
Errata and Proofs for Quickr [2]

Srikanth Kandula

1 Errata

We point out some errors in the SIGMOD version of our Quickr [2] paper.

• The transitivity theorem, in Proposition 1 of Quickr, has a revision in item
iii. The revised version is Proposition 5 in this document.
• Definition 1 in Appendix B.2, which defines dominance, has a revision in the

condition for c-dominance. The revised version is Definition 1 in this docu-
ment. We also offer new definitions of equivalence and weak equivalence.
• The dominance pushdown rules in Appendix B.3 have, in general, been re-

vised and substantially expanded. In particular, Proposition 7 in Quickr,
which relates to projections that drop columns is simple but incomplete;
Propositions 8 and 9 in this document consider the case of projections that re-
name columns and create new columns respectively. Proposition 8 in Quickr,
which relates to pushing samplers past selections, is replaced with Proposi-
tion 10 in this document. Finally, we separate the Proposition 9 in Quickr,
which pushes samplers past joins, into two separate propositions; Propo-
sition 2 considers the special-case of foreign key joins and Proposition 12
considers other equijoins.

Overall, we believe this document supersedes Quickr [2] in terms of accuracy anal-
ysis and proofs.

1



2 Base case

2.1 Setup

Sampler immediately precedes a GROUP-BY that has one or more aggregates pos-
sibly with group-by columns.

2.2 Results

We offer:

• an unbiased estimator for each aggregate
• the variance of said estimator
• the group-miss probability
• a method to execute the above estimates in one effective pass over data

2.3 Details

QUICKR uses the Horvitz-Thompson (HT) estimator. Let E be a query plan with
samplers. The core of E , represented as Λ(E), is a plan that is identical to E in
all respects but without samplers. For each group G in the answer of Λ(E), the
sampled plan E outputs a subset of the rows in G, E(G) ⊆ G. For each aggregate
w(G) =

∑
t∈Gw(t), we offer an estimator ŵE(G).

ŵE(G) =
∑

t∈E(G)

w(t)

Pr [t ∈ E(G)]
. (1)

It is easy to see that the above (HT) estimator is unbiased, i.e., E [ŵE(G)] =
w(G). Further, its variance is:

Var [ŵE(G)] =
∑
i,j∈G

(
Pr [i, j ∈ E(G)]

Pr [i ∈ E(G)]Pr [j ∈ E(G)]
− 1

)
· w(i)w(j). (2)

From the sample E(G), Var [ŵE(G)] can be estimated as:

V̂ar [ŵE(G)] =
∑

i,j∈E(G)

(
Pr [i, j ∈ E(G)]

Pr [i ∈ E(G)]Pr [j ∈ E(G)]
− 1

)
· w(i)w(j)

Pr [i, j ∈ E(G)]
.

(3)
The probability that the answer will have group G is Pr [G].

Pr [G] = 1−Pr [∧i∈G i /∈ E(G)] . (4)
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2.4 Specific formulae for samplers used by Quickr

Recall our three samplers: uniform sampler ΓU
p (uniform sampling probability p),

distinct sampler ΓD
p,C,δ (each value of column set C has support at least δ in the

sample), and universe sampler ΓV
p,C (sampling values of column set C with proba-

bility p). It could help to think of the universe sampler as first a random choice of a
p fraction of the possible values of columns C and then a predicate that passes only
the rows whose values of C have been chosen.

We apply the HT estimator to compute variance for all the samplers. To do so,
we compute the terms Pr [i ∈ E(G)] and Pr [i, j ∈ E(G)] for each sampler.

Proposition 1 (To Compute HT Estimator and the Variance).

• For ΓU
p , for any tuples i, j ∈ G, we have Pr [i ∈ E(G)] = p, and, if i 6= j,

Pr [i, j ∈ E(G)] = p2.

• For ΓD
p,C,δ, let g(i) be the set of tuples with the same values on C as tuple i in

the input relation. We have

Pr [i ∈ E(G)] =

{
1 |g(i)| ≤ δ
max( δ

|g(i)| , p) |g(i)| > δ
;

if i 6= j, Pr [i, j ∈ E(G)] = Pr [i ∈ E(G)]Pr [j ∈ E(G)] .

• For ΓV
p,C , let vC(i) be the value of tuple i on columns C. We have Pr [i ∈ E(G)] =

p, and
if i 6= j,Pr [i, j ∈ E(G)] =

{
p if vC(i) = vC(j)

p2 otherwise
.

A few clarifications are worth mentioning. For the universe sampler, tuples that
have the same value on C will either all belong to the sample or not; this leads to
a higher variance in the estimator. To see this, substitute Pr [i, j ∈ E(G)] defined
above into Eqn 3. Our implementation of the distinct sampler is rather involved.
In order to finish in one pass and reduce the memory footprint, we implemented
an approximate version of ΓD

p,C,δ: we always include the first δ tuples for each
value of C, and then rely on a heavy hitter sketch to decide whether to use reser-
voir sampling or to use fixed-rate sampling for the rest of the tuples. The resulting
probability Pr [i ∈ E(G)] is lower bounded by the one stated in the above propo-
sition and is a function of the position of the tuple i. Further, the joint probability
Pr [i, j ∈ E(G)] is upper bounded by Pr [i ∈ E(G)]Pr [j ∈ E(G)].

