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Abstract. We propose a framework for probabilistic shape clustering based on
kernel-space embeddings derived from spectral signatures. Our root motivation is
to investigate practical yet principled clustering schemes that rely on geometrical
invariants of shapes rather than explicit registration. To that end we revisit the use
of the Laplacian spectrum and introduce a parametric family of reproducing ker-
nels for shapes, extending WESD [12] and shape DNA [20] like metrics. Param-
eters provide control over the relative importance of local and global shape fea-
tures, can be adjusted to emphasize a scale of interest or set to uninformative val-
ues. As a result of kernelization, shapes are embedded in an infinite-dimensional
inner product space. We leverage this structure to formulate shape clustering via
a Bayesian mixture of kernel-space Principal Component Analysers. We derive
simple variational Bayes inference schemes in Hilbert space, addressing tech-
nicalities stemming from the infinite dimensionality. The proposed approach is
validated on tasks of unsupervised clustering of sub-cortical structures, as well as
classification of cardiac left ventricles w.r.t. pathological groups.

1 Introduction

This paper introduces a family of spectral kernels for the purpose of probabilistic anal-
ysis and clustering of shapes. Statistical shape analysis spans a range of applications
in computer vision, medical imaging and computational anatomy: object recognition,
segmentation, detection and modelling of pathologies, etc. Many approaches have been
developed, including landmark based representations and active shape models [4,2,15],
medial representations [11] and Principal Geodesic Analysis [7], deformable registra-
tion and diffeomorphometry [5,26,9]. In many applications, the relevant information
is invariant to the pose of the object and is encoded instead within its intrinsic ge-
ometry. It may then be advantageous to circumvent the challenges of explicit registra-
tion, relying on representations that respect these invariants. Spectral shape descrip-
tors [20,19], built from the spectrum of the Laplace(-Beltrami) operator over the object
surface or volume, have achieved popularity for object retrieval [3], analysis and clas-
sification of anatomical structures [16,8,24], structural or functional inter-subject map-
ping [17,14,21]. In [13,12], Konukoglu et al. introduce a Weighted Spectral Distance
(WESD) on shapes with two appealing properties: a gentle dependency on the finite
spectrum truncation, and a parameter p to emphasize finer or coarser scales. For the
purpose of shape analysis and clustering, it would be useful to define not merely a
metric, but also an inner product structure. This is a prerequisite for many traditional
statistical analysis methods such as Principal Component Analysis (PCA).
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Our first contribution is to derive a parametric family of spectral (reproducing) ker-
nels that effectively provide an inner product structure while preserving the multiscale
aspect of WESD. As a result, shapes are embedded in an infinite dimensional Hilbert
space. Our second contribution is a probabilistic Gaussian mixture model in kernel
space, presented within a variational Bayes framework. The kernel space mixture of
PCA is of interest in its own right and widely applicable. To the authors’ knowledge
it has not been proposed previously [6]. The two contributions are coupled to yield a
straightforward shape clustering algorithm – a mixture of PCA in spectral kernel space.
This approach is validated on tasks of unsupervised and supervised clustering on 69
images from the “Leaf Shapes” database, 240 3D sub-cortical brain structures from the
LPBA40 dataset and 45 3D left ventricles from the Sunnybrook cardiac dataset.

2 Background: Laplace operator, heat-trace & WESD

In [13,12], WESD is derived by analyzing the sensitivity of the heat-trace to the Lapla-
cian spectrum. Let Ω⊂Rd an object (a closed bounded domain) with sufficiently regular
boundary ∂Ω, and define its Laplace operator ∆Ω as

[∆Ωf ](x) ,
d∑
i=1

∂2

∂x2
i

f(x) , ∀x ∈ Ω (1)

for any sufficiently smooth real-valued function f . The Laplacian spectrum is the infi-
nite set 0≤λ1≤· · ·≤λn≤· · · , λn→+∞, of eigenvalues for the Dirichlet problem:{

∆Ωf + λf = 0 in Ω
f = 0 on ∂Ω.

