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ABSTRACT
Detecting and understanding implicit measures of user satisfaction
are essential for meaningful experimentation aimed at enhancing
web search quality. While most existing studies on satisfaction
prediction rely on users’ click activity and query reformulation
behavior, o�en such signals are not available for all search sessions
and as a result, not useful in predicting satisfaction. On the other
hand, user interaction data (such as mouse cursor movement) is
far richer than just click data and can provide useful signals for
predicting user satisfaction. In this work, we focus on consider-
ing holistic view of user interaction with the search engine result
page (SERP) and construct detailed universal interaction sequences
of their activity. We propose novel ways of leveraging the uni-
versal interaction sequences to automatically extract informative,
interpretable subsequences. In addition to extracting frequent, dis-
criminatory and interleaved subsequences, we propose a Hawkes
process model to incorporate temporal aspects of user interaction.
�rough extensive experimentation we show that encoding the
extracted subsequences as features enables us to achieve signi�-
cant improvements in predicting user satisfaction. We additionally
present an analysis of the correlation between various subsequences
and user satisfaction. Finally, we demonstrate the usefulness of the
proposed approach in covering abandonment cases. Our �ndings
provide a valuable tool for �ne-grained analysis of user interaction
behavior for metric development.
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1 INTRODUCTION
As increasingly larger proportions of users rely on search engine
interactions to satisfy their information needs and as retrieval
systems advance, the need for good evaluation metrics increases.
As such, developing be�er understanding of how users interact
with search engines becomes increasingly important for improving
user’s search experience. Since obtaining explicit feedback from
users is prohibitively expensive and challenging to implement in
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real-world retrieval systems, commercial search engines have ex-
ploited implicit feedback signals derived from user activity. While
users interact with a search engine, they leave behind �ne grained
traces of interaction pa�erns. �ese interaction pa�erns contain
valuable information, which could be useful for predicting user sat-
isfaction as well as developing metrics for search engine evaluation
to assist rapid experimentation.

Recent work has extensively studied implicit feedback measures
(e.g., mouse scrolling, gaze tracking, physiological signals, etc.),
and veri�ed their e�ectiveness in predicting search satisfaction
(or dissatisfaction) [11, 13, 21, 31]. Compared to coarser models
of clicks alone, such user interactions provide additional insight
into searchers’ behavior. Despite recent progress in utilizing such
implicit interaction signals, developing metrics around these sig-
nals o�en involves intensive manual e�ort [11, 20] to gain insights
about the data, and to make use of it for practical applications. Also,
existing models around utilizing detailed user interaction data are
not interpretable and require deep investigation to extract meaning-
ful insights. For example, popular approaches like visualizing areas
of high cursor activity via heatmaps require manual inspection and
lacks detail about sequences of user activity.

In this work, we focus on considering a holistic view of user
interaction with the search engine result page (SERP) and construct
detailed universal interaction sequences of their activity. We pro-
pose novel ways of leveraging the universal interaction timelines to
automatically extract informative, interpretable subsequences. In
addition to proposing ways to extract frequent and discriminative
subsequences, we propose an interleaved subsequence extraction
method which is able to jointly leverage discriminatory and fre-
quent aspects of subsequences to extract subsequences which allow
for noisy actions to interleave amidst more meaningful and infor-
mative signals.

Further, while the subsequences extracted are able to capture
informative user interactions, they ignore the temporal spread of
actions. To this end, we incorporate time in a principled manner
when modeling user interaction sequences and leverage recent ad-
vancements in point process models to do so. We propose a Hawkes
process formulation of interaction sequences which enables us to
weigh the extracted subsequences based on the inter-activity times.
We present a large scale evaluation of the proposed approach us-
ing crowdsourced judgments as well as weakly labeled data and
demonstrate that including the proposed subsequences signi�cantly
improves user satisfaction prediction performance. We additionally
show that the proposed techniques work in abandonment cases too
and can be further explored to develop sophisticated methods for
detecting and predicting good abandonment. Our �ndings provide
a valuable tool for �ne-grained analysis of user interaction behavior
for developing metrics and gauging user satisfaction.
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2 RELATEDWORK
As search systems become more sophisticated, developing tech-
niques for evaluating their performance plays an increasingly piv-
otal role. �e current research builds upon and advances research
in three directions: (i) User Satisfaction prediction, (ii) Implicit feed-
back, and (iii) Subsequence mining.