Proposition 2 (Group Coverage Probability). When samplers immediately precede
the aggregate, the probability that a group G appears in the answer is:
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• For ΓU
p , Pr [G] = 1− (1− p)|G|.

• For ΓD
p,C,δ,

Pr [G]

{
= 1, if C contains the group-by dimensions
≥ 1− (1− p)|G|, otherwise

.

• For ΓV
p,C , Pr [G] = 1− (1−p)|G(C)|, where G(C) is the set of distinct values

of tuples in G on dimensions C.

Proof. The proof for uniform sampler follows from the fact that each tuple is
picked independently at random with probability p. For the distinct sampler, if the
group-by columns are a subset of the stratification columns C, then the group will
appear in the answer. In the converse case, note that even though tuples in a group
are picked in a correlated manner (based on their order in the input sequence), the
joint probability of not picking any tuple is at least the probability shown. For
the universe sampler, recall that a p fraction of the values of columns C are picked.
Hence, a group withG(C) distinct values has the corresponding likelihood of being
picked.

Using Proposition 2, we see that both uniform and distinct samplers rarely
miss groups. Recall that QUICKR checks before introducing samplers that there
is enough support, i.e., p ∗ |G| ≥ k. For example, when k = 30 and p = 0.1,
the likelihood of missing G is below 10−14. For the universe sampler, note that
|G(C)| ∈ [1, |G|]. However, QUICKR uses the universe sampler only when stratifi-
cation is not required (e.g., no groups), or when |G(C)| is high and hence missing
groups is rare (e.g., stratification on a column-set that is effectively independent
with column-set C).

2.5 Complexity of Computing Estimate and Error

The following proposition posits that accuracy computation requires only one ef-
fective pass over the sample.

Proposition 3 (Complexity). For each groupG in the query output, QUICKR needs
O(|E(G)|) time to compute the unbiased estimator of all aggregations and their
estimated variance where |E(G)| is the number of sample rows from G output by
expression E .

Proof. The proof follows from Propositions 1, 2 and Equations (1)-(4).
In more detail, QUICKR ensures that each tuple i in the sample E(G) also con-

tains the probability Pr [i ∈ E(G)] in its weight column. Hence, ŵE(G) can be
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computed in one scan using Equation (1). A naive way to compute V̂ar [ŵE(G)]
using (3) requires a self-join and can take quadratic time. However, as we will
prove in detail later, all the plans generated by QUICKR will have no worse error
than a corresponding plan that has one sampler at the root just below the aggre-
gation. For such plans, we observe that only the pairs having Pr [i, j ∈ E(G)] 6=
Pr [i ∈ E(G)]Pr [j ∈ E(G)] need to be considered. For the uniform and distinct
samplers, the summation in (3) goes to zero for i 6= j and so their variance can
be computed in one pass. For the universe sampler, there are two types of pairs:
i) (i, j) with vC(i) = vC(j), and ii) (i, j) with vC(i) 6= vC(j); here vC(i) denotes
the value of tuple i on the universe columns C. Per Proposition 1, the summation
term is zero for pairs of the latter type. For the former type, we maintain per-group
values in parallel and use a shuffle to put them back into (3). Since the number
of groups can be no larger than the number of tuples, the computation is linear.
Further the shuffle often has less work to do (one row per group) than the first pass
leading to our one-effective-pass claim.

2.6 Types of Aggregations

For SUM and COUNT-like aggregates, the above analysis directly applies with
w(t) = t and w(t) = 1 respectively. Here, we discuss a few other com-
mon aggregates and the case where a result has multiple aggregations such as
SELECT x, SUM(y), COUNT(z). QUICKR requires user-defined aggregates to be an-
notated with functional expressions which it uses to obtain accuracy measures;
details are left for future work.

Other aggregations: Analyzing COUNT directly follows from SUM by setting
w(t) = 1 ∀t. AVG translates to SUM

COUNT
but its variance is harder to analyze due

to the division. In implementation, QUICKR substitutes AVG by SUM/COUNT and
divides the corresponding estimators. QUICKR also supports DISTINCT, which
translates to a group with no aggregations and COUNT(DISTINCT). Error for the
former is akin to missing groups analysis. For COUNT(DISTINCT), we can use the
GEE estimator [1] after adapting it to our samplers. We point out two specific cases
where count distinct can have a better estimate than GEE. (1) For a distinct sam-
pler with stratification columns containing the count distinct column, the estimator
is same as computing count distinct on the sample. The error in this case is zero.
(2) For a universe sampler with universe columns matching the count distinct col-
umn, our estimator is the value computed over the samples divided by the sampling
probability. We defer analyzing the error for other aggregations to future work.

