post-Icnt
Row Access Locality). In this figure, we fix the number of
memory channels to four and increase the number of shader
cores to show that, as the ratio of shader cores to DRAM
controllers on a GPU chip increases with current trends1 ,
the gap between the pre-interconnect and post-interconnect
row access locality clearly becomes wider and wider.

Because of the extent of the row access locality disruption
in GPU architectures, where the number of shader cores

1We predict this to occur in correspondence with ITRS [10]
predicting the number of transistors on a chip to increase at
a faster rate than the chip pin count.

greatly outnumber the number of DRAM controllers, FIFO
in-order DRAM scheduling performs extremely poorly com-
pared to an out-of-order FR-FCFS scheduler. We show this
in Figure 2 for three network topologies, the ring, cross-
bar, and mesh. Across these topologies, the speedup over
a FIFO scheduler when using FR-FCFS is 88.3%, making
FR-FCFS the more attractive option. However, the nature
of out-of-order scheduling is that it is area-intensive, requir-
ing, in the worst case, associative comparison of all requests
in a DRAM controller queue every cycle, therefore requir-
ing a set of comparators for each entry in the queue [8, 19].
Compared to in-order scheduling, which only requires a sim-
ple FIFO queue, the area needed to implement out-of-order
scheduling can be significant.

We emphasize that the 9 applications shown in Figure 2
are only those that we deemed to be memory-limited out of a
total of 26 applications considered. In other words, spending
area to implement out-of-order DRAM scheduling will not
improve roughly two-thirds of these applications, which are
compute-bound. Nevertheless, the memory-limited appli-
cations are not negligible, including important applications
such as weather prediction, DNA sequence alignment, and
raytracing.

In this paper, we propose a complexity-effective solution
for achieving DRAM scheduling comparable to that of out-
of-order schedulers. Our solution leverages the key finding
that, in the GPGPU applications we study, the row access
locality of the memory request streams sent from the shader
cores are much higher before they enter the interconnection
network compared to after they become interleaved inside
the interconnection network and arrive at the DRAM con-
trollers. We find that, by using simple in-order memory
controllers along with a more intelligent arbitration scheme
in the interconnection network routers, we can recover much
of the performance lost when a naive in-order memory con-
troller is used in comparison to an out-of-order scheduler.

This paper makes the following contributions:

• It shows that the row access locality inherent in the
memory request stream from individual shader cores
can be destroyed by the interconnection networks typ-
ically used for connecting shader cores to DRAM con-
trollers. We introduce a novel interconnect arbitration
scheme that preserves this inherent row access local-
ity, thus allowing for a much simpler DRAM controller
design.

• It presents a qualitative and quantitative analysis of
the performance of our interconnect arbitration scheme
and its various heuristics for both mesh and crossbar
networks.

• It also presents a simple solution to deal with the in-
terleaving that can occur due to the interconnection
network router having multiple virtual channels, which
can improve interconnect throughput [7].

The rest of this paper is organized as follows. Section 2
describes the challenge of DRAM access scheduling in many
core accelerator architectures in more detail, to motivate
this work. Section 3 introduces our complexity-effective so-
lution for achieving high DRAM performance in GPU archi-
tectures. Section 4 describes the experimental methodology
and Section 5 presents and analyzes our results. Section 6
reviews related work and Section 7 concludes the paper.
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2. MANY-CORE ACCELERATOR DRAM
ACCESS SCHEDULING CHALLENGES

The scaling of process technology has allowed processor
throughput to increase exponentially. However, the proper-
ties of packaging prevent the pin count from increasing at
the same rate. To alleviate this, chip designers maximize
the percentage of pins on a chip used for transferring data.
Increasing the amount of off-chip memory supported by the
chip will likely require increasing the number of memory
channels. Each additional memory controller requires its
own set of address pins for communicating the requested
memory addresses and control pins for relaying the com-
mands to control the DRAM chips.

One approach to reduce the number of memory channels is
to have the memory controller for each channel control mul-
tiple DRAM chips, thereby amortizing the address and con-
trol pin overhead across multiple DRAM chips [8]. However,
there is a limit to how much of this “chip-level parallelism” is
available. Consider a case where the typical memory request
size is 64 bytes. The CUDA Programming Guide’s chapter
on performance tuning suggests recent NVIDIA GPUs gen-
erate memory requests per half-warp of 16 threads and that
requests from individual threads that access contiguous 32-
bit words can be coalesced into a single 64-byte memory
request [15]. If we assume that a single DRAM chip has a
burst length of 4 and a bus width of 4 bytes (typical of mod-
ern graphics double-data rate (GDDR) memory technology),
then the maximum number of DRAM chips that a memory
controller can potentially control without wasting data pin
bandwidth is four (4 DRAM chips per memory controller ×
4B bus width × 4 burst length = 64B). Furthermore, in-
creasing the number of DRAM chips per memory controller
reduces the number of read/write commands per activated
row for each chip. If the memory access pattern of a particu-
lar application exhibits low row access locality, then DRAM
efficiency can reduce greatly. This occurs when there is a
lack of requests to service to the activated rows of other
banks when one bank is constrained by the DRAM timing
overhead needed to switch rows.