(2)

Denoting by φn the associated L2(Ω)-orthonormal eigenfunctions, let KΩ(t,x,y) ,∑
n≥1 exp{−λnt}φn(x)φn(y) the heat kernel. The heat kernel is the fundamental so-

lution to the heat equation ∂tKΩ(t,x,y) = ∆ΩKΩ(t,x,y) over Ω, withKΩ(0,x,y)≡
δx(y) and Dirichlet boundary conditions. It is at the basis of a variety of point match-
ing techniques in the computer vision and computer graphics literature, as KΩ(t,x,x)
encodes information about the local neighbourhood of x [10]. Similarly the trace of the
heat kernel a.k.a. the heat-trace, ZΩ(t) ,

∫
Ω
KΩ(t,x,x)dx =

∑+∞
n=1 e

−λnt, sum-
marizes information about local and global invariants of the shape [12]. It provides a
convenient link between the intrinsic geometry of the object and the spectrum. For two
shapes Ωλ and Ωξ with respective spectrum λ and ξ, let ∆n

λ,ξ quantify the influence of
the change in the nth eigenmode on the heat-trace:

∆n
λ,ξ ,

∫ +∞

0

|e−λnt − e−ξnt| dt =
|λn − ξn|
λnξn

. (3)

The pseudo-metric WESD is obtained by summing the contributions of all modes:

ρp(Ωλ,Ωξ) ,

[
+∞∑
n=1

(∆n
λ,ξ)

p

]1/p

=

[
+∞∑
n=1

(
|λn − ξn|
λnξn

)p]1/p

. (4)
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Konukoglu et al. show that WESD is well-defined for p > d/2. The key element is due
to Weyl [25,10], who proved that the eigenvalues λ behave asymptotically as λn ∼ Λn
when n→ +∞,

Λn , 4π2

(
n

BdVΩ

)2/d

, (5)

where Bd is the volume of the unit ball in Rd and VΩ the volume of Ω. Furthermore
from Eq. (2), WESD is made invariant to isotropic rescaling by multiplying the spec-
trum by V 2/d

Ω . Although we refer to objects, shapes and their spectrum interchangeably
throughout the article, WESD is a pseudo-metric as objects with different shapes may
share the same spectrum. Last but not least, it is multi-scale: its sensitivity to finer scales
decreases as p becomes higher. While control over the scale is appealling, the interleav-
ing with the parameter p is somewhat inconvenient. Indeed the metric only defines an
inner product structure for p = 2. Because this structure is critical for linear statisti-
cal analysis, WESD is instead typically used in conjunction with non-linear embedding
schemes. We further comment that the choice of measure w.r.t. the time t in the integral
of Eq. (3) is arbitrary. This observation turns out to be key for our analysis: the time t is
crucial in modulating the sensitivity of the heat-trace ZΩ(t) to coarser or finer scales.

3 Shape Spectral Kernels

We now introduce a parametric family of spectral kernels Kα,β(λ, ·). These kernels
can be interpreted as inner products in some infinite dimensional Hilbert space Hα,β
and will constitute the basis for the mixture of kernel PCA model of section 4. The
parameters α, β control the influence of coarser and finer scales on the metric. Let us
introduce the form of the kernels without further delay, postponing details related to its
derivation. For α, β ≤ 0, let

Kα,β(λ, ξ) ,
+∞∑
n=1

1

(β + λn)α
1

(β + ξn)α
. (6)

The kernel definition is subject to matters of convergence of the series, discussed in the
electronic appendix. The series is shown to converge for α > d

4 , while variants of the
kernel can be defined for α > d

4 −
1
2 . Because it is defined from a convergent series,

Kα,β(λ, ξ) can be approximated arbitrarily well from a finite term truncation. It shares
this property with WESD, unlike shape ‘DNA’ [20]. Furthermore, invariance to rescal-
ing of the shape can be obtained as for WESD by normalizing the spectrum by V 2/d

Ω .

Effect of the parameters α, β. For the sake of relating the kernel to WESD and dis-
cussing its behaviour under various pairs of (α, β), let us introduce the corresponding
metric via the polarization identity ρα,β(Ωλ,Ωξ) , [Kα,β(λ,λ) − 2 · Kα,β(λ, ξ) +
Kα,β(ξ, ξ)]1/2. This leads to:

ρα,β(Ωλ,Ωξ) =

[
+∞∑
n=1

(
(β + λn)α − (β + ξn)α

(β + λn)α · (β + ξn)α

)2
]1/2

, (7)
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Fig. 1. A multiscale family of spectrum based metrics. (Left) Example shapes “ke”, “le”, “me”
from the “Leaf Shapes” dataset2. “ke” is rounder, “me” is more elongated, “le” is in-between but
its boundary is jagged. (Right) Effect of α on the distance and angle between each pair. Distances
are normalized w.r.t. the ke/me pair. Larger (resp. smaller) values of α emphasize coarser (finer)
scale features. For instance, the dissimilarity of the pair le/ke relatively to that of the pair le/me
shrinks (from 6× to under 3×) at finer scales as the focus shifts from, say, purely the aspect ratio
to also account for e.g. the smooth/jagged boundary. (Middle) Ratio of Laplacian eigenvalues for
the three pairs. Small eigenvalues relate to global features (e.g. rounder, elongated), thus small
eigenvalues of “ke” are even further away from “le”, “me”.

and may be compared to ρp(Ωλ,Ωξ) of Eq. (4). Firstly, for α = 1, β = 0 and p = 2,
WESD and the spectral kernel metric coincide: ρ2 = ρ1,0. In that sense ρα,0 extends
the “Euclidean” WESD while providing additional parameters to control the weight of
coarser and finer scales. Recall that the larger eigenvalues λn relate to finer local details,
while the first eigenvalues λ1, λ2 . . . relate to global invariants (e.g. volume, boundary
surface). When α increases to large values, global shape features gain overwhelming
importance and, in the limit of α → +∞, only λ1 matters. Inversely, in the limit of
α→0, the nth term of the series (before squaring) behaves as ρn0,0(Ωλ,Ωξ) ∼ |log λn

ξn
|,

which is sensitive only to the relative ratio of eigenvalues, as opposed to the actual
values λn, ξn. In that sense it gives equal weight to all eigenvalues. Most eigenvalues
relate to finer scale features, hence smaller α values emphasize these details.

For λn, ξn � β, the nth series term behaves as |λn−ξn|2, which does not penalize
the eigenvalue magnitude whatsoever. This is reminiscent of the shape DNA [20,24]
metric ρDNA(Ωλ,Ωξ),

∑Nmax
n=1 |λn−ξn|. β acts similarly to Nmax in selecting a range

of relevant eigenvalues for the metric: as it grows, larger eigenvalues are given more
importance. Finally, for α, β → +∞ such that αβ = const. = tα,β , the nth series term
(unsquared) behaves as ρnα,β(Ωλ,Ωξ) ∼ exp{−λntα,β}−exp{−ξntα,β}, that is the nth
term of Zλ(tα,β)−Zξ(tα,β). Hence for large “informative” values of α and β, the ratio
α/β selects a heat diffusion time-scale of interest and β the spread around that value.
Alternatively, somewhat neutral choices of parameters with a balance between coarser
and finer scales are obtained for β small (β= 0 or β'Λ1) and α small (e.g. α≤d/2).
The discussion will be clearer from a closer look at the link between the choice of α, β
and the corresponding choice of time integration.

2Publicly available from http://imageprocessingplace.com. Developed by Vaibhav E. Wagh-
mare, Govt. College of Engineering Aurangabad, 431 005 MS, INDIA.
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Computations in kernel space. Before outlining derivations from the heat trace, let
us note an attractive computational property of the family of spectral kernels. For the
sake of “linear” statistical analysis (e.g., k-means, PCA), weighted sums of kernel rep-
resenters Kα,β(λ, ·) of shapes λ are typically involved. Usually such sums cannot be
explicitely computed, but their projections on a given element Kα,β(ξ, ·) can, since
(Kα,β(λ, ·)|Kα,β(ξ, ·))Hα,β = Kα,β(λ, ξ). This is known as the kernel “trick”. As a
drawback many kernel extensions of widespread linear statistical schemes have a time
complexity tied to the square or cube of the number of observations in the dataset,
instead of the dimensionality of the data.

In the present case it turns out that computations can be done explicitely. Let Φα,β :
λ 7→( · · · (λn+β)−α · · · ) map shapes to the space I2 of l2 sequences. By construction
Kα,β(λ, ξ) = 〈Φα,β(λ)|Φα,β(ξ)〉I2 . Addition, scalar multiplication and inner product
on elementsKα,β(λ, ·) ofHα,β are equivalent to explicit addition, scalar multiplication
and inner product on elements Φα,β(λ) of I2. For instance, given two shapes λ and ξ,
their mean is given by Φα,β(χ), defined by (χn+β)−α, 1

2 (λn+β)−α+ 1
2 (ξn+β)−α.