Multiple aggregation ops: QUICKR naturally extends to the case when multiple
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aggregations are computed over the same sampled input relation. The key observa-
tion is that the estimators for each aggregation only require the value in the sampled
tuple, the corresponding weight which describes the probability with which the tu-
ple was passed and in rare cases the type of the sample (e.g., for COUNT DISTINCT).
The first two are available as columns in the sampled relation. The third we imple-
ment as a corrective rewriting after QUICKR chooses the samplers.
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3 Sampling Dominance

Given two sampled expressions with the same core, we say one expression E1 is
dominated by another expression E2 if and only if E2 has no higher variance and
no higher probability of missing groups than E1. More formally, we have:

Definition 1 (Sampling Dominance). Given two expressions E1 and E2 with the
same core and having R1 and R2 as the respective output relations and R as the
output relation without samplers, we say E2 dominates E1, or E1

∗⇒ E2, iff

(v-dominance E1
v⇒ E2) ∀i, j ∈ R : (5)

Pr [i ∈ R1, j ∈ R1]

Pr [i ∈ R1]Pr [j ∈ R1]
≥ Pr [i ∈ R2, j ∈ R2]

Pr [i ∈ R2]Pr [j ∈ R2]
, and

(c-dominance E1
c⇒ E2) ∀ set of tuples T ⊆ R : (6)

Pr [T ∩R1 = ∅] ≥ Pr [T ∩R2 = ∅] . (7)

First, note that sampler dominance subsumes the SOA-equivalence definition [3].
Supposing p-dominance defined as follows:

(p-dominance E1
p⇒ E2) ∀i ∈ R : Pr [i ∈ R1] ≤ Pr [i ∈ R2] , (8)

two expressions E1, E2 are SOA equivalent iff E1
v,p

=⇒ E2 and E2
v,p

=⇒ E1. Further, it
is easy to see that c-dominance implies p-dominance but not the other way around.

Next, we note the intuitions: c-dominance says that all tuple-sets are more
likely to appear in the output and helps to relate the group missing probability.
Similarly, v-dominance helps relate the variance.

Hence, it is not hard to see that if E2 dominates E1, then the estimate ŵE2(G)
is better than ŵE1(G) in terms of variance and group coverage probability. We
formally state this result below.

Proposition 4 (Dominance and Accuracy). For any group G in the output of a
SUM-like aggregate query, consider two execution plans E1 and E2 that have the
same core Λ(E1) = Λ(E2). We have:

if E1
v⇒ E2, Var [ŵE1(G)] ≥ Var [ŵE2(G)] .

if E1
c⇒ E2, Pr [G is missed in E1] ≥ Pr [G is missed in E2] .

Proof. The proof follows by plugging Equations 5 and 6 in Equations 2 and 4
respectively.
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Colloquially, E1
∗⇒ E2, implies that the latter plan yields a better answer.

Necessary conditions: Proposition 4 shows that equations 5, 6 are sufficient
conditions to ensure no higher variance and no higher likelihood of missing groups
respectively. We conjecture that Eqn. 5 is also a necessary condition. Eqn. 6 is
not a necessary condition; we will note a instance later when discussing rules.
Discovering the appropriate necessary condition for group coverage is future work.

Equivalence: We use ∗⇔ to denote cases when the sampled expressions are equiv-
alent. That is, E1

∗⇔ E2 iff E1
∗⇒ E2 and E2

∗⇒ E1.

Conditional equivalence: We use E1
∼⇔ E2 to denote cases where one or more

of v-dominance and c-dominance may not hold in general. Yet, the variance of
estimators and the group miss probability are equivalent when some data proper-
ties hold. These properties are described below. Conditional equivalence covers
the cases where the error comparison between plans depends on properties of the
data. QUICKR makes these data-dependent decisions in order to improve the per-
formance of sampled plans.

Property 1. Given relation R and column-sets C,D, the number of distinct values
of C in R is equal to the number of distinct values of C ∪ D in R.

This is equivalent to functional dependency. An example, using table and
names from TPC-DS, follows:

R = store sales ./item sk item, C = {ss item sk}, D = {i brand}.
The property holds for this example because the column ss item sk is a

foreign-key and hence has a many-to-one relationship with the i brand column.

Property 2. Given a relation R with tuples denoted as t, a selection (predicate)
σ over columns C, σ+C , σ

−
C are the sets of tuples in R that are selected and filtered

by the predicate respectively and another columnset D we have ∀ values d of D,
Pr
[
tD = d | σ+C

]
= Pr

[
tD = d | σ−C

]
.

An example is D = {i color} and predicate σC is d year > 2000.
The property holds for this example because the color of items can be indepen-

dent of their purchase or return date.

Property 3. Given a foreign-key equijoin R ./C S with tuples denoted by t,
where C is a foreign key of S and another columnset D, we have ∀ values d of
D, Pr [tD = d | R ./C S] = Pr [tD = d | R−R ./C S] .

An example is
(
store sales ./ss item sk=i item sk (σi color6=red(item))

)
and

D = ss store sk.
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The property holds for this example because all stores have the same likelihood
of having red colored items. This is analogous to Property 2.

Property 4. Given a relationR and two columnsets C andD, the values of columns
in C are independent of the values of D.

An example is R = item, C = {i item sk}, D = {i color}.
The property holds because the key is an opaque indicator akin to a hash value

and is hence independent of the color of the item.

Property 5. Given a relation R and a columnset C, all groups defined as tuples in
R that have the same value of columns in C, have size below some constant k.

An example is R = item, C = i item sk, k = 1. The property holds because
C is a primary key in R.

Probabilistic equivalence: We use E1
→⇔ E2 to denote cases where the variance

of estimators and the group miss probability of the two expressions converge under
some conditions; that is, the expressions have similar error only in a probabilistic
sense. Similar to conditional equivalence, probabilistic equivalence, is dependent
on data properties. However, in addition it is also only a probabilistic guarantee.
QUICKR uses probabilistic equivalence in order to improve the performance of
sampled plans.