To quantify these effects, Figure 3 shows the DRAM effi-
ciency achieved using FR-FCFS scheduling of uniform ran-
dom memory access patterns with varying degrees of row
access locality measured using a stand-alone DRAM simu-
lator based upon GPGPU-Sim, a publically available mas-
sively multithreaded architectural simulator [3]. Figure 3,
rand1 is an artificially generated uniform random memory
access pattern. Since the row designation of each memory
access is random, the high number of rows per chip (4096
for the particular GDDR3 memory that we simulate [16])
imply that the chance of two back-to-back requests going to
the same row in a particular bank is near-zero, meaning that
a new row must be opened after the servicing of each mem-

ory request. In rand2, we replicate each random memory
access once so that there are always two requests back-to-
back to the same row. Similarly, in rand3, we replicate each
random memory access so that there are always three re-
quests back-to-back to the same row. As can be seen, fewer
DRAM chips per memory controller effectively means more
DRAM read and write commands to the rows of each chip
to transfer the same total amount of data, thus increasing
the DRAM efficiency.

The example above assumes a memory access pattern that
is uniform random. Such a memory access pattern will tend
to generate requests to all banks in a chip, thus maximiz-
ing “bank-level parallelism”. As such, the DRAM efficiency
values presented in the above example represent the near-
maximum efficiencies obtainable for the given row access lo-
cality parameters. On the other hand, non-uniform memory
access patterns may generate (a disproportionate amount
of) requests to only a subset of the banks of a DRAM chip,
which can cause DRAM efficiency to be drastically lower.
For example, consider again the previous example where the
row access locality is two and the number of DRAM chips
per memory controller is two. If all of the requests go to a
single bank, the DRAM efficiency plummets from 80.7% to
23.6%.

In order to maximize DRAM efficiency, modern DRAM
controllers will schedule DRAM requests out of order in an
effort to maximize the row access locality. Without doing
so, the performance of in-order scheduling can be drastically
worse when simple regular request streams (that would or-
dinarily schedule very efficiently in DRAM) from multiple
sources become interleaved. Figure 4 shows a simplified ex-
ample that illustrates this. Consider first a single shader core
interacting with a single DRAM controller (Figure 4(a)).
The request stream of this single shader core consists of two
requests to the opened row, Row A. Assuming that Row A
has already been loaded into the DRAM row-buffer, both
requests can be serviced immediately and no row-switching
latency is incurred. Now consider two shader cores interact-
ing with the same DRAM controller (Figure 4(b)). The first
shader core issues two requests to Row A while the second
shader core issues two requests to Row B. In trying to up-
hold fairness, a conventional interconnection network router
arbiter may use round-robin arbitration, resulting in the two
input request streams becoming finely interleaved when they
pass through the router. In this case, an out-of-order sched-
uler would group together the requests to Row A and ser-
vice them first before switching to Row B and servicing the
remaining requests, thereby only paying the row-switching
latency once. On the other hand, an in-order DRAM sched-
uler would service the requests as it receives them, there-
fore having to pay the row-switching latency three times,
resulting in drastically lower DRAM throughput. If an in-
telligent network router recognized that, in this scenario, it
should transfer all the requests of one shader core first before
transferring the requests of the second shader core, then the
performance obtainable using out-of-order DRAM schedul-
ing could be achieved with a much simpler in-order FIFO
DRAM scheduler.

In this paper, we leverage this key observation to design
an intelligent interconnection network coupled with a sim-
ple DRAM controller that can achieve the performance of a
much more complex DRAM controller.



Core 
A

Req1 
RowA

Req0 
RowA

DRAM ControllerRequest Issue

Req1 RowA
Req0 RowA

DRAM Timing
Req1 
RowA

Req0 
RowA

Re
ce

iv
ed

 O
rd

er

Oldest

Bus:

Time

DR
AM

(a)

Core 
A

Req0 
RowA

Req2 
RowA

Core 
B

Req1 
RowB

Req3 
RowB

DRAM ControllerRequest Issue

Req1 RowB
Req0 RowA

DRAM Timing
Req2 
RowA

Req0 
RowA

Re
ce

iv
ed

 O
rd

er
Oldest

Bus:

Time (FR-FCFS)
Req2 RowA
Req3 RowB Req3 

RowB
Req1 
RowB

Row 
Switch

Req0 
RowA

Time (In-Order)

Req1 
RowB

Row 
SwitchBus: Row 

Switch
Row 

Switch
Req2 
RowA

Req3 
RowB

In
te
rc
on

ne
ct

DR
AM

(b)

Figure 4: Conceptual example showing effect of request interleaving due to interconnect (all requests to a single bank)

3. ROW ACCESS LOCALITY-AWARE
INTERCONNECT ARBITERS

In Section 3.1, we will first quantify the destruction of the
DRAM row locality caused by the interconnect. Section 3.2
details our solution for preserving the row locality of the
memory request streams as they travel through the intercon-
nect by allowing router inputs to hold grant. In Section 3.3,
we describe how having multiple virtual channels can also
destroy row locality and our solution to this problem. In
Section 3.4, we perform an analysis on the complexity of
our proposed interconnection network design coupled with
a in-order DRAM scheduler in comparison with a system
with a conventional interconnect and out-of-order DRAM
scheduling.