Any finite N -term truncation of the infinite kernel series is equivalent to an N -term
truncation of the l2 sequence, so that the mean of |D| points {Kα,β(λi, ·)}1≤i≤|D| can
for instance be stored as an N -tuple. Moreover, the eigenmodes of the Gram matrix
[Kα,β(λi,λj)]1≤i,j≤|D| can be obtained from the eigenmodes of the N×N covariance
matrix

∑
i Φα,β(λi)Φα,β(λi)

ᵀ of the truncated Φα,β(λi) tuples. Hence the computa-
tional complexity depends on the truncated dimensionality rather than the dataset size,
whenever advantageous. Truncation error bounds are given in the electronic appendix.

Derivation of the spectral kernels from the heat trace. Similarly to WESD, the pro-
posed kernels are derived by quantifying the influence of the change in the nth eigen-
mode on the heat-trace. However we consider a variety of measures for the integration
w.r.t. time. Specifically let pα,β(t) = βα

Γ (α) exp{−βt}tα−1 the probability density func-
tion of the gamma distribution with positive shape parameter α and rate parameter β
(formally including improper cases, α= 0 or β= 0). We extend Eq. (3) by integrating
w.r.t. pα,β :

∆n
α,β(λ, ξ) ,

∫ +∞

0

|e−λnt − e−ξnt| · pα,β(t)dt , (8)

= βα ·
∣∣∣∣ (β + λn)α − (β + ξn)α

(β + λn)α · (β + ξn)α

∣∣∣∣ , (9)

= βα ·
∣∣∣∣ 1

(β + λn)α
− 1

(β + ξn)α

∣∣∣∣ . (10)

We obtain a (pseudo-)metric on shapes and retrieve Eq. (7) by aggregating the con-
tributions of all modes: ρα,β(Ωλ,Ωξ)

2 ,
∑+∞
n=1(∆n

α,β(λ, ξ))2. Moreover Kα,β(λ, ξ)
defined as in Eq. (6) is positive definite as a kernel over spectra, and defines up to renor-
malization an inner product consistent with the metric ρα,β , i.e. [ρα,β(Ωλ,Ωξ)/β

α]2 =
Kα,β(λ,λ)− 2 ·Kα,β(λ, ξ) +Kα,β(ξ, ξ).
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4 Probabilistic clustering via mixtures of kernel PCA (mkPCA)

We now introduce a probabilistic mixture model of Principal Component Analysers
in kernel space, tackling the inference in a variational Bayesian framework. Let K :
(x, y) ∈ X ×X 7→ K(x, y) = Kx(y) ∈ R a reproducing kernel with (LKf)(x) ,∫
X K(x, y)f(y)dy a compact operator over L2(X ). Denote byH the associated repro-

ducing kernel Hilbert space. For f, g ∈ H, 〈f |g〉L2 ,
∫
X fg or simply 〈f |g〉 is the L2

inner-product, whereas H is endowed with the inner product (f |g)H= 〈f |L−1
K g〉L2

or
simply (f |g). ‖f‖H , (f |f)1/2 or ‖f‖ stands for the norm of H. Finally we use the
bra-ket notation, |f) , L

−1/2
K f and (f | , |f)ᵀ. The main technical hurdles stem from

the infinite dimensionality of the data to model: probability density functions are not
properly defined, and the full normalization constants cannot be computed. In solving
this obstacle, the decomposition of the covariance into isotropic noise and low rank
structure is key.

PCA as a latent linear variable model. Let φk ∈ H, k = 1 · · · r, a finite set of ba-
sis functions. Assume f =

∑
1≤k≤r φkwk +σε is generated by a linear combination of

the φk’s plus some scaled white noise ε∼N (0, LK). Further assume that w∼N (0, I)
where w , (w1 · · ·wr). Then f ∼ N (0, σ2LK + ΦΦᵀ) follows a Gaussian process,
where Φ,(· · · φk · · · ). It is a natural extension of the probabilistic PCA model of [23],
conveniently decomposing the variance as the sum of an isotropic part σ2LK (w.r.t. ‖·‖)
and of a low-rank part ΦΦᵀ. The first term accounts for noise in the data, while the latter
one captures the latent structure. Furthermore |f) =

∑
1≤k≤r |φk)wk + σ|ε) also fol-

lows a Gaussian distributionN (0, σ2I+|Φ)(Φ|). We use this latter form from now on as
it most closely resembles finite dimensional linear algebra. By analogy in the finite case,
the following linear algebra updates hold: (σ2I+ΦΦᵀ)−1 =σ−2[I−Φ(σ2Ir+ΦᵀΦ)−1Φᵀ]
and |σ2I+ΦΦᵀ| = |σ2I|·|Ir+σ−2ΦᵀΦ|. The former Woodbury matrix identity and latter
matrix determinant lemma express, using only readily computable terms, the resulting
change for (resp.) the inverse and determinant under a low rank matrix perturbation.
In particular the determinant conveniently factorizes into a constant term |σ2I|, which
is improper in the infinite dimensional case, and a well-defined term that depends on
Φ. This let us compute normalization constants and other key quantities required for
inference and model comparison, up to a constant.