Intuition: Given a relation R and groups defined as tuples that have the same
value on a columnset D, consider the condition when the number of tuples in each
group tends to∞. It is possible to have error converge when the support of every
group increases.

An example is R = store sales,D = {ss store sk}.
Every store has thousands or more tuples in the store sales table; further,

this support increases when the table contains data for longer time-periods.
We offer a precise setup where the above intuition (large support) holds.

Condition 1. Given a database D, let Di be a database generated by concatenat-
ing i copies of database D; that is each relation in Di is exactly i times larger. To
compare the error for two sampled plans for some query q, in a probabilistic sense,
compare the error of those plans on database Di as i goes to∞.

An example is R = store sales, q = SELECT ss store sk, COUNT (∗)
FROM store sales WHERE SelectivePredicate = true. The two plans
being compared are an unsampled plan that applies on all of the input and another
that applies on a uniform sample of the input.

Since the predicate can have a very small selectivity, the uniform sample can
miss some groups and have high variance in its estimate of the COUNT. However,
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as the size of the database grows via concatenation, the error of the sampled plan
will converge to zero (the error of the unsampled plan).
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4 Establishing transitivity of dominance

We ask whether dominance holds transitively. That is: given execution plans E1
∗⇒

E2, does σC(E1)
∗⇒ σC(E2)? Similarly for project and join. That is, also given

F1
∗⇒ F2, does E1 ./C F1

∗⇒ E2 ./C F2?

4.1 Result

Proposition 5 (Dominance Transitivity). For pairs of expressions E1, E2 and F1,
F2 that are equivalent if all samplers are removed:

i) E1
∗⇒ E2 implies π(E1)

∗⇒ π(E2);
ii) E1

∗⇒ E2 implies σ(E1)
∗⇒ σ(E2);

iii) E1
∗⇒ E2 and F1

∗⇒ F2 implies E1 ./ F1
∗⇒ E2 ./ F2, if samplers in Ei

are independent on samplers in Fi.

As a corollary, dominance holds transitively with projects, selects and joins
for the samplers used by QUICKR. Specifically, uniform and distinct samplers are
independent of each other. And, below an aggregation, QUICKR uses universe
sampling for only one set of columns and the universe samplers pick the same
random portion of the hashspace of those columns.

4.2 Proof

4.2.1 Projection

Projection only affects the columns in each tuple, hence transitivity trivially holds.

4.2.2 Selection

Observe that Equations 5 and 6 need only hold for tuples that appear in the answer
after the selection. Tuples that do not pass the select will not appear in the answer.
Further, for any tuple i that appears in the answer Pr [i ∈ σC(E1)] = Pr [i ∈ E1] .
Plugging this into equations 5 and 6 concludes this proof.

4.2.3 Join

A join can be thought of as a cross-product followed by a selection. Per the above
case for selection, it suffices to show transitivity for a cross-product. Let Ri and
Si be the output relations for the expressions Ei and Fi respectively. We want to
prove E1 ×F1

∗⇒ E2 ×F2.
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For v-dominance, we have to show that:

Pr [(r, s) ∈ R1 × S1, (r′, s′) ∈ R1 × S1]
Pr [(r, s) ∈ R1 × S1]Pr [(r′, s′) ∈ R1 × S1]

≥ Pr [(r, s) ∈ R2 × S2, (r′, s′) ∈ R2 × S2]
Pr [(r, s) ∈ R2 × S2]Pr [(r′, s′) ∈ R2 × S2]

. (9)

Further, for c-dominance, for all tuple-sets T we have to show that:

Pr [T /∈ R1 × S1] ≥ Pr [T /∈ R2 × S2] . (10)

Since the samplers on either side of the cross-product are independent of each
other, we have:

Pr [(r, s) ∈ Ri × Si] = Pr [r ∈ Ri]Pr [s ∈ Si] (11)

and

Pr
[
(r, s) ∈ Ri × Si, (r′, s′) ∈ Ri × Si

]
= Pr

[
r ∈ Ri, r′ ∈ Ri

]
·Pr

[
s ∈ Si, s′ ∈ Si

]
.

(12)
The proof follows by plugging equations 11, 12 in equations 9, 10.
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5 Dominance Pushdown rules

5.1 Preliminaries

Proposition 6 (Switching Rule). For any relation R, we have

ΓV
p,C(R)

∗⇒ ΓU
p (R)

∗⇒ ΓD
p,C,δ(R).

Proof. To see ΓV
p,C(R)

∗⇒ ΓU
p (R): consider that with both samplers a tuple is

picked with probability p. However, tuples having the same value on universe
columns are either all picked or none are picked. Hence, a pairs of such tuples
(same value on C) is picked with probability p as opposed to p2 with the uniform
sampler. Worse, a set of n such tuples is missed with probability 1− p as opposed
to (1− p)n for the uniform sampler.

For the distinct sampler, note that each tuple is picked with probability at least
p; if the tuple is seen before the frequency threshold is hit, the probability is higher.
Further, the likelihood of picking a pair or set of tuples is never worse than picking
each tuple independently with probability p. Hence, ΓU

p (R)
∗⇒ ΓD

p,C,δ(R).