3.1 Effect of Interconnect on Row Locality
To determine the effects of memory request stream inter-

leaving due to multiple shader core inputs, we augmented
our simulator, which has the architecture shown in Figure 5,
to measure the pre-interconnect row access locality versus
the post-interconnect row access locality for a set of CUDA
applications.

Figure 6 presents the measured pre-interconnect row ac-
cess locality versus the post-interconnect row access local-
ity (Figure 6(a)) for both mesh and crossbar networks as
well as the calculated ratio (Figure 6(b)). As can be seen,
the row access locality decreases by almost 47% on average
across all network topologies after the interconnect versus
the post-interconnect locality across all applications.

Our configuration for Figure 6 has 28 shader cores and 8
memory channels (one DRAM controller per memory chan-
nel), which corresponds roughly to NVIDIA’s GT200 ar-
chitecture of 30 streaming multiprocessors and 8 memory
channels [4].

3.2 Grant Holding Interconnect Arbitration
One of the fundamental pillars of conventional intercon-

nection networks and their many arbitration policies is the

concept of fairness, such that all input-output combinations
receive equal service [7]. Without some degree of fairness
in arbitration, nodes in the network may experience starva-
tion. One common method of achieving fairness is to per-
form round-robin arbitration so that the most recent node
that gets serviced becomes the lowest-priority in the next ar-
bitration cycle to allow other nodes to get serviced. As seen
in the previous section, such a policy can significantly reduce
the amount of row access locality in the memory request
stream seen by the DRAM controller. With an in-order
memory request scheduler, this can lead to lower DRAM
throughput. We therefore propose an interconnect arbitra-
tion scheme that attempts to preserve the row access local-
ity exhibited by memory request streams from individual
shader cores. To this end, we introduce two simple, alter-
native modifications that can be applied to any arbitration
policy:

“Hold Grant” (HG): If input I was granted output O
in the previous arbitration cycle, then input I again gets the
highest priority to output O in the current cycle.

“Row-Matching Hold Grant” (RMHG): If input I
was granted output O in the previous arbitration cycle, then
input I again gets the highest priority to output O in the
current cycle as long as the requested row matches the pre-
viously requested row match.

With HG, as long as a shader core has a continuous stream
of requests to send to a DRAM controller, the interconnect
will grant it uninterrupted access. RMHG has more con-
straints on when to preserve grant in order be more fair,
but may not perform as well since it will not preserve any
inherent bank-level parallelism found in the memory request
stream, found to be important in reducing average thread
stall times in chip multiprocessors by Mutlu et al [12]. To
maximize the benefit of using our proposed solution, the
network topology and routing algorithm should be such that
there is no path diversity. Common examples are a crossbar
network or a mesh with non-adaptive routing. (We leave
the development of interconnect arbitration schemes that
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Figure 6: Measured row access locality before the in-
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monic Mean

preserve row access locality in network topologies with path
diversity to future work.) This forces requests sent to the
interconnect to leave in the same order. If requests were
otherwise allowed to arrive at the DRAM controllers out of
order, the row access locality in the memory request stream
sent from shader cores may also be disrupted in this way.

In the standard interconnection network router pipeline,
there are two stages where our hold-grant policies can be
enforced: virtual channel allocation, which happens first,
and switch allocation. In our experiments, we enforce our
hold-grant policies during virtual channel allocation. If this
is not done, virtual channel allocation will interleave pack-
ets. In this case, enforcing hold-grant during switch alloca-
tion would be ineffective since the packets arbitrated during
virtual channel allocation will already be interleaved. To
prevent switch allocation from undoing the effects of our
hold-grant policy, we restrict the virtual channel allocation
as described in the next section.

3.3 Interleaving due to Multiple Virtual
Channels

Interconnection networks having multiple virtual chan-
nels can reduce network latency by reducing router pipeline
stalls [7]. In certain network topologies and with certain
routing algorithms, it can also be necessary to prevent dead-
lock.

In the context of memory request stream interleaving,
multiple virtual channels effectively can cause a stream of
memory requests sent from one source to one destination to
arrive out of order. This occurs since a request that enters
a network router gets assigned the first virtual channel that
becomes available “on-the-fly”. (We refer to this as dynamic
virtual channel assignment, or DVCA.) When back-to-back
requests from one source shader core are sent to one desti-
nation DRAM controller, they may get assigned to different
virtual channels, where each virtual channel is essentially a
different path. This is akin to having path diversity, which
was explained in Section 3.2 to be detrimental in preserving
row access locality. With requests taking multiple paths to
the destination, order cannot be enforced.