Probabilistic mixture of kernel PCA. Let D = {xi}|D|i=1 a set of observations
and Kxi the kernel embedding of the ith point. Assume Kxi is drawn from a mix-
ture of M Gaussian components, depending on the state of a categorical variable ci ∈
{1 · · ·M}. Let zim the binary gate variable that is set to 1 if ci = m and 0 other-
wise. Let |Kxi)H |zim=1 ∼ N (µm,Cm) i.i.d. according to a Gaussian process, where
Cm,σ2I+|Φm)(Φm| and σ2 is a fixed parameter. Φm,(· · · φkm · · · ) concatenates an
arbitrary number of (random) basis functions φkm ∈H. Denoting zi, {zim}1≤m≤M ,
the zi’s are i.i.d. following a categorical distribution, i.e. p(zi|π) =

∏
1≤m≤M πzimm ,

where π,{πm}1≤m≤M . A conjugate Dirichlet prior is taken over the mixture propor-
tions, p(π|κ0)∝

∏
1≤m≤M πκ0−1

m . (µm,Φm) is endowed (formally) with the improper
priorN

(
µm
∣∣ |m0), η−1

0 Cm
)
· |Cm|−γ0/2 exp− 1

2 tr(s0C−1
m ). As a constraint for the op-
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timal Φm to have finite rank, γ−1
0 s0 ≤ σ2. The model and its fixed hyperparameters

{η0, γ0, s0, κ0, σ
2} will be shortened asM.

In what follows, bolded quantities stand for the concatenation of their normal font
counterpart across all values of the missing indices. For instance zm , {zim}1≤i≤|D|
and zi , {zim}1≤m≤M . Variational Bayesian updates can be derived in closed form
for the family q(z) , qz(z)qθ(θ) of variational posteriors where the mixture assign-
ment variables zi’s and the model hyperparameters θ= {π,µ,Φ} for all mixtures are
factorized, provided that qθ(θ), qπ(π|µ,Φ)δµ̂(µ|Φ)δΦ̂(Φ) is further restrained to a
Dirac (point mass) distribution over the Φm’s and µm’s. They closely follow their finite
dimensional counterpart as in e.g. [23,1]. For all model variables but Φ,µ, model con-
jugacies can be exploited and variational posteriors have the same functional form as
the corresponding priors. Specifically, qz(z)=

∏|D|
i=1 qzi(zi) and qπ(π|µ,Φ)=qπ(π),

with qzi(zi) =
∏M
m=1 ρ

zim
im categorical and qπ(π) =D(π|κ) Dirichlet, denoting κ,

{κm}Mm=1. In addition µ̂m is the mode of p(µm|Φm,D,M)=N
(
µm
∣∣ |mm), η−1

m Cm
)
,

Φ̂m maximizes the posterior p(Φm |〈zm〉qz ,D,M)∝ |Cm|−γm/2 exp− 1
2 tr{SmC−1

m }.
The updates for all hyperparameters involved are as follows:

κm = |D|π̄m + κ0 (11)
ηm = |D|π̄m + η0 (12)
γm = |D|π̄m + γ0 (13)

mm =
|D|π̄m
ηm

· µ̄m +
η0

ηm
·m0 (14)

Sm = ηmΣ̄+0
m + s0I (15)

|Φm) =
√(

γ−1
m Sm − σ2I

)
+

(16)

ρim ∝ π̃m ·
1

|I + σ−2(Φm|Φm)H|1/2
exp

{
−1

2
χ2
im

}
(17)

where
∑M
m=1 ρim = 1 for all i, (·)+ stands for the projection on the set of positive

semidefinite matrices and:

π̄m ,
1

|D|

|D|∑
i=1

ρim (18)

µ̄m ,
1

|D|π̄m

|D|∑
i=1

ρimKxi (19)

δim , Kxi −mm , δ0m , m0 −mm (20)