Proposition 7 (Picking sampler parameters). For any relation R, we have

ΓU
p1(R)

∗⇒ ΓU
p2(R) if p1 ≤ p2,

ΓV
p1,C(R)

∗⇒ ΓV
p2,C(R) if p1 ≤ p2,

ΓD
p1,C1,δ1(R)

∗⇒ ΓD
p2,C2,δ2(R) if p1 ≤ p2, C1 ⊆ C2, δ1 ≤ δ2.

Proof. The proof follows trivially. The case of universe sampler is worth noting;
instances with a different column set are not comparable with each other. A caveat
w.r.t. the distinct sampler. The dominance always holds for C1 = C2, δ1 = δ2. For
the case of C1 ⊆ C2, δ1 ≤ δ2, dominance holds iff the two samplers process input
in the same order; else, c-dominance does not hold for tuple-sets that have tuples
picked with weight of 1 (early due to frequency check). We continue to make this
“process input in the same order” assumption in the rest of this section.

5.2 Projections

Consider a general projection πC−d ,Ca→Cb,fi(Ci)=ci ; it may drop columns in C−d , re-
name columns in Ca with corresponding names in Cb and create some new columns
ci using functions fi over sets of columns Ci.

Dropping columns does not affect sampler pushdown because the sampler, be-
ing outside the project, cannot possibly use these columns.
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We first consider pushing past column renames first and then consider pushing
past one function that creates a new column. It is easy to see that combining these
cases leads to the general case.

Proposition 8 (Pushing past Projection (column renaming)). Consider a relation
R and a projection πCa→Cb . Let the notation DCb→Ca denote replacing columns in
D that are in the set Cb with corresponding columns from the set Ca. We have:
Rule-U1: ΓU

p (πCa→Cb(R))
∗⇔ πCa→Cb(Γ

U
p (R));

Rule-V1: ΓV
p,D(πCa→Cb(R))

∗⇔ πCa→Cb(Γ
V
p,DCb→Ca

(R));

Rule-D1: ΓD
p,D,δ(πCa→Cb(R))

∗⇔ πCa→Cb(Γ
D
p,DCb→Ca ,δ

(R)).

Proof. The proof is trivial: the expressions on both sides have the same probabil-
ity of picking any tuple set in the answer. Do note that the stratification and the
universe columnset are edited to revert the effect of renaming.

Proposition 9 (Pushing past Project (new columns)). Consider a relation R and a
projection πf(C)=c (which we denote by just π for brevity), we have these rules:
Rule-U1a: ΓU

p (π(R))
∗⇔ π(ΓU

p (R));

Rule-V1a: ΓV
p,D(π(R))

∗⇔ π(ΓV
p,D(R)), if c /∈ D;

Rule-D1a: ΓD
p,D,δ(π(R))

∗⇔ π(ΓD
p,D−{c},δ(R)), if c /∈ D or C ⊆ D;

Rule-D1b: ΓD
p,D,δ(π(R))

∗⇒ π(ΓD
p,D ∪ C−{c},δ(R)), if c ∈ D and C 6⊆ D;

Rule-D1c: ΓD
p,D,δ(π(R))

∼⇔ π(ΓD
p,D−{c},δ(R)) (additional conditions needed).

Proof. The proof for Rule-U1a is from noting that each row has the same likeli-
hood to occur in either expression and that rows are sampled independently.

For the universe sampler, Rule-V1a, consider the case when the newly gener-
ated column c belongs to the universe columnset. We know the universe sampler
uses the value of column c. It is not possible to compute the value of c without
having the sampler subsume function f . In the converse case (i.e. c 6∈ D), the
proof follows as above: each tuple-set is sampled with the same probability in the
expressions on left and right.

For the distinct sampler, Rule-D1a, note that the likelihood of a row being
picked by the sampler only depends on values of columnset D. If the newly gen-
erated column is not in D, sampling before project is equivalent. Furthermore,
because f is a function, if the domain of the function (column set C) is contained
in D, then stratifying on D − {c} suffices (functions cannot be one-many).

Rule-D1b considers the converse case to Rule-D1a; the newly generated col-
umn is in the columnset D and the domain of the function is not contained in D.
The expression on the right stratifies additionally on the domain of the function.
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By definition, a function is either one-to-one or many-to-one; hence every distinct
value of the desired column set D will be adequately represented by the expres-
sion on the right. However, the stratification columnset is strictly larger on the
right, hence equivalence does not hold but dominance holds (proof follows from
invoking the respective portion of Proposition 7).

Rule-D1c is a conditional equivalence that holds under Property 1. Intuitively,
the additional stratification is an over-kill when some columns in D − {c} have a
many-to-one relationship with either the column c or columnset C (i.e. D−{c} ` c
or D − {c} ` C).

Note that it is possible to invoke Rule-D1b for some functions and Rule-D1c
for others.

5.3 Selections

We now consider the case of a selection with a single predicate specified over
columns C of R. Conjunctions of predicates can be decomposed as a sequence of
predicates. Disjunctions are, for simplicity, collapsed into one predicate. QUICKR

uses standard QO methods to explore alternatives here.