To handle the case when multiple virtual channels are used
in the interconnect, we propose a static, destination-based
virtual channel assignment (SVCA). While requests from
one input node can still use multiple virtual channels in this
assignment, all requests from any shader core (input node)
to one specific DRAM controller (output destination node)
are always assigned the same virtual channel in each router.
In the case where there are virtual channels V C0 to V Cv−1

for each router and M DRAM controllers, then all requests
to DRAM controller M must use V Cn and only V Cn, where
n = M mod v. Doing so allows for a fair virtual channel
allotment across all input-output combinations.

Interleaving of requests during switch allocation would
still occur, but only between requests to different memory
controllers, which does not destroy row access locality.

We evaluate the performance impact of using SVCA ver-
sus DVCA in Section 5.3 and show that applications obtain
a speedup of up to 17.7% in a crossbar network with four
virtual channels per port when using SVCA over DVCA.

3.4 Complexity Comparison
Since our proposed changes are not only limited to the

DRAM controller circuitry, but also to the interconnection
network, we attempt to define the complexity with a general-
enough method that can be applied to any network topology.
To this end, we quantify the complexity of our design based
on the differences in two metrics, the amount of storage
required in bits, and the number of bit-comparisons.

With FR-FCFS, whenever a new command is issued, ev-
ery request in the DRAM controller queue must be checked
to determine the best candidate for issuing [8, 19]. For a
queue size Q, this translates to Q times the number of row



Table 1: Calculated complexity (HMHG4 = Hash-Matching Hold Grant using 4-bit hashes)

Bits Stored in ICNT Bits Compared in ICNT Bits Compared in DRAM Scheduler Total
FRFCFS 0 0 M*Q*(log2(nR)+log2(nB)) 3584 bits compared
BFIFO+HG C*M C*M 0 224 bits stored
(XBAR) 224 bits compared
BFIFO+HG 20*(C+M) 20*(C+M) 0 720 bits stored
(MESH) 720 bits compared
BFIFO+RMHG C*M + C*M + 0 608 bits stored
(XBAR) log2(nR)*nB*M log2(nR)*M 320 bits compared
BFIFO+RMHG 20*(C+M) + 20*(C+M) + 0 14,544 bits stored
(MESH) (C+M)*log2(nR)*nB*M (C+M)*log2(nR)*5 2880 bits compared
BFIFO+HMHG4 C*M + C*M + 0 320 bits stored
(XBAR) 4*M 4*M 320 bits compared
BFIFO+HMHG4 20*(C+M) + 20*(C+M) + 0 1440 bits stored
(MESH) (C+M)*4*5 (C+M)*4*5 1440 bits compared

bits + the number of bank bits. In the GDDR3 technol-
ogy that we study, there are 4096 rows (nR) and 4 banks
(nB) , which is equal to 12 row bits (log2(nR)) and 2 bank
bits (log2(nB)). For a GPU system with M DRAM con-
trollers, this means a maximum number of bit comparisons
of M ∗ Q ∗ (log2(nR) + log2(nB)) every DRAM command
clock. This number represents an upper bound and can be
much lower in certain scenarios. First, the average occu-
pancy of the DRAM controller queue may be very low, es-
pecially if the application is not memory-intensive. Second,
the DRAM request search may be performed in a two step
process where only requests to available banks are selected
to check for row buffer hits. Available banks include those
that have pending requests and are not in the process of
precharging (closing) a row or activating (opening) a row.

Since a DRAM controller that implements FR-FCFS needs
to perform fully-associative comparison, it does not need to
be banked based on the number of DRAM banks. This al-
lows the controller to maximize its request storage capabil-
ity if, for instance, all requests go to a single bank. For our
complexity-effective solution, we use a banked FIFO queue
with one bank per DRAM bank. Doing so allows us to con-
sider requests to all banks simultaneously, thus promoting
bank-level parallelism. With this configuration, the DRAM
controller considers up to nB requests each cycle, check-
ing whether the row of the request matches the opened row
for each bank to determine whether the DRAM controller
can issue the request immediately or whether it needs to
first open a new row. Furthermore, when requests are first
inserted into the DRAM controller queue, the DRAM con-
troller must check to which of the banks to insert the request,
requiring an additional log2(nB) comparisons. This adds up
to M ∗ (nB ∗ log2(nR) + log2(nB)) bit comparisons summed
across all DRAM controllers.

Our interconnect augmentations to the interconnect, HG
and RMHG, also require additional bit comparisons. In this
paper, we perform our study using parallel iterative match-
ing (PIM) allocation, a simple algorithm easily realizable
in hardware [2], which is important in high-speed intercon-
nects. In PIM allocation, a request matrix of input rows
by output columns is first generated to determine which in-
puts require which outputs. In the context of a crossbar,
the number of inputs is the number of shader cores C and
the number of outputs is the number of DRAM controllers
M . PIM is a type of separable allocator, where arbitration
is done in two stages, which is advantageous where speed
is important [7]. In our study, we perform input-first allo-
cation. Figure 7 shows a simple example of an input-first

>=100 00InputArb >=1000 000OutputArbr00r01r10r11r20r21 g10g00g20g11g01g21>=100 00InputArb>=100 00InputArb >=1000 000OutputArb
Figure 7: Block diagram of a Parallel Iterative Matching

(PIM) separable allocator for 3 inputs and 2 outputs [7].