User Satisfaction
�e concept of satisfaction was �rst introduced in IR researches
in 1970s according to Su et al. [38]. A recent de�nition states that
”satisfaction can be understood as the ful�llment of a speci�ed de-
sire or goal” [24]. However, search satisfaction itself is a subjective
construct and is di�cult to measure. Some existing studies tried to
collect satisfaction feedback from users directly. For example, Guo
et al. ’s work [13] on predicting Web search success and Feild et
al.’s work [6] on predicting searcher frustration were both based
on searchers’ self-reported explicit judgments. Di�erently, other
researchers employed external assessors to restore the users’ search
experience and make annotations according to their own opinions.
For example, Guo et al.�s work [14] on predicting query perfor-
mance was based on this kind of annotations. Recently, simplistic
user feedback signals have been used to gauge user satisfaction. For
instance, it has previously been shown that clicks followed by long
dwell times are correlated with satisfaction [9]. Hassan et al. [16]
propose to use query reformulation as a negative indicator of search
success and thus satisfaction and show how an approach based on
query features outperforms an approach based on click features,
with the best performance being achieved by a combination of the
two. Kim et al. [25] consider three measures of dwell time and
evaluate their use in detecting search satisfaction. Lagun et al.[29]
consider scroll and viewport features for predicting satisfaction in
mobile search.

Subsequence & Timeseries mining
Sequential pa�ern mining was �rst introduced by Agrawal et al. [2]
in the context of market basket analysis, which led to a number of
other algorithms for frequent sequence mining. Frequent sequence
mining su�ers from pa�ern explosion: a huge number of highly
redundant frequent sequences are retrieved if the given minimum
support threshold is too low. We refer the interested reader to
Chapter 11 of [1] for a survey of frequent sequence mining algo-
rithms. �ere has also been some existing research on probabilistic
models for sequences, especially using Markov models. Gwadera et
al. [10] use a variable order Markov model to identify statistically
signi�cant sequences. More recently, Fowkes et al. [8] proposed a
subsequence interleaving model based on a probabilistic model of
the sequence database.

Gestures for Relevance & Satisfaction
Traditional evaluation techniques relied on classical methodolo-
gies that use query sets and relevance judgments. More recently,
a number of di�erent interaction behaviors have been taken into
consideration in the prediction of search user satisfactions includ-
ing both coarse-grained features (e.g. clickthrough based features
in [14]) and �ne-grained ones (e.g. cursor position and scrolling
speed in [13]). Mouse movement information like scroll and hover
have proven to be valuable signals in inferring user behavior and

Figure 1: Example of user interaction with the SERP elements rendered for
the query Brian Sco� NASCAR. �e sequence of green dots denotes the user’s
cursor position over a period of time.

preferences [11, 21, 35], search intent [12], search examination [32]
and predicting result relevance [22]. However, none of these studies
tried to extract mouse movement pa�erns and adopt them to predict
search satisfaction. Arapakis et al. [3] extracted mouse gestures to
measure within-content engagement. Lagun et al. [28] introduced
the concept of frequent cursor subsequences (namely motifs) in the
estimation of result relevance. Di�erent from their work, we focus
on how to extract informative subsequences from user interactions
to help predict search satisfaction a search impression level instead
of result level.

User action sequences have been used to predict user satisfac-
tion [15], graded satisfaction [23] and to study search engine switch-
ing behavior [36, 39]. Sequential user actions have also been used
to explore developing search trails composed of query sequences
for enhancing search support [17, 37]. Our work di�ers from these
works in two aspects. First, while past work considered only high-
level actions, we consider more detailed �ne-grained actions and in
the process, propose few novel user actions. Second, most existing
work uses the entire action sequences to make predictions while
we focus on a slightly di�erent problem of extracting meaningful
subsequences which are most representative of user interaction
and predictive of user satisfaction.

�e closest work to ours is Liu et al. [31] which estimate the
utilities of search results and the e�orts in search sessions with
motifs extracted from mouse movement data on search result pages
(SERPs). Our work is di�erent since we aim at a slightly di�erent
problem of extracting interpretable subsequences and focus on
informative action sequences rather than mouse movement co-
ordinates for predicting search satisfaction.