Proposition 10 (Pushing past Selection). For any relation R and a selection σC
with selection formula on a subset C of columns of R,
Rule-U2: ΓU

p (σC(R))
∗⇔ σC(Γ

U
p (R));

Rule-V2: ΓV
p,D(σC(R))

∗⇔ σC(Γ
V
p,D(R));

Rule-D2: ΓD
p,D,δ(σC(R))

∗⇒ σC(Γ
D
p,D∪C,δ(R));

Rule-D2a: ΓD
p,D,δ(σC(R))

∼⇔ σC(Γ
D
p,D, δ

σss
(R)), where σss = |σC(R)|

|R| is the selec-

tivity of σC on R (additional conditions needed);
Rule-D2b: ΓD

p,D,δ(σC(R))
∗⇔ σC(Γ

D
p,D,δ(R)), if C ⊆ D;

Rule-D2c: ΓD
p,D,δ(σC(R))

∼⇔ σC(Γ
D
p,D,δ(R)) (additional conditions needed);

Proof. The proof for uniform sampler, Rule-U2, is similar to the case with Rule-U1:
the expressions on either side have the same likelihood of picking any tuple-set in
the answer.

The proof for the universe sampler, Rule-V2 follows from a similar observa-
tion: the expressions on either side retrieve the exact same tuples because QUICKR

makes the two universe samplers pick the same values of columnset D.
The proof for distinct sampler, Rule-D2, relies on the observation that when

the expressions on either side process input in the same order, every set of tuples is
strictly more likely to be passed by the expression on the right. Without stratifying
on the selection columns C, it is possible that the tuples picked by the sampler for
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some group (distinct value of columnsetD) may all be filtered by the selection. The
added stratification makes the sampler pass some tuples for every distinct value of
columnsetD∪C; since the predicate is on the value of columns C, every group will
receive some tuples regardless of which tuples the predicate filters out.

Rule-D2b is an important simple case. When the predicate columns are already
contained in the stratification set, the two expressions pass every tuple-set with the
same probability.

Rule-D2c is a conditional equivalent alternative to the above rule. It applies
when Property 1 holds. If there is a functional dependence between the strati-
fication columns D and the columns used in the predicate C (i.e. D ` C), the
expression on the right mimics the expression on the right in Rule-D2b and the
same proof applies.

Rule-D2a is more complex but often useful. The expression on the right com-
pensates for the fact that the selection will filter some of the passed tuples. It passes
more tuples per group. The expression on the right is conditionally equivalent when
Property 5 holds. That is, when all groups over D have support on R below δ

σss .
In the general case, equivalence holds precisely for groups that have support below
the threshold while for groups with a larger support, the equivalence only holds
probabilistically as detailed in Rule-D2x below.

As a corollary, note that ΓU
p (σC(R))

∗⇒ ΓD
p,∅,δ(σC(R))

∗⇒ σC(Γ
D
p,C,δ(R)). The

proof follows by applying Proposition 6 and then Rule-D2.

Conjecture 1 (Pushing past Selection). For any relationR and a selection σC with
selection formula on a subset C of columns of R,
Rule-D2x: ΓD

p,D,δ(σC(R))
→⇔ σC(Γ

D
p,D, δ

σss
(R)), where σss = |σC(R)|

|R| is the selec-

tivity of σC on R (additional conditions needed);
Rule-D2y: ΓD

p,D,δ(σC(R))
→⇔ σC(Γ

D
p,D,δ(R)) (additional conditions needed).

The proofs for probabilistic equivalence are complex and we leave them for
future work.

Rule-D2y is a probabilistic equivalent alternative to Rule-D2c that holds under
Condition 1. The expression on the right has larger error in general. However, as
the support for all groups in the answer increases, the error for the right expression
will converge to that of the left. Further, if Property 2 holds, that is, the selection is
not correlated with the group, then, the convergence happens faster, i.e. with fewer
support for groups.

Rule-D2x is the probabilistic equivalent version of Rule-D2a. It holds under
Condition 1 and guarantees equivalence for groups with support below δ

σss . Note
that this rule dominates Rule-D2y and in general converges faster. If Property 2
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holds, the convergence is faster, i.e. a smaller sample may suffice for the same size
of the relation.

5.4 Equi-Joins

We begin with the special-case of a foreign-key join because it applies often and is
a stepping stone to the general case.

Proposition 11 (Pushing past foreign-key Join). Given relations R and S being
joined on columns C where C is a foreign-key in R and primary-key in S, let Rc
and Sc denote the columns of R and S respectively and suppose DR is a set gener-
ated from setD by replacing the columns in setD that belong to Sc with equivalent
columns in Rc as per the equijoin conditions 1, we have:
Rule-U3: ΓU

p (R ./C S)
∗⇔ ΓU

p (R) ./C S;

Rule-V3: ΓV
p,D(R ./C S)

∗⇔ ΓV
p,DR(R) ./C S, if DR ⊆ Rc;

Rule-D3: ΓD
p,D,δ(R ./C S)

∗⇒ ΓD
p,DR∪C,δ(R) ./C S, if DR ⊆ Rc;

Rule-D3a: ΓD
p,D,δ(R ./C S)

∼⇔ ΓD
p,DR, δ

./ss
(R) ./C S, if DR ⊆ Rc where ./ss=

|R./CS|
|R| , is the selectivity of the join (additional conditions needed);

Rule-D3b: ΓD
p,D,δ(R ./C S)

∗⇔ ΓD
p,DR,δ(R) ./C S, if C ⊆ DR ⊆ Rc;

Rule-D3c: ΓD
p,D,δ(R ./C S)