Each input arbiter (Input Arb) chooses from one of its

input request signals rIO to assert, then each output ar-

biter (Output Arb) asserts one grant signal gIO. (Where

I is the input and O is the output).

allocator with three inputs and two outputs. First, the in-
put arbiters select from a single request per input port. In
other words, each input arbiter chooses to assert up to one
output, depending on whether there are requests from the
corresponding input to the corresponding output. The out-
put of this first stage of input arbiters is then fed to the
output arbiters, which choose from the different requests to
each output. This guarantees that a single input port will
not be sending to multiple output ports and a single output
port will not be receiving from multiple input ports in the
same cycle.

As mentioned earlier, we implement our grant-holding pol-
icy at the virtual channel allocator. If we are using HG, then
we check whether input-output combinations granted in the
previous arbitration cycle are also pending in this cycle. If
so, we force allocation to choose the same input-output com-
binations again. This requires knowing which output was
chosen in the last arbitration cycle for each input arbiter
and, if there is a request to that output again this cycle,
then it is chosen again. To do this, we store one bit for
each input-output combination and set the bits of the com-
binations that were previously granted. We then compare
these bits to the ones in the request matrix and, if there is
a match, we clear the other request bits to the other inputs
for the corresponding output and the other outputs for the
corresponding inputs. This essentially forces the allocation
algorithm to choose the same input-output combination for



the next cycle because no other options are available. For
a crossbar with one router, this totals to C*M bit compar-
isons and additional bits of storage required. In the context
of a mesh, the number of routers is equal to C+M and an
upper bound of nine total input and output ports for a two
dimensional mesh. This is because we do not care about the
output port in a shader core node to itself (since the shader
core cannot sink memory requests) and the input port in a
memory node from itself (since the memory controller can-
not generate memory requests). (Some nodes on the edge or
corners of the mesh will also have fewer ports.) This sums up
to (C+M)*(20) bits compared and stored since each router
will either have 4 inputs and 5 outputs or 5 inputs and 4
outputs for a total of 20 input-output combinations.

An interconnect allocation policy that uses RMHG re-
quires more bit comparisons since, in addition to the bit
comparison and storage overheads incurred using HG, it
must also check that back-to-back requests are indeed to
the same row, thus requiring log2(nR) comparisons for each
entry in the request matrix. Compounding this problem
for the crossbar and, to a much greater extent, the mesh is
that requests sent to the same output may be to ultimately
different destinations, such as to different banks or, in the
case of the mesh, to different chips. One solution to ac-
count for this is to have each router keep track of the rows
of the most recently granted request to the different possible
destinations for each output. Therefore for a single router,
which is the case of the crossbar, this would require a total
of log2(nR)*nB*M additional bits of storage for the inter-
connect and log2(nR)*M bit comparisons. Accordingly, each
router of a mesh would require log2(nR)*nB*M additional
bits of storage and log2(nR)*5 bit comparisons, log2(nR) for
each output. Summed across all routers in a mesh, the total
requirements is (C+M)*log2(nR)*nB*M additional bits of
storage and (C+M)*log2(nR)*5 bit comparisons.

Compared to using HG, a mesh network using RMHG can
incur significant bit-comparison and area overheads, even
more than FR-FCFS. However, it is possible to reduce both
bit comparison and bit storage overheads by matching a hash
of the row instead of finding exact matches and storing fewer
row entries than the maximum required of nB*M. We call
this heuristic Hash-Matching Hold Grant (HMHG). In our
experiments, we match and store only a 4-bit hash of the
row bits for the last granted request for each output for each
router (HMHG4) instead of using RMHG. We found that us-
ing more bits did not improve performance. HMHG4 has an
overhead of (C+M)*4*M bit comparisons and (C+M)*4*5
bits stored for the mesh and 4*M bit comparisons and 4*M
bits stored for the crossbar. Table 1 summarizes our find-
ings. The right-most column shows the calculated complex-
ity for our baseline configuration with 28 shader cores, 8
memory controllers, and each DRAM chip having 4096 rows
and 4 banks.

In the next section, we will describe our experimental
methodology. In Section 5, we will quantify the effects of us-
ing our complexity-effective DRAM controller design in com-
parison to conventional in-order and out-of-order scheduling
memory controllers.