Σ̄+0
m ,

1

η0 + |D|π̄m

(
η0 |δ0m)(δ0m|+

|D|∑
i=1

ρim |δim) (δim|
)

(21)

χ2
im ,

1

σ2

(
‖δim‖2 − (δim|Φm)

(
σ2I + (Φm|Φm)

)−1
(Φm|δim)

)
(22)

π̃m , exp 〈log πm〉qπm = exp
{
ψ(κm)− ψ(

∑M
m′=1 κm′)

}
(23)
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The derivation of Eq. (16) closely mirrors the one found in [23]. Fortunately, computa-
tions of infinite dimensional quantities Σ̄+0

m and Sm need not be conducted explicitely,
exploiting generic relationships between the eigenmodes of Gram and scatter matrices.
Indeed more explicitely we have |Φm) = |Um)∆m, up to right multiplication by an
arbitrary rotation, with the following notations. ∆m , diag[(γ−1

m dkm − σ2)1/2] is the
rm×rm diagonal matrix such that dkm is the kth biggest eigenvalue of Sm among those
rm eigenvalues strictly bigger than γmσ2. The kth column of |Um) is the correspond-
ing eigenvector |Um)k of Sm. Remark that Sm can be rewritten as the sum of s0I and
|D|+1 rank one terms of the form |gim)(gim|. The non-zero eigenvalues of Sm are the
same as those of the (|D|+1)×(|D|+1) matrix (G|G) = [ · · · (gim|gjm) · · · ]ij . The
|Um)k = |G) ek are obtained from the eigenvectors ek of the latter matrix. Moreover,
computations in Eqs. (17) and (22) simplify by noting that (Φm|Φm)=∆2

m is diagonal.

High-level overview. The scheme proceeds analogously to the finite dimensional
case. Update Eqs. (11)-(17) can be understood as follows, disregarding terms stem-
ming from priors for simplicity. Each data point i is softly assigned to the mth mix-
ture component with a probability ρim that depends on the mixing proportion πm and
the point likelihood under the mth component model. Then for each component, the
mixing proportion is set to the average of the responsibilities ρim. The mean mm is
updated to the empirical mean, with data points weighted by ρim. Similarly the covari-
ance Cm = σ2I+|Φm)(Φm| is (implicitely) set to the empirical covariance, shrinking
all eigenvalues by σ2 (down to a minimum of 0), after which |D| non-zero directions
remain at most. The algorithm iterates until convergence.

Lower bound. The lower bound on the evidence can be computed (appendix) up
to a constant and is given formally by

∑
i log (

∑
m ρ

u
im)−KL[qθ‖p(θ)], where ρuim is

the unnormalized soft-assignment of point i to cluster m (right hand side of Eq. (17)).

Initialization, choice of σ2. The mkPCA algorithm is initialized via k-means clus-
tering. In the proposed model σ2 controls the level of noise in the data. The more noise,
the more data variability it accounts for, and the lesser variability attributed to latent
structure. Bayesian inference of σ2 is difficult in infinite dimension, hence not pursued
here. If applicable, cross-validation is sound. Alternatively the following k-means based
heuristic can be used. Let di the distance of the ith data point to the centroid of its as-
signed k-means cluster.

∑|D|
1≤i d

2
i /|D| gives an estimate of the average variability in the

dataset due to both noise and structure. We set σ2 to a small fraction of that value. The
a posteriori analysis of the learned clusters (e.g. number of eigenmodes, magnitude of
eigenvalues) also helps verify the soundness of the setting.

5 Experiments & Results

The proposed framework is implemented in MATLAB, based on the publicly available
implementation of WESD3. Unless otherwise specified, the scale invariant kernel is

3http://www.nmr.mgh.harvard.edu/ enderk/software.html
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Fig. 2. Inferred leaf clusters. 4 clusters out of 7 are shown, with representative examples for the
mean and ±2st.d. along the first eigenmode. An example mistake is shown if available. For each
leaf, the three character code is its database index. The cluster assignment of the leaf is deemed
wrong whenever the letter prefix differs from that of the cluster (chosen by majority voting).

used and truncated at N=200 eigenvalues; and σ2 is set to 0.05× the k-means average
square error. We experiment with values of α≥ d/2, and β= 0 or ≡ λ1. Other hyper-
parameters are set to uninformative values: κ0 =γ0 = 10−6, η0 = 10−15, s0 =γ0σ

2/10
and m0 to the data mean. The best (based on the lower bound) of 10 mkPCA runs (100
iterations) with k-mean initialization is typically selected.