∼⇔ ΓD
p,DR,δ(R) ./C S, if DR ⊆ Rc (additional condi-

tions needed);
Rule-D3d: ΓD

p,D,δ(R ./C S)
∼⇔ ΓD

p,DR−Sc,δ(R) ./C S (additional conditions
needed);
Rule-D3e: ΓD

p,D,δ(R ./C S)
∼⇔ ΓD

p,DR−Sc, δ
./ss

(R) ./C S, if DR 6⊆ Rc;

Rule-D3f: ΓD
p,D,δ(R ./C S)

∗⇒ ΓD
p,(DR−Sc)∪C,δ(R) ./C S, if DR 6⊆ Rc;

Rule-D3g: ΓD
p,D,δ(R ./C S)

∼⇔ ΓD
p,(DR−Sc)∪C, δsfm

(R) ./C S, if DR 6⊆ Rc where sfm =

NumDV(R,(DR−Sc)∪C)
NumDV(R,DR) ;

Proof. Note that a foreign-key join implies that at most one row will match from
the relation S for each row in R.

Rule-U3 follows directly; in the expressions on either side, the likelihood of a
tuple appearing is p and tuples are sampled independently.

The proof for universe sampler, Rule-V3 has one additional caveat; if all the
columns in set D appear from the relation R (that is, DR ⊆ Rc), then, the same

1Assume D = {r1, s1, s2} and the join condition is r3 = s1 where columns ri and si are from
the relations R and S respectively. Then, DR = {r1, r3, s2}.
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reasoning as for Rule-U2 applies. In the converse case, the universe sampler cannot
be pushed. Note that we use column equivalence here.

When DR ⊆ Rc, that is, all stratification columns are from R, a foreign-key
join can be considered to be a select on the join columns. Hence, Rule-D3 . . .Rule-D3c
mimic Rule-D2 . . .Rule-D2c respectively. In particular, Rule-D3a is conditionally
equivalent only when the support for all groups is below the threshold (noted as
Property 5). In general, the expressions are equivalent for groups that have sup-
port below the threshold and only probabilistically equivalent for the remaining
groups (noted below as Rule-D3x). Next, Rule-D3c is conditionally equivalent if
Property 1 holds (functional dependence). Specifically, DR ` C and DR ` D. The
proof follows from corresponding proofs for selection.

Rule-D3d . . .Rule-D3g cover the case when DR 6⊆ Rc, that is the stratification
column-set has some columns that are uniquely from the relation S. We will refer
to these as missing stratcolumns.

Rule-D3d represents conditional equivalence under Property 1. Specifically,
the missing stratcolumns are functionally dependent to some other columns in
DR − Sc (i.e. DR − Sc ` D); hence the expression on the right can simply ig-
nore these missing columns. Further, the join columns should also be functionally
dependent to the remaining strat columns (i.e. DR − Sc ` C).

Rule-D3e represents conditional equivalence under Property 1 and Property 5.
The expression on the right ignores stratification on the missing stratcolumns but
raises required support per group. From Property 1, functional dependence is re-
quired, i.e. DR−Sc ` D. Further, by Property 5 all the groups have support below
δ
./ss . In the general case, the two expressions are equivalent for groups with support
below the threshold; for larger groups they are probabilistically equivalent (noted
below as Rule-D3z).

Rule-D3f stratifies on the join columns, which are foreign keys, to substitute
for the missing stratcolumns. By definition of foreign-key join, there is a many-
one relationship between the values of join columns C and the missing stratcolumns
DR∩Sc. The proof follows from a similar reasoning to the case with Rule-D2 (i.e.
(DR − Sc) ∪ C ` D).

Rule-D3g states conditional equivalence when Property 5 holds; that is all
groups have support below the threshold δ

sfm
. In general, only probabilistic equiv-

alence holds for the larger groups (noted below as Rule-D3w). Intuitively, the join
columns being foreign keys and can have more distinct values than the columns
that they are replacing in the stratification columnset. Hence, this rule lowers the
number of tuples needed per distinct value. The proof follows from noting that
(DR−Sc)∪C ` D and the support of groups is below the specified threshold.

Conjecture 2 (Pushing past foreign-key Join). Given relations R and S being
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joined on columns C where C is a foreign-key in R and primary-key in S, let Rc
and Sc denote the columns of R and S respectively and suppose DR is a set gener-
ated from setD by replacing the columns in setD that belong to Sc with equivalent
columns in Rc as per the equijoin conditions 2, we have:
Rule-D3x: ΓD

p,D,δ(R ./C S)
→⇔ ΓD

p,DR, δ
./ss

(R) ./C S, if DR ⊆ Rc where ./ss=

|R./CS|
|R| , is the selectivity of the join (additional conditions needed);

Rule-D3y: ΓD
p,D,δ(R ./C S)

→⇔ ΓD
p,DR,δ(R) ./C S, if DR ⊆ Rc (additional condi-

tions needed);
Rule-D3z: ΓD

p,D,δ(R ./C S)
→⇔ ΓD

p,DR−Sc, δ
./ss

(R) ./C S, if DR 6⊆ Rc;

Rule-D3w: ΓD
p,D,δ(R ./C S)

→⇔ ΓD
p,(DR−Sc)∪C, δsfm

(R) ./C S, if DR 6⊆ Rc where sfm =

NumDV(R,(DR−Sc)∪C)
NumDV(R,DR) .

