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Abstract—Recognition of speaker emotion during interaction
in spoken dialog systems can enhance the user experience, and
provide system operators with information valuable to ongoing
assessment of interaction system performance and utility. Inter-
action utterances are very short, and we assume the speaker’s
emotion is constant throughout a given utterance. This paper
investigates combinations of a GMM-based low-level feature
extractor with a neural network serving as a high level feature
extractor. The advantage of this system architecture is that it
combines the fast developing neural network-based solutions with
the classic statistical approaches applied to emotion recognition.
Experiments on a Mandarin data set compare different solutions
under the same or close conditions.

Index Terms—emotion detection, deep neural networks, Gaus-
sian mixture models, Extreme learning machine.

I. INTRODUCTION

Spoken dialog systems can be enhanced with an emotion
recognition component. It can be deployed as part of the
interaction system’s design, where it may influence the interac-
tion system’s reaction to the user’s spoken utterances, or may
otherwise enhance the user interface. It may also be applied
in an ongoing assessment of system performance, to provide
system operators with information on user enjoyment or utility
of the service. With better understanding of the human and the
emotion in spoken query, the spoken dialog system can thus
achieve a better user experience.

There are two main approaches for emotion classifica-
tion: dimensional and categorical. The dimensional approach
provides values of arousal and valence, and the recognized
emotion is actually a point in this plane. More common are
categorical emotion detectors, which assign to the speech
utterance one emotion, such as happy, stressed, sad, neutral,
etc. In the second case, the input of the speech emotion
recognition is a variable length sequence and the output
is a single label, which converts emotion recognition into
a classification problem. This makes it similar to speaker
identification [1], gesture recognition, sentiment analysis in
natural language processing [2], and other classification tasks.
We limit our investigation in this paper to categorical emotion
detection.

A major problem in emotion detection from speech is
labeling - even humans cannot agree on the exact emotion
in the spoken utterance. This is mitigated by using several

judges to label each one of the utterances in the data set. In
addition, the training data for building emotion recognizers is
normally highly imbalanced, further increasing the difficulty
of making accurate predictions.

The emotion detection systems typically start with ex-
traction of low-level features. Some of them are in time
domain, but most are obtained after splitting the input audio
signal into overlapping frames, applying weighting window
and converting into frequency domain. This research area is
emerging and there is still no consensus on what features we
should use for the task. In many studies, people just combine
a lot of features for classification [3].

There are several approaches for building a classifier for
emotion recognition, based on hypotheses about the character
of the human emotions in short utterances. One approach
processes the utterance frame-by-frame. As the duration of one
audio frame is short, typically 10–30 ms, each frame provides
little information on speaker emotion. An emotion decision
can only be reliably made by considering all of the frames
in an utterance. The most conventional method to aggregate
frame scores is to train one Gaussian Mixture Model (GMM) -
Hidden Markov Model (HMM) system for every emotion, and
assign the emotion label according to the one giving largest
likelihood at the test stage [4]. Recurrent Neural Networks
(RNN) with long-short term memory (LSTM) may also be
applied to this task. In [5], the same utterance-level label is
assigned to every frame for LSTM training. At the test stage,
frame-level predictions are averaged to make final prediction.

Assigning the same label to every frame, especially to
silence frames, may incur some problems. One problem is that
the data sets for emotion recognition are normally imbalanced.
In such cases, many silence frames would be labeled as the
majority classes, and therefore the predictions on new silence
frames would be highly biased towards majority classes.
Another problem is that, even if the utterance is labeled as one
emotion, it does not necessarily mean that every frame should
be labeled as that emotion. To deal with this problem, Lee
and Tashev [6] propose an RNN-CTC (Connections Temporal
Classification) approach, in which they assume that different
frames should have different labels, and the label sequence
should be alternating between the utterance-level label and
a newly-introduced NULL state. In their study, expectation



maximization (EM) algorithms are used for inferring the
uncertainties in the label sequence.