4. METHODOLOGY
To evaluate our design, we used GPGPU-Sim [3], a pub-

licly available cycle-accurate performance simulator of a GPU,
able to run CUDA applications. We implemented our changes

Table 2: Microarchitectural parameters (bolded val-
ues show baseline configuration)

Shader Cores 28
Threads per Shader Core 1024
Interconnection Network Ring, Crossbar, Mesh

Maximum Supported In-flight 64 [22]
Requests per Multiprocessor
Memory Request Size (Bytes) 64
Interconnect Flit Size (Bytes) 16, 64 (for Ring)
Interconnect Virtual Channels 1,2,4
Interconnect Virtual Channel 8

Buffer Size (Packets)
DRAM Chips 16

DRAM Controllers 8
DRAM Chips per Controller 2

DRAM Controller 8,16,32,64
Queue Size

DRAM Controller First-Ready First-Come
Scheduling Policy First-Serve (FR-FCFS),

Naive FIFO, Banked FIFO [18]
GDDR3 Memory Timing tCL=9, tRP =13, tRC=34

tRAS=21, tRCD=12, tRRD=8

Table 3: Benchmarks
Benchmark Label Suite
Fast Walsh Transform fwt CUDA SDK
LIBOR Monte Carlo lib 3rd Party
MUMmerGPU mum 3rd Party
Neural Network Digit Recognition neu 3rd Party
Ray Tracing ray 3rd Party
Reduction red CUDA SDK
Scalar Product sp CUDA SDK
Weather Prediction wp 3rd Party
Nearest Neighbor nn Rodinia

to the interconnection network simulator, booksim (intro-
duced by Dally et al. [7]), that is used in GPGPU-Sim. Our
interconnect configurations, such as router cycle time, net-
work topology, and routing protocols, were chosen based
on findings by Bakhoda [3] that performance was relatively
insensitive to them and, as such, as we did not spend extra-
neous effort in tuning them. We evaluated mesh, crossbar,
and ring network topologies to show that destruction of the
row access locality due to interleaving occurs universally.

Table 2 shows the microarchitectural parameters used in
our study. Using GPGPU-Sim allows us to study the mas-
sively multi-threaded architectures of today’s GPUs, which
stress the DRAM memory system due to the many simul-
taneous memory requests to DRAM that can be in-flight
at any given time. In our configuration, we allow for 64
in-flight requests per shader core, amounting up to 1792 si-
multaneous in-flight memory requests to DRAM. In com-
parison, Prescott only supports eight [5] and Willamette
supports four [9]. We evaluate our design on the 9 differ-
ent applications shown in Table 3. In order to have re-
sults that are more meaningful, we chose our applications
by pruning from a much larger set based on whether or not
they met all three of our selection criteria: First, the total
processor throughput of the application must be less than
75% of the peak IPC for the baseline configuration. Second,
the DRAM utilization, percentage time spent of a memory
channel transferring data over all time, averaged across all
DRAM controllers must be over 20%. Finally, the DRAM ef-
ficiency averaged across all DRAM controllers must be less
than 90%. Following these three criteria ensures that we



study only applications that are memory-sensitive2. We use
3 applications from NVIDIA’s CUDA software development
kit (SDK) [14], 5 applications from the set used by Bakhoda
et. al [3], and one application from the Rodinia benchmark
suite introduced by Che et al [6]. We simulate each applica-
tion to completion.

5. RESULTS
In Section 5.1, we will first show how the interconnect

modifications of our proposed solution as described in Sec-
tion 3.2 performs in comparison to naive FIFO and FR-
FCFS. Trends across different network topologies are similar
so we only present results for the crossbar network in some
places due to space limitations. Section 5.2 provides an in-
depth analysis on how our interconnect modifications effect
the memory request address streams seen at the DRAM con-
trollers. In Section 5.3, we compare static destination-based
virtual channel assignment to dynamic virtual channel as-
signment. In Section 5.4, we perform a sensitivity analysis
of our design across different microarchitectural configura-
tions.

5.1 Complexity Effective DRAM Scheduling
Performance

We begin by presenting in Figure 12 the performance of
an unbanked FIFO DRAM scheduler, a banked FIFO dram
scheduler, and a banked FIFO DRAM scheduler with our
interconnection network modifications relative to an out-
of-order FR-FCFS scheduler for mesh, crossbar, and ring
networks. Since RMHG was found in Section 3.4 to be rela-
tively area intensive, we only show results for the Hold-Grant
(HG) modification and Hash-Matching Hold-Grant modifi-
cation using 4 bit hashes (HMHG4).

We present the per-application IPC normalized to FR-
FCFS for the crossbar network in Figure 8(a). The banked
FIFO controller outperforms the unbanked controller across
the board, indicating that the banked FIFO controller’s bet-
ter proficiency at exploiting bank-level parallelism drasti-
cally outweighs the additional potential queueing capacity
of the unbanked controller. The row access locality preser-
vation in Figure 8(b) is calculated by dividing the post-
interconnect locality of the various configurations by the pre-
interconnect locality for FR-FCFS. Our interconnect mod-
ifications help preserve over 70% of the row access local-
ity while the baseline interconnect (along with FR-FCFS
scheduling) results in only 56.2% preservation.

Figure 9 shows the effect of the HG and HMHG4 intercon-
nect modifications on average memory latency and DRAM
efficiency for the crossbar network. Figure 9(a) shows that
naive scheduling of memory requests, without our intercon-
nect modifications, in a system that supports thousands of
in-flight memory requests can cause the memory latency to
increase dramatically (FIFO). Our HM and HMHG4 is able
to reduce the latency of an in-order, banked DRAM con-
troller (BFIFO) by 33.9% and 35.3% respectively (BFIFO-
HG and BFIFO-HMHG4). Furthermore, Figure 9(b) shows
that both HM and HMHG4 improve the DRAM efficiency
of BFIFO by approximately 15.1%.