These equivalence statements are offered without proof.
Rule-D3x is the analog of Rule-D2x and holds under the same conditions (Con-

dition 1). Convergence is faster when the equijoin is independent on the group
columns (noted under Property 3).

Rule-D3y is the analog of Rule-D2y and holds under Condition 1 holds. Con-
vergence is faster when Property 3 holds for the equijoin. This rule, in general,
converges slower than Rule-D3x but leads to a smaller sample.

Rule-D3z is the probabilistic equivalent version of Rule-D3e. It holds under
Condition 1; that is, error converges as the support on groups over DR − Sc on
R tends to ∞. Convergence is faster when Property 3 and/or Property 4 hold
(independence between join columns and group-by columns). That is, a smaller
sample can be taken for the same relation size when these properties hold.

Rule-D3w is the probabilistic equivalent version of Rule-D3g. It holds under
Condition 1. Convergence is faster when Property 3 and/or Property 4 hold (inde-
pendence between join columns and group-by columns). This rule is dominated by
Rule-D3z and converges more slowly. However, it leads to a smaller sample size.

Proposition 12 (Pushing past Join). For relations R1 and R2, with columns Ci
respectively and an equi-join ./C on columns C, we have
Rule-U4: [intentionally empty]
Rule-D4: [intentionally empty]
Rule-V4: ΓV

p,D(R1 ./C R2)
∗⇔ ΓV

p,C(R1) ./C ΓV
p,C(R2), if C = D.

Proof. The proof for Rule-V4 follows from the observation that the expression
on the right picks exactly the same tuples as the expression on the right because

2Assume D = {r1, s1, s2} and the join condition is r3 = s1 where columns ri and si are from
the relations R and S respectively. Then, DR = {r1, r3, s2}.

19



QUICKR ensures that the universe samplers on either side pick the same portion
of the hash-space. That is, this rule only holds if samplers on either side make the
same random decisions.

Discussion: Rule-U4 is intentionally empty; we know no (non-trivial) expres-
sion that pushes uniform samplers into one or both relations that v-dominates, c-
dominates, or is weakly equivalent to ΓU

p (R1 ./C R2). In particular, pushing a
uniform sampler to just one of the join inputs will introduce correlation between
tuples: a tuple that joins with more than one tuple from the other input will either
be picked or not picked. And hence all tuples in the join that derive from this tuple
are picked in one-shot rather than independently. This leads to both a higher vari-
ance and to a higher likelihood of missing groups. Pushing uniform samplers to
both sides has similar issues. We note that it is possible to equalize the probability
of passing individual tuples, but the correlation between tuples is harder to relate
to a single sampler that follows the join.

A careful read of [3] shows that it is possible to find some GUS (generalized
uniform sampler) such that Γgus(R ./C S)

∗⇔ ΓU
p (R) ./C ΓU

q (S). However, as [3]
shows computing the variance of the GUS sampler on the left is non-trivial (re-
quires a self-join on samples). This restricts our ability to reason about accuracy of
the plan at query optimization time. Hence, QUICKR does not use such pushdown
rules.

Rule-D4 is also intentionally empty; we know no expression that pushes dis-
tinct samplers into one or both relations that v-dominates, c-dominates or is weakly
equivalent to ΓD

p,D,δ(R1 ./C R2). The reasoning is similar to the above with uni-
form sampler.

Let us explicitly consider the case of ΓD
p,C,δ(R1) ./C ΓD

p,C,δ(R2). That is, strat-
ified sample both join inputs on the join cols. Analogous to the above reasoning
with uniform sampler, sampling before the join introduces correlation between the
tuples that would not be present were the distinct sampler executed after the join.
Thus, this expression does not dominate an expression with a {uniform, distinct,
or universe} sampler applied after the join. This is the key advantage with the uni-
verse sampler, there is no added error from pushing the sampler to before a join.

We note that even though the above expression neither v-dominates, c-dominates
or is weakly equivalent to a join-then-sample, it will ensure that groups will not be
missed if the group-by columns are identical to the join columns.

Finally, we note that it is possible to do a more intricate joint sampling of
multiple inputs by relying on indices on join columns, exchanging frequency his-
tograms on the join columns between the two sides etc. QUICKR intentionally
steers away from such samplers because of their limited applicability and difficulty
to implement in the wild. For example, indices are rarely available on intermediate
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content as would be generated in a nested SQL statement (roughly half of TPC-H
queries are not a single SQL statement). As another example, computing frequency
histograms and exchanging them is a barrier in the parallel execution and such a
sampler cannot be pushed past further joins.

Note that QUICKR uses ΓV
p,C(R1) ./C ΓV

p,C(R2) in place of ΓU
p (R1 ./C R2)

even though the former has a somewhat higher variance and likelihood of missing
groups. Empirically, error is small due to two reasons (1) it is common to have
many distinct values for C and (2) QUICKR uses cryptographically random hash
functions which avoids collisions.

5.5 Semijoins

Left- and right- semijoins are, for the purposes of pushing samplers, similar to the
case of foreign key joins. The reason is that at most one row in the answer appears
per row of the fact relation. Moreover the schema of join output matches that of the
fact relation simplifying checks for existence of stratification and universe columns
on that relation.

5.6 Other operations (Outerjoins, Union-All, UDOs, Other joins, . . .)

We defer further details of pushing samplers past other operations to future work.
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