A second approach is to group consecutive frames in
segments, and use a classifier for evaluation of the emotional
content of the speech in each segment. A Support Vector
Machine (SVM) [7], or a Deep Neural Network (DNN) [8]
may serve as a primary classifier. The result of this high-
level feature extractor is a set of variable length vectors, one
for each of the emotions. The number of elements is the
number of segments, and each element is the probability of
having this emotion in the segment. A second stage classifier
is required to form a decision from the set of variable length
vectors. Statistics over the variable length vectors including
mean, median, standard deviation, and others, are computed,
and the result is a fixed-length feature vector. The second-stage
classifier is applied to the fixed-length vector, which can be
an SVM [9], ELM [10], or kernel ELM [11], with variations
of adding a soft-max block at the end [12].

All of these architectures require selection of speech-
containing segments, and removal of the silence and low
energy frames. This can be implemented as selection of the
segments with top 15% energy [8], or by running a Voice
Activity Detector (VAD) and using only voiced frames for
training and evaluation [12].

A third approach is to process statistically the entire voice
query first, and perform final classification into emotion cate-
gories second. A typical statistical frontend is to use a GMM
in the same way they are used for speaker verification [13].
The voice query is compared with the GMM of the speaker to
be verified, and with the GMM of the Universal Background
Model (UBM). The decision is taken based on which one
is closer, in addition applying some combined weight for
false positives and false negatives. This classic approach is
applied for emotion recognition from speech signals in [14].
The classic GMM approach assumes that all of the input
features (MFCC filters, pitch, deltas, and delta-deltas) have
equal weight during computation of the log-likelihood. This
is most probably not true for both tasks. Speaker specific
information is carried mostly in the upper part of the frequency
band, and pitch carries more information than the lower part of
the frequency band. This is also true for emotion recognition,
plus the higher importance of the speech dynamics, i.e. deltas
and delta-deltas. Another GMM-based approach is to have the
distances between the voice query and the GMM signatures
of different emotions computed per feature, and then use a
secondary classifier which will learn the different weights of
the features during the training, and will produce the final
classification. In all cases only voiced frames are used for
building the GMM signatures and computing the distance.

In this paper we compare aspects of the second and third
approaches. The general difference between them is that the
second approach does emotion classification first and statistics
second, while the third approach does statistics first and
emotion classification second. Under as close as possible con-
ditions we compare the performance of these two approaches.
The rest of the paper is organized as follows. In Section II

we describe the algorithms to be compared, in Section III
are described the data corpus and the evaluation parameters.
Section IV provides the results, while Section V draws some
conclusions.

II. ALGORITHMS DESCRIPTION

We use a voice activity detector to select active frames. Then
the same set of features from the voiced frames are fed into
all compared classifiers.

A. Voice Activity Detection

The voice activity detector used in our study is a statistical
activity classifier with HMM smoothing of decisions [15],
[16]. To refine the VAD results, we apply a hangover scheme
and throw away the segments with less than five consecutive
active frames to remove sudden bursts, the sound of puff of
air, or potential clicks at the beginning and at the end of each
utterance. Another advantage of using VAD is that even if
there is long silence at the beginning or at the end of an
utterance, the behavior of the classifier would not be negatively
influenced.

B. Classic GMM approach

This is a straightforward implementation of the GMM-based
speaker identification algorithm. During the training phase we
create one GMM-signature for each of the emotions in the
same way the UBM model is created. During the evaluation
phase the log-likelihood distance between the voice query and
each of the emotions is computed, treating equally the different
features and their derivatives. The classification decision is for
the emotion the voice query is closest to.

C. GMM-ELM approach

The problem we address here is that different features (each
of the Mel filters, pitch, their deltas) may carry more or less
information about the emotion. During the training phase we
create one GMM-signature for each of the emotions in the
same way as above. During the evaluation phase the log-
likelihood distance between the voice query and each of the
emotions is computed for each one of the features and deltas
separately. This new vector of features is the input of an ELM,
which produces the final classification. During the training
phase ELM learns the different weights and dependencies
of the distances between low-level features and each of the
emotions.