3 EXTRACTING USER INTERACTION
SEQUENCES

Our goal in this work is to extract informative and interpretable
subsequences from user interaction data which best predict user
satisfaction. In this section, we de�ne key concepts used through-
out the paper (3.1), describe a way to �rst construct and then use
the Universal Timeline of user interaction to extract interaction
sequences (3.2), and �nally analyse the interaction sequences (3.3)
and characterize generic trends in user interaction with the SERP.
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Action Description
Click algoX Click on the X-th algorithmic result
Click Ans Click on any answer (non-image) result
Click IMG Click on any image result

MouseRead horizontal line across a result snippet of length > 50px and duration > 100 ms that goes from
le� to right which starts and ends inside an algo-result, or advertisement or an answer result

Scroll page scroll recorded on the search engine result page
Move any cursor movement of length > 10px and duration greater than > 50 ms

pause

smallPause: no cursor movement on the SERP for time < 5 seconds
mediumPause: no cursor movement on the SERP for 5s < time < 20s
longPause: no cursor movement on the SERP for 20s < time < 40s
veryLongPause: no cursor movement on the SERP for time > 40s

Resize change in the size of the window/screen encompassing the result page
Issue�ery user movement to the Search Box on the SERP and typing of text in the query box

dwellTime
smallDwellTime: dwell time on a clicked result URL with time spent < 10s
mediumDwellTime: dwell time on a clicked result URL with 10s < time < 40s
longDwellTime: dwell time on a clicked result URL with time spent > 40s

�ickBack click on a SERP URL followed by returning back to the SERP within 5s
Table 1: Examples of actions considered along with their description used to create the user interaction sequence.

Example Sequences
Scroll→ smallPause→Move→Move-algo-1→ smallPause→
Move-algo-2→Move-ans→Move→ mediumPause→Move
→Move-algo-2→ smallPause→ Click-algo-2
smallPause→Move→ Click-IMG→ longDwellTime
mediumPause → Scroll → Move algo9 → Move algo8 →
veryLongPause → Move → Click algo3 → �ickBack →
Move algo3→ smallPause

Table 2: Example of sequences extracted.

3.1 De�nitions
We �rst de�ne what constitutes a sequence and use this de�nition
to de�ne subsequence.
Sequence: Given a search impression and a list of possible user
actions, a sequence is de�ned as a time-ordered list of actions
performed by the user when interacting with the search result
page.
Subsequence: is a subset of continuous or interleaved actions
extracted from the sequence.
Informative Subsequence: is a subsequence which helps a sys-
tem predict user satisfaction with the search result page.
Interpretable Subsequence: is a human readable, comprehensi-
ble set of actions which are easy for system designers to understand
and develop metrics around.

Such Informative and Interpretable subsequences represent com-
mon user- and query-invariant subsequences which would be di�-
cult to identify or describe bymanual inspection or feature engineer-
ing. Table 2 presents three examples of user interaction sequences
extracted from real world search tra�c. With this background, we
formally de�ne the problem of extracting subsequences as:

Subsequence Extraction: Given a labeled set of interaction se-
quences with satisfaction labels, our aim in this work is to infer
a set of informative and interpretable subsequences which best
predict user satisfaction with the search result page.

A robust subsequence extraction system helps us extract a set of
meaningful pa�erns that are useful for helping a human analyst
understand the important properties of user interaction, that is,
subsequences should re�ect the most important pa�erns in the in-
teraction data, while being su�ciently concise and non-redundant
that they are suitable for manual examination. �ese criteria are in-
herently qualitative, re�ecting the fact that the goal of subsequence
mining is to build human insight and understanding for subsequent
metric development and satisfaction prediction.

3.2 Universal Timeline Creation
�e richness of the result page rendered in response to a user query
allows users to interact with SERPs in myriad ways, including
clicking results, scrolling, expanding task panels, hovering over
images, pausing to read and absorb content, among others. While
most existing work has considered click based interaction signals
or mouse movement features, these signals either lack coverage or
are o�en abstracted at high SERP-level aggregates, which blinds
the model to �ner level user interaction signals. Our aim here is to
analyze user interaction with the SERP (as depicted in Figure 1) and
extract an interpretable interaction sequence (as shown in Table 2).
To do so, we construct a universal action sequence timeline from
the following three di�erent timelines:

(1) Viewport Timeline: Viewport is de�ned as the position
of the webpage that is visible at any given time to the
user. Viewport timeline allows us to consider user actions
concerning the viewport, for example, scroll on the result
page and resize of the screen.