“Leaf Shapes” dataset: unsupervised mining of leaf species. The dataset consists of
69 binary images of leaves of 10 different subtypes (e.g. “ce”, “je”). Each type contains
3 to 12 examples. We aim at (partially) retrieving these subtypes using unsupervised
clustering. We use the lower bound (and discard small clusters, πm < 5%). 7 clusters
are identified. Fig. 2 displays 4 of the 7 clusters. For quantitative analysis a label is
assigned to each cluster by majority voting, and points are given the label of the max-
imum a posteriori cluster. The retrieval accuracy for α = 0.5, β = 100 is 71% ± 1%.
It is robust w.r.t. α, β (≥ 68% over 20 runs with chosen values α∈ [0.5, 5], β∈ [0, 500],
67.5% ± 3% over 100 runs with random values in that range). Mislabelling is mostly
due to the fact that smaller subtypes with 3 to 4 images do not have their own cluster.

LPBA40 dataset: clustering sub-cortical structures. We proceed with unsupervised
clustering of 40×6 volumes of left and right caudates, hippocampuses and putamens
from the public LPBA40 dataset [22], using 10 clusters maximum. For qualitative as-
sessment, the data is projected on the 2 largest eigenmodes of each cluster (Fig. 3 for the
6 main clusters). As an indicator of class separation in the learned model, we quantify
here again the agreement between the true labels and those assigned by MAP, with 16%
average misclassification rate for α=1, β=0 (<23% across a wide parameter range).

Learning left ventricle anomalies. The Sunnybrook cardiac dataset [18] (SCD) con-
sists of 45 left ventricle volumes: a heart failure (HF) group (24 cases), an hypertrophy
(HYP) group (12) and a healthy (N) group (9). We evaluate the proposed framework for
(maximum a posteriori) classification, modelling each group as a 1 (HYP, N) or 2 (HF)
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Fig. 3. Unsupervised clustering of subcortical structures. Example (a) caudate nuclei, (b) hip-
pocampi (c) putamina. Below each sub-structure, 2 clusters widely associated with it are shown
(projection onto the two first eigenmodes of each cluster, range ±5 st.d.). The following symbols
are used: circle ≡ caudate, triangle ≡ hippocampus, square ≡ putamen. Large blue data points
belong to the displayed cluster, small black dots do not (overlap largely due to projection).

component mkPCA. Fig. 4 (Left) reports the test accuracy for various hyperparameters.
For each parameter setting, mean and standard deviation are computed over 50 runs,
training on a random fold of 2/3 of the dataset and testing on the complement. The
baseline of 53.3% accuracy corresponds to systematically predicting HF. Blood/muscle
LV volumes are highly correlated to HF/HYP pathologies and constitute natural pre-
dictors that are expected to perform well. The spectrum based mkPCA model classifies
better on average (∼ 75% ± 8% across many settings) than a volume based mPCA
(65% ± 9%) despite the small training set and low-resolution of the raw data. Fig. 5
shows typical (often sensible) classification mistakes. Finally, Fig. 4 evidences strong
correlations between eigenmodes of HF/HYP clusters and the cavity/muscle volumes.

6 Conclusion

We proposed a framework for probabilistic clustering of shapes. It couples ideas from
the fields of spectral shape analysis and Bayesian modelling to circumvent both the
challenges of explicit registration and the recourse to non-linear embeddings. Firstly,
a multiscale family of spectral kernels for shapes is introduced. It builds on existing
work on the Laplace spectrum (shape DNA, WESD), going beyond by endowing the
space of objects with an inner product structure. This is required for many of the most
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Fig. 4. Sunnybrook Cardiac dataset supervised clustering analysis. (Left) Classification accuracy
under various settings (mean and ± st.d.). Black: volume-based classification baseline. Yel-
low: normalized spectrum-based classification. Blue: non-normalized spectrum-based, for var-
ious α, β, σ2 triplets. Default when not specified is α = 10, β = 103 and σ2 set to 0.05× the
k-means average error. The last five bars correspond to various α, β pairs, the previous 3 to other
σ2 settings. (Middle) Blood volume as a function of the 1st eigenmode projection for HF cases.
(Right) Left ventricle myocardium volume as a function of 1st eigen. projection for HYP cases.