D. GMM-DNN approach

This is the same structure as the previous one, except that
the secondary classifier is a DNN. In this case we expect the
better abstraction capabilities of the DNN to provide better
classification rate if we do have the information in the per-
feature distances.



Fig. 1. Class distribution for the emotion recognition task.

E. DNN-ELMK algorithm

While all of the previous three algorithms were using statistics
for the entire utterance, extracted by the first level classifier,
this is the algorithm which extracts the low-level features
for each segment and then computes the statistics for the
entire utterance. This a subset of the DNN-ELMK algorithm,
described in [8]. Every utterance is a mini-batch for the
DNN training. The two-layer network is trained jointly, i.e.
each iteration consists of training of the DNN, extracting the
statistics, and then training the ELMK.

III. EXPERIMENTAL SETUP

We have collected 17, 408 real-traffic Mandarin utter-
ances from a Microsoft spoken dialogue system. Each
utterance is labeled by five crowdsourcing judges us-
ing the Microsoft UHRS labeling system. All of the
judges are native Mandarin speakers. There are four meta-
categories for the emotion recognition task, i.e. neutral (no
clear emotion), happy (excited/interested/happy/funny/flirting),
sad (depressed/bored/tired/sad/frustrated) and angry (dis-
gust/impatient/offended/angry). We have finer categories for
each meta-category when prompting the crowdsourcing judges
to label the data, mainly because speech emotion itself is very
fuzzy.

Although a large number of labeled utterances can be
quickly obtained using crowdsourcing judges, the labels are
less reliable compared with professional and serious annota-
tors. Therefore, utterance selection is of great importance for
building good emotion recognition classifiers. In our study, we
only retain utterances with labels like AAABC, AAAAB, and
AAAAA, as the annotations with less than three agreements
are considered unreliable. For these retained utterances, we use
majority voting to label each utterance. The performance of
human labelers in this subset is 82.18%. Note that utterances
with labels like AAABB are not considered, because the
underlying emotion could be A, but also with high probability
it could be B. If we incorporate these, the performance of
human labelers drops to around 75%.

From the initial set of 17, 408 utterances, 10, 527 utterances
(approximately 10 hours) are left after filtering using the
aforementioned criterion. As we can see from Fig. 1, the class
distribution is very imbalanced, which is typical for many
other data sets for this task. Nonetheless, we think that the

distribution is reasonable from a practical perspective. More
details about the utterances selection can be found in [12].

In our experiments, we randomly choose 70% of the data
for training, 15% for validation, and the remaining 15% for
testing. We use the validation set to perform hyper-parameter
tuning and early stopping.

We use weighted accuracy and un-weighted accuracy to
measure the performance, as it is done in many other studies.
The weighted accuracy is just the classification accuracy over
the entire test set. The un-weighted accuracy is the average of
the classification accuracies for each class, which accounts for
the imbalanced nature of the data. In this study, we focus more
on the weighted accuracy, as it represents the percentage of
users we can satisfy and it is self-weighted from the usability
standpoint. We have tried to give larger weights to minority
classes so that un-weighted accuracy can be improved, but in
such cases the weighted accuracy drops substantially.

IV. EVALUATION RESULTS

We compare the four proposed approaches keeping the feature
sets and the complexity of the neural networks as close as pos-
sible. The low level feature set consists of energy, pitch, voice
probability, and 26-dimensional log Mel-spectrogram features
extracted from each frames. For the log Mel-spectrogram
features, we perform utterance–level mean normalization as
this can alleviate the channel effects of different microphones.
The delta component of all the features mentioned above is
added to consider the dynamics of these features. The number
of features extracted from each frame is 58. Only frames
with voice presence probability larger than 0.95 are used for
training, validation, and testing.