(2) Cursor Timeline: �e cursor timeline provides us with
all the cursor related user activity. Backend search logs
record detailed user mouse activity which helps us track
the mouse movement and link the corresponding cursor
activity to the di�erent elements on the SERP. Cursor time-
line provides a major portion of the activities we consider
in our work.
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(a) State distribution plot of actions across positions (b) �e entropy plot of actions spread over posi-
tions in interaction sequence.

Figure 2: Analyzing the extracted sequences: (a) State distribution plot & (b) �e entropy plot.

(3) Keyboard Timeline: �e keyboard timeline records all
keyboard related user activity (for example, text enter).

For each search impression, we log the three timelines with
corresponding user actions along with the timestamp. Based on
these three timelines, we generate one holistic universal action
sequence timeline describing all user activity on the SERP by tem-
poral sorting of individual timelines followed by stacking up the
three timelines, and then interleaving them based on timestamps of
the recorded actions. �is provides us with a universal sequence of
user interaction, examples of which are shown in Table 2. We next
take a more detailed look at the actions considered to construct the
timelines.

Actions Considered: In order to construct the three timelines,
we considered a number of actions which includes di�erent types
of interactions performed by the users. For click based actions,
we associate the cursor information with the corresponding ele-
ment on the SERP and recorded the joint action-element pair as
an action, for example, click algo1 signi�ed a click on algorithmic
result at position 1. Beyond clicks, we considered a range of cursor
movement actions ranging from simple Move (denoting a mouse
movement across di�erent SERP element) to more sophisticated
and intentional cursor movements like a MouseRead. We de�ne a
MouseRead as a horizontal line across a result snippet of length >
50px and duration > 100 ms that goes from le� to right which starts
and ends inside an algo-result, or advertisement or an answer result.
Beyond cursor movement actions, we considered inter-activity time
as pauses and categorized a pause into one of three types based
on the duration of the pause: (i) short pause (time), (ii) medium
pause (time) and (iii) longPause (time). We additionally considered
issuing query and scroll related activities. Table 1 lists the major
actions considered.

3.3 Analyzing Interaction Sequences
As shown in Table 2, the set of actions and the total sequence
length di�ers across the di�erent sequences, which hints at an

inherent diversity across the di�erent sequences. While the dataset
considered is described in detail in Sections 6.1 & 7, we consider
a subset of user interactions from a major US commercial search
engine and analyze the extracted interaction sequences based on a
number of factors including sequence length, state distribution and
state entropy.

3.3.1 Sequence Length. Sequence length counts the number of
actions present in the sequence. To some extent, sequence length ap-
proximates user engagement with the SERP with longer sequences
highlighting detailed and richer interaction with the result page.
We observe that most sequences are between 2 - 10 actions long,
with a strong peak at 4-5 actions, denoting that most sequences
average 4-5 actions. �e sequences of length 0 represent abandon-
ment cases wherein the user didn’t interact with the result page at
all. We observe a low rate of abandonment in the data considered.

3.3.2 State Distribution. Wenext analyze the observed sequences
in terms of the actions and the position in the sequence where the
actions appear. Figure 2a shows the action distribution at each po-
sition of the sequence. For each position, we plot the proportion of
sequences which contain a particular action at a particular position
in the sequence. Indeed, as expected, certain actions are more likely
to happen at the start of interaction, for example, click on the �rst
algorithmic result is expected to happen at the start of the user in-
teraction. longDwellTime is another action whose proportion drops
signi�cantly as we go to the right. As expected, long dwell time is
positively correlated with search satisfaction. Since higher ranked
documents result in more satisfying clicks, we notice the presence
of longDwellTime earlier in the sequence. Additionally, we observe
that the occurrence of certain actions decreases towards the right -
which implies that certain actions are more likely to occur at later
stages of user interaction than at the start. Finally, certain actions
are equally likely throughout the sequence, for example, clicks on
image results, mediumPause etc.

3.3.3 State Entropy. In order to measure the diversity of actions
observed at di�erent positions of interactions, we compute the
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Shannon entropy of the action distribution at di�erent positions.
Le�ing pi denote the proportion of sequences having action i at the
considered time sequence position, the entropy is: h(p1,p2, ...,pn ) =
−
∑n
i=1 pi loд(pi ) where s is the size of the alphabet. �e entropy is

0 when all sequences contain the same action and is maximal when
the same proportion of sequences contain each action. �e entropy
can be seen as a measure of the diversity of states observed at the
considered sequence position. Figure 2b presents the entropy scores
across the di�erent positions in the interaction sequence. Higher
entropy implies more diversity in the user actions at that particular
position in the action sequence. We observe lower entropy at
the start of interaction sequences, which implies that there is low
diversity at start of interactions; and the trend continues to exhibit
high diversity at user interacts more. With lower entropy at the
start, we expect low discriminability of the sequence.