2In general, we found that applications that did not match
our criteria were insensitive to out-of-order DRAM schedul-
ing optimizations, which can only make a complexity-
effective memory controller design for this type of architec-
ture more appealing.
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Figure 9: Memory latency and DRAM efficiency (HM

= Harmonic mean, Queue size = 32)

5.2 Row Streak Breakers
In order to gain a better understanding of what causes

the performance gap between our complexity-effective de-
sign and FR-FCFS, we perform an in-depth analysis of the
scheduled memory requests in relation to the DRAM con-
troller queue contents for the banked FIFO scheduler: First,
we define a sequence of row-buffer hits to any single bank
as a single row streak. Whenever a DRAM bank switches
from an old Row X to a new Row Y (e.g. when a row streak
ends), we search backwards through the FIFO queue cor-
responding to this DRAM bank starting from the pending
request to Row Y, looking for any other requests to Row X.
We define these requests that we are looking for as stranded
requests since, in a FR-FCFS scheduler, these stranded re-
quests would also be serviced before the row switches. If
we find a stranded request, we look at the requests between
the stranded request and the pending request to Row Y. In
an ideal interconnection network, these requests, which we
call row streak breakers, would be prioritized to arrive at the
DRAM controller after the stranded request, thus maximiz-



ing row access locality. Furthermore, a FR-FCFS scheduler
would prioritize these row streak breakers lower than the
stranded request.

Figure 10 characterizes the source of the row streak break-
ers for the banked FIFO configuration with and without our
interconnect augmentations. Each time a stranded request
is found using our method described in the previous para-
graph, we increment the counter for each category once if
any requests in the corresponding category are found in the
set of row streak breakers. In this way, for any set of row
streak breakers, more than one category may be credited.
We categorize row streak breakers into three possibilities,
those originating from a different shader core, those from the
same core but from a different cooperative thread array3 ,
or CTA, and those from the same CTA. Row streak breakers
originating from different shader cores dominate the distri-
bution. Furthermore, our interconnect augmentations sig-
nificantly reduce the number of these particular row streak
breakers. Note that the bars in Figure 10 do not add up to
100% because sometimes there are no stranded requests. In
these situations, FR-FCFS would make the same scheduling
decision as our banked FIFO scheduler, oldest-first. In other
words, shorter bars indicate that the performance gap be-
tween the corresponding configuration and FR-FCFS is also
smaller.

In virtually all cases, our interconnect augmentations re-
duce the number of row streak breakers due to different
shader cores to less than 10% of the total row streaks. One
exception is neu, where our interconnect augmentations can
reduce the row streak breakers to no less than 30% of the
total number of row streaks. An in-depth analysis of the re-
quests that comprise row streaks showed that for most appli-
cations, the requests from most row streaks originate from a
single shader core, explaining why an input-based hold-grant
mechanism works so well in this architecture. However, for
neu the requests of any row streak when using the FR-FCFS
scheduling policy were from more than four different shader
cores on average (4.18). In this case, FR-FCFS will be able
to capture row access locality that our interconnection aug-
mentations cannot.

5.3 Static Virtual Channel Assignment
In this section, we compare the performance results of

using static destination-based virtual channel assignment
(SVCA) to more conventional dynamic virtual channel as-
signment (DVCA) in the case when there are multiple vir-
tual channels per router port.

Figure 11 shows the IPC harmonically averaged across all
applications for different virtual channel configurations: one
virtual channel per port (vc1 ), two virtual channels per port
with SVCA (svc2 ), two VCs with DVCA (dvc2 ), four VCs
with SVCA (svc4 ), and four VCs with DVCA (dvc4 ). Here,
we increase the number of virtual channels while keeping
the amount of buffering space per virtual channel constant.
When using our complexity-effective DRAM scheduling so-
lution, BFIFO+HG and BFIFO+HMHG4, performance de-
creases by 21.3% and 21.7% respectively as the number of
virtual channels is increased from one to four while using

3A cooperative thread array (CTA) is a group of threads
run on a single core that have access to a shared memory
and can perform barrier synchronization. One shader core
can potentially run multiple CTAs concurrently if there are
enough on-chip resources [15].
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Figure 12: Harmonic mean IPC across all applications

for different network topologies. (Queue size = 32)

DVCA. Using SVCA (svc4) recovers most of this perfor-
mance loss, improving upon dvc4 by 18.5% and 17.7%. In
general, we find that adding virtual channels does not im-
prove IPC, which matches one of the findings of Bakhoda
et al. [3] that CUDA workloads are generally insensitive to
interconnect latency.

5.4 Sensitivity Analysis
To show the versatility of our interconnect modifications,

we test them across two major microarchitectural parame-
ters: the network topology and the DRAM controller queue
size.