For the GMM-based algorithms we use fitting with 16
Gaussians for each of the four emotions. For training were
used all of the utterances in the training set, split on separate
for each emotion groups. The GMM means, variances, and
weights were estimated using HTK [17]. The frame presence
probability and the frame energy do not make sense for the
GMM algorithms, so they were excluded from the feature set.
For the classic GMM algorithm the voiced frames are evalu-
ated against each of the emotions and the overall log-likelihood
is computed. The emotion with highest log-likelihood is the
classification decision. For the GMM-ELM and GMM-DNN
algorithms we compute the log-likelihood for each of the 54
features and four emotions. This leads to 216 features vector,
which is the input for the ELM and DNN networks.

The number of neurons in the hidden layer of the ELM is
set to be five times the size of the input vector, i.e. 1080. The
implementation is pretty standard and according to [10]. For
training of the ELM was used the evaluation set.

There are four hidden layers in all DNNs, each with 128
rectified linear units. The network is trained with mini-batch
stochastic gradient descent (SGD) algorithm with momentum
to minimize the cross-entropy criterion. The 58 features used
in our study are concatenated to form a symmetric 25–frame
context window to obtain our final frame–level features. The
input feature dimension is therefore 1, 450. The output of the



TABLE I
ACCURACY IN % OF THE PROPOSED METHODS ON THE SPEECH EMOTION

RECOGNITION TASK

Algorithm Val. WA Val. UA Test WA Test UA
GMM 38.02 38.03 38.44 39.98

GMM–DNN 50.12 40.33 48.00 41.46
GMM–ELM 51.64 38.57 51.61 39.97
DNN–ELMK 55.73 47.63 57.95 50.42

Human 82.184 80.26

Fig. 2. Accuracy in % of the proposed methods on the speech emotion
recognition task.

DNN for each segment is four numbers - the probabilities for
each of the emotions.

The number of these four probabilities is equal to the
number of segments. From this variable length vectors are
computed mean, max, min, and variance for each emotion.
This fixed length vector of 16 features is the input of kernel
ELM algorithm, implemented according to [10]. It is trained
together with the DNN on each iteration. The output is a
vector of four variables - the probability for each emotion.
The utterance is labeled as having the emotion with the highest
probability. The weighted and un-weighted accuracies for the
validation and testing data sets are presented in Table I and
illustrated in Fig. 2, where we have added for reference the
accuracy of the human labelers. We will discuss and compare
the numbers of the weighted accuracy from the test data set,
the trends for the un-weighted accuracy and for the validation
data sets are the same. The classic GMM approach has the
lowest performance of 38%. Using a DNN or ELM to apply
different weights to different features increase the accuracy
to 48% and 51.6% respectively. Apparently we do not need
the abstraction power of a DNN with four hidden layers,
the single hidden layer ELM does a sufficient job (actually
slightly better). With the 57.9% accuracy the DNN-ELMK
remains the best performing algorithm. There is a substantial
difference in the weighted and un-weighted accuracies due to
the imbalanced data set. Still, weighted accuracy reflects better
the usability of the proposed algorithms.

V. CONCLUSIONS

We have compared the performance of several GMM-based
algorithms, which estimate the statistics of the entire utterance
first and perform classification second, with our state of the
art DNN-ELMK algorithm, which performs classification on
segments first, and computes statistics second. Overall the
GMM-based algorithms cannot produce accuracy comparable
to the DNN-ELMK algorithm performing emotion detection
on segments of 0.25 sec. In the GMM-based algorithms com-
puting the log-likelihoods for each of the features separately
and combining them with different weights through a simple
ELM provided very good improvement. Logical next steps are
to evaluate a segment-based GMM algorithm for the needs of
emotion recognition and to evaluate the improved GMM-ELM
algorithm against the classic for this algorithm scenarios for
speaker identification and verification.
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