4 EXTRACTING INFORMATIVE
SUBSEQUENCES

So far we have looked at how to obtain detailed user interaction
sequences from their interaction with the result page and looked
at some analysis characterizing the observed sequences. Next, we
leverage the interaction sequences to extract informative subse-
quences which are most predictive of user satisfaction. We next
describe three ways of extracting the subsequences.

4.1 Frequent Subsequences
Our �rst method is based on frequent subsequence mining, which
aims at capturing the most common subsequences present in the
observed interaction sequences. �e subsequences are generated
by maintaining a sliding window of a given length and shi�ing
it across the entire sequence for all the sequence. We considered
subsequences with varying sizes from unigrams (individual actions)
to 4-gram subsequences. Table 3 shows the top subsequences of size
2 and above.An advantage of considering frequent subsequences is
the fact that most sequences would contain these subsequences and
hence they don’t su�er from low coverage. We use these extracted
frequent subsequences along with most frequent actions and action
bigrams as features when predicting user satisfaction.

4.2 Discriminative Subsequences
An important and desired characteristic of subsequences is their dis-
criminatory power. Indeed, the more discriminatory a subsequence
is, the be�er it helps us di�erentiate satisfying interactions from un-
successful search interactions. To this end, we propose our second
subsequence extraction method which, given a dataset of observed
subsequences and their corresponding class labels (SAT/DSAT),
aims at extracting the most discriminatory subsequences which
help us best di�erentiate between SAT subsequences from DSAT
subsequences.

Assuming that we are given a set of sequences with the corre-
sponding satisfaction label (SAT/DSAT), we make use of the well-
established chi-square test to compute the discriminatory power
of a given subsequence. �e Chi-square test calculates the proba-
bility of ge�ing the experimental result on the basis that the null
hypothesis is true. In our case, we state the Null and Alternative

Hypothesis as follows:

Null Hypothesis (H0): there is no detectable di�erence between
two classes
Alternative hypothesis (HA): there is a detectable di�erence be-
tween the two classes.

�e statistical principle behind any discrimination test should
be to reject a null hypothesis (H0) that states there is no detectable
di�erence between two classes. Given the observed sequences and
the corresponding class label (SAT/DSAT) as input, the Chi-Square
test computes the residuals based on:

χ2 =
∑ [ (O − E)2

E

]
(1)

where O = observed frequency; E = expected frequency. Table
3 presents the top subsequences ordered by their discriminatory
power for the set of sequences from a labeled dataset (described
in detail in Section 6.1). We observe that a Click→ longDwellTime
is ranked high in terms of discriminatory power which con�rms
established notion that SAT interactions usually have a satisfying
click, i.e., a click followed by a long dwell time. Additionally, we ob-
serve that the extracted discriminatory subsequences picks up new
potentially SAT subsequences, for example: Scroll→ Mouseread
→ Move. We also observe few potential DSAT interactions, as ex-
pressed by the interaction susequence: (smallPause → Move →
mediumPause→ Move) which highlights the user moving around
on the SERP.

An important point to note here is that these discriminatory
subsequences are not that popular - the Index column highlights
the ranked index of the corresponding subsequences based on their
frequency. �is suggests that while these subsequences are discrim-
inatory, they are not that popular and hence might not be more
generally useful in discriminating SAT/DSAT interactions.

4.3 Interleaved Subsequences
One key limitation of the frequent and discriminative methods of
extracting subsequences is that they only look at adjacent actions
while extracting subsequences, while failing to consider interleaved
subsequences. In this section, we introduce an alternate perspec-
tive on subsequence mining, in which we develop subsequences by
interleaving a group of subsequences. We formulate the problem
of identifying a set of important sequences that are useful for ex-
plaining the observed interaction sequences. We de�ne important
subsequence as those subsequences that best explain the observed
sequences under an interleaved model of subsequences.

�antifying Importance:
One can think of importance score as the weight of the subsequence
in the model: the higher the score, the more supported sequences
the subsequence explains. �us importance score provides a more
balanced measure than just frequency and discriminatory aspects
alone, at the expense of missing some frequent subsequences that
only explain some of the observed sequences they support. We
jointly encode the notion of discriminability of the subsequence
together with its support while de�ning the importance score of a



SIGIR ’17, , August 07-11, 2017, Shinjuku, Tokyo, Japan R. Mehrotra et al.

Frequent Subsequences Discriminative Subsequences
Subsequence Coverage Subsequence Index Residual0 Residual1
(Clickother→ longDwellTime) 0.226767 (smallPause→Move→ Click 138 -2.21152 2.123184
(Scroll→ smallPause) 0.215066 (Scroll→Move→ smallPause→Move→ Click-algo3→ longDwellTime 735 -2.19005 2.102566
(Clickalgo1→ longDwellTime) 0.169337 (Clickalgo1→ longDwellTime) 15 -1.78004 1.708939
(smallPause→ Clickother) 0.159562 (Move→ smallPause→Move→ mediumPause→Move) 265 1.950145 -1.87225
(smallPause→ mediumPause) 0.131312 (Scroll→ smallPause→Move→ ClickLI) 569 -1.98225 1.903068
(smallPause→ Clickother→ longDwellTime 0.125173 (Move→ Clickalgo1) 70 -1.84755 1.773754
(mediumPause→ smallPause) 0.120038 (smallPause→ mediumPause→Move) 105 1.861069 -1.78673
(smallPause→ Clickalgo1) 0.114195 (Scroll→ mouseRead→Move) 376 -1.9366 1.859247
(smallPause→ mouseRead) 0.114129 (smallPause→Move→ mouseRead→Move) 134 -1.68427 1.616994

Table 3: Frequent & Discriminative subsequences extracted. Coverage represents the fraction of sequences which contain the frequent subsequences. Index
refers to the rank in terms of frequency of the subsequence, while Residual0 and Residual1 denote the discriminatory power of the subsequence for predicting
DSAT and SAT respectively.

subsequence. More formally,

imp (S ) = φ (S )

∑N
i=1[z

i
S ≥ 1]

supp (S )
(2)

where φ (S ) denotes the dsicriminability score of a subsequence
obtained from Section 4.2, ∑N

i=1[z
i
S ≥ 1] counts the number of se-

quences explained by the subsequence S and supp (S ) is the support
of the subsequence S . �e variable ziS counts the number of times
the subsequence S appears in the i-th sequence in an interleaved
manner. �e primary intuition while selecting subsequences being
to prefer subsequences which are discriminative while at the same
time cover a larger number of observed sequences.

We next describe the approach for generating new candidate
subsequences that are to be considered for inclusion in the set
of interleaved subsequences. We initialize the set of interleaved
subsequences with singleton actions along with their supports. We
maintain a priority queue ordered by the importance score and
sort the current set I by decreasing order of importance score. �e
algorithm then iteratively selects all ordered pairs S1,S2 ∈ I and
generates a new candidate S = S1S2 and adds the candidate to the
priority queue. Finally, we pull the top-k highest ranked candidate
based on their importance score to compose the set of interleaved
subsequences.

An important information which we haven’t utilized so far is
the temporal aspect of the user interaction. We next describe a
principled approach of incorporating time while using the extracted
subsequences in the SAT prediction model.

5 INCORPORATING TIME VIA HAWKES
PROCESS

While the subsequences extracted so far are able to capture informa-
tive user interactions, they ignore the temporal spread of actions. So
far, time has been modeled in terms of few time-related aspects like
pause and dwell time. In this section, we aim at incorporating time
in a principled manner when modeling user interaction sequences.
We leverage recent advancements in point process models and pro-
pose a Hawkes process formulation of interaction sequences. We
�rst give a brief background on Hawkes process (5.1) and later
describe how we use the Hawkes process model parameters for
weighing the extracted subsequences (5.3).

5.1 Hawkes Process
A point process N is a random measure on a completely separable
metric space S that takes values on N ∪ {∞}. A point process is

typically characterized by prescribing its conditional intensity λ(t ),
which represents the in�nitesimal rate at which events are expected
to occur around a particular time t, given the history of the process
up to t,Ht = ti : ti < t [33, 34]�us, in a point process, N (t ) counts
the number of points (i.e., occurrences of events) in (−∞,t], and
the conditional intensity function λ(t |Ht ) denotes the expected
instantaneous rate of future events at timestamp t depending on
Ht , the history of events preceding t .

An important example of a point process is the Poisson process,
which always has a deterministic conditional intensity λ(t ). We
say that a point process N is self-exciting if

Cov[N (t1,t2),N (t2,t3)] > 0 (3)

for any t1 < t2 < t3 . �is means that if an event occurs, a successive
event becomes more likely to occur locally in time and space. �is
is, however, not true for a Poisson process which has independent
increments, hence Cov[N (t1,t2),N (t2,t3)] = 0.

�e Hawkes process is a speci�c class of self- or mutually-
exciting point process models [18, 19]. A univariate Hawkes process
{N (t )} is de�ned by its intensity function

λ(t ) = µ (t ) +

∫ t

−∞

µ (t − s )dN (s ) (4)

where λ0 : <→ <+ is a deterministic base intensity, µ : <+ → R+

is a kernel function expressing the positive in�uence of past events
on the current value of the intensity process. In terms of discrete
time intervals, we can re-write the intensity function as:

λ(t ) = λ0 (t ) +
∑
ti<t

µ (t − s ) (5)

�e process is well known for its self-exciting property, which
refers to the phenomenon that the occurrence of one event in the
past increases the probability of events happening in the future.
Such a self-exciting property can either exist between every pair
of events, as assumed in a normal univariate Hawkes process, or
only exist between limited pairs of events. We next formulate the
extracted interaction sequence in a multi-variate version of Hawkes
processes and later describe a way of weighing the subsequences
using the Hawkes process parameters.

5.2 Modeling Sequences
Given a set of user interaction sequences composed of (maximum)
M distinct actions, we model the sequences using a Multivariate
Hawkes process model. A Multivariate Hawkes process can be
de�ned as an d-dimensional Hawkes process wherein events can
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occur along any of the d-dimensions at any given time. Each one-
dimensional Hawkes process can be in�uenced by the occurrence of
events of other types. Without loss of generality, we will consider
that these mutual excitations take place along the edges of an
unweighted directed network G = (V, E) of d nodes and adjacency
matrix A ∈ {0,1}d×d . �e intensity function in a d-dimensional
multivariate Hawkes process can be de�ned as:

λ(t ) = λm (t ) +
∑

m:tm<t
Aumuκumu (t − tm ) (6)

where λm (t ) ≥ 0 is the natural occurrence rate of events of type
m (i.e. along that dimension) at time t , and the triggering kernel
function evaluation κuv (t − tm ) ≥ 0 determines the increase in the
occurrence rate of events of type u at time ti , caused by an event
of type v at a past time.

In our case, the number of dimensions corresponds to the number
of actions considered (M); the intensity function for each dimen-
sion can be interpreted as a rate at which that action occurs. �e
summation in the second term is over all the action events that
have happened up to time t . λm (t ) describes the background rate
of action occurrence that is time-independent, whereas the second
term describes the mutual-excitation part, so that another action
in the past increases the probability of observing this action in the
(near) future. �e natural occurrence rates and triggering kernels
are usually inferred by means of log-likelihood maximization, the
details of which are beyond the scope of the current work. We refer
interested readers to Embrechts et al. [5].

5.3 Kernel Weighting of Subsequences
�e Hawkes process model described above enables us to compute
the base rates for each action (λ0 (m)) as well as the triggering kernel
(κuv ∈ RM×M ). �e triggering kernel value (κuv ) capture the mu-
tually exciting property between the actions u and v . Intuitively, it
captures the dynamics of in�uence of events occurred in the action
v to the action u. As such, larger value of κuv indicates that action
u is more likely to trigger an occurrence of action v . We propose
to use the triggering kernel to score each subsequence extracted
by the techniques proposed earlier. Hawkes kernel weighting of
the subsequences allows us to incorporate temporal aspects of the
interaction; thereby weighing temporally relevant subsequences
more than others. Given a subsequence, we look at adjacent pair-
wise actions in the subsequence, compute the kernel trigger score
for the corresponding pair, and average it across all the adjacent
action pair in the subsequence. We then use the obtained averaged
kernel weight of the subsequence as a feature for SAT prediction
experiment.

6 EXPERIMENTAL EVALUATION
Estimating user satisfaction from user behavior signals is of critical
importance to web search engines. In this section, we demonstrate
how automatically extracted subsequences can be used to improve
estimation of user satisfaction. We conduct a number of experi-
ments using crowdsourced judgments as well as real world search
engine tra