As Figure 12 shows, our interconnect modifications per-
form fairly similarly for two very different network topolo-
gies: a crossbar and a mesh. For these topologies, HMHG4
achieves 86.0% and 84.7% of the performance of FR-FCFS
for memory-bound applications while requiring significantly
less bit comparisons than FR-FCFS. For comparison, we
also present the results for a ring network, which requires a
minimum of two virtual channels for deadlock avoidance [7].
The deadlock avoidance algorithm for the ring imposes re-
strictions on which virtual channels can be used by any
input-output combination to remove cyclic dependencies.
To provide adequate bandwidth, we provision the ring net-
work with a 512-bit wide datapath similar to the one in
Larrabee [20]. While a ring network has the same number of
nodes as a mesh, each router has only three input and output
ports, one to the left, one to the right, and one to the shader
core or DRAM controller that it is connected to. In compar-
ison, each mesh router has 5 input and output ports, so the
complexity as detailed in Section 3.4 of the ring will be 60%
(or 3/5ths) of that of the mesh. As shown, our interconnect
modifications do not work as well for the ring network due
to the interleaving of memory request streams from multi-
ple virtual channels. In-depth analysis showed that the ring
network had more than six times as many row streak break-
ers as the mesh and crossbar networks, thus achieving only
6.3% speedup over a banked FIFO memory controller with
no interconnect modifications. We leave the development of
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an interconnect modification that works better for this case
to future work.

Figure 13 shows the performance of our interconnect mod-
ifications harmonically averaged across all applications in a
crossbar network and with different DRAM controller queue
sizes. For the smallest configuration of DRAM controller
queue size 8, BFIFO+HMHG4 achieves 91% of the IPC of
FR-FCFS. While the performance relative to FR-FCFS de-
creases as the DRAM controller queue size increases, the
complexity increases since the number of comparisons per
cycle scales for FR-FCFS [8, 19] but remains constant for a
banked FIFO controller with our interconnect modifications.

6. RELATED WORK
There exist many DRAM scheduler designs proposed for

multi-core systems [13, 17, 11, 12]. The primary focus of
these designs revolve around the principles of providing fair-
ness or Quality-of-Service (QoS) for different threads and
cores competing for shared off-chip bandwidth [13, 17, 11].
When multiple applications run simultaneously on a sys-
tem, the memory access traffic of one application can cause a
naive DRAM controller to starve out the requests of another.
To the best of our knowledge, this is the first work that ex-
amines the problem of efficient DRAM access scheduling in
a massively multithreaded GPU architecture with tens of
thousands of threads.

Mutlu et al. [12] present a parallelism-aware batching sched-
uler (PAR-BS) that coordinates the servicing of multiple
requests from a single thread, particularly those to differ-
ent banks in a DRAM chip, to reduce the average memory
latency experienced across all threads. We anticipate the
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Figure 14: Average number of unique banks requested

per warp memory operation

design of such a scheduler to support requests from tens of
thousands of threads, which is possible in GPU architec-
tures, to be highly complex and area-intensive. Further-
more, threads stall at the warp-level, such that all threads
in a warp must be ready before the warp can be issued to
the shader core pipeline. We measure the average number
of unique banks to which a warp sends requests, shown in
Figure 14. Five out of the nine applications always send
requests to only a single bank per warp. In our hold-grant
interconnect arbiter, the requests in a warp will be kept to-
gether as they traverse the interconnect and they will all
arrive at the same bank, so batching is already done. In
mum, each warp sends requests to at least three different
memory controllers per warp memory operation (since each
DRAM chip has only 4 banks). We expect PAR-BS to per-
form poorly in this case as well if there is no communication
among the different memory controllers.

There already exist a circuit design to implement grant-
holding for arbiters [7]. In contrast to our usage of such
a circuit to optimize performance, the original proposal is
to hold grant if a flit transmission takes multiple cycles to
perform (which would be required for correct transmission
of a flit).

7. CONCLUSIONS
We introduced a novel, complexity-effective DRAM ac-

cess scheduling solution that achieves system throughput
within up to 91% of that achievable with aggressive out-of-
order scheduling for a set of memory-limited applications.
Our solution relies on modifications to the interconnect that
relays memory requests from shader cores to DRAM con-
trollers. These modifications leverage the key observation



that the DRAM row buffer access locality of the memory
request streams seen at the DRAM controller after they
pass through the interconnect is much worse than that of
the individual memory request streams from the shader core
into the interconnect. Three such modifications are possi-
ble: either holding grant for a router input port as long as
there are pending requests to the same destination (HG),
holding grant for a router input port as long as there are
pending requests to the same destination and the requested
row matches the requested row of the previous arbitrated
request (RMHG), and holding grant for a router input port
as long as there are pending requests to the same destination
and the hash of the requested row matches the hash of the
requested row of the previous arbitrated request (HMHG).
These modifications work to preserve the inherent DRAM
row buffer access locality of memory request streams from
individual shader cores which would otherwise be destroyed
due to the interleaving of memory request streams from mul-
tiple shader cores. In doing so, it allows for a simple in-order
memory scheduler at the DRAM controller to achieve much
higher performance than if the interconnect did not have
such modifications across different network topologies and
microarchitectural configurations.
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