widespread statistical analysis algorithms. Secondly a probabilistic mixture of kernel
space PCA is designed, working out technicalities stemming from the infinite dimen-
sionality. We experimented with tasks of supervised and unsupervised clustering on 69
images from the “Leaf Shapes” database, 240 3D sub-cortical brain structures from the
LPBA40 dataset and 45 3D left ventricles from the Sunnybrook cardiac dataset.
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A Existence of the spectral kernels

The existence of the spectral kernel of Eq. (6) with parameters α, β is conditioned on
the convergence of the series of term (β + λn)−α(β + ξn)−α, over all possible spectra
λ, ξ. From the asymptotic behaviour of Eq. (5), the spectral kernel is well-defined if
and only if 4α/d>1.

In the scale-invariant case λ,V 2/d
Ω λ, the domain of existence can be made larger.

To see this let us introduce a suitable variant of the kernel definition that does not change
the underlying pseudo-metric. Let λ and ξ be volume renormalized spectra as before
and ζn,4π2( n

Bd
)2/d. Define the spectral kernel Kα,β as:

Kα,β(λ, ξ) ,
+∞∑
n=1

(
1

(β + λn)α
− 1

(β + ζn)α

)(
1

(β + ξn)α
− 1

(β + ζn)α

)
. (24)

Intuitively, Kα,β takes the spectrum ζn (corresponding to the asymptotic behaviour) as
reference and aggregates perturbations w.r.t. this reference. The corresponding metric
ρα,β(λ, ξ)=‖Kα,β(λ, ·)−Kα,β(ξ, ·)‖Hα,β has exactly the same form as ρα,β(Ωλ,Ωξ)

after replacing the unnormalized spectra by their normalized counterparts, ρα,β(λ, ξ) =

[
∑+∞
n=1(∆n

α,β(λ, ξ))2]1/2, since the reference terms cancel out in the difference. For the
same reason, the results returned by the proposed kernel clustering algorithm (section
4) under this reparametrization are also unchanged (up to numerical errors), compared
to Kα,β(λ, ξ). Moreover Kα,β exists if and only if ρα,β exists (same convergence do-
main). Because both λn, ξn → ζn when n→+∞, the series term∆n

α,β(λ, ξ) decreases
in o((β+ ζn)−α). To find the domain of convergence of the series, the next order in the
asymptotic behaviour of the spectrum is required. For sufficiently regular objects the
following finer approximation of Eq. (25) is conjectured to hold [10]:

λn =
1

V
2/d
Ω

ζn ± C(∂Ω) · n1/d + o(n1/d) , (25)

and with that assumption the domain of definition of Kα,β is 4α+2
d >1.

B Kernel truncation error bounds

The following upper bound on the error E(N)
λ,ξ , |Kα,β−K(N)

α,β |(λ, ξ) introduced by
truncation of the kernel at the N th term in the series holds. It is a shape-independent
bound up to volume normalization:

E(N)
λ,ξ ≤ Kα,λ,ξ ·

(
d+2
d

)2α
(1/N)

4α−d
d , (26)

whereKα,λ,ξ, d
4α−d ·1/(Λ1Ξ1)α and Λ1, Ξ1 are defined as in Eq. (5). This also trans-

lates into a bound of the truncation error for the square of the distance ρα,β(Ωλ,Ωξ) via
the polarization identity: |ρ2

α,β − ρ
2(N)
α,β |(λ, ξ) ≤ 4E(N)

λ,ξ . Alternatively, the following
(generally tighter) bound is derived by direct computation, for N≥d+ 2:

|ρ2
α,β−ρ

2(N)
α,β |(λ, ξ) ≤ ρ2

α,λ,ξ · (1/N)
4α−d
d , (27)
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where ρ2
α,λ,ξ,

d
4α−d max[(Λ1

d
d+2 )−α−(cdξ1)−α, (Ξ1

d
d+2 )−α−(cdλ1)−α]2, with cd,

1+a(d)/d, a(1) ≤ 2.64, a(2) ≤ 2.27 and for d ≥ 3, a(d),2.2− 4 log (1 + d−3
50 ). The

bound depends only on the volume and first eigenvalue of the objects. These truncation
error bounds on the squared distance easily translate onto the distance itself. Note that
Eq. (26) derives from the lower bound [30,12] on the eigenvalues λn ≥ Λnd/(d + 2),
while Eq. (27) also makes use of the upper bound [27,12] λn ≤ cdλ1n

2/d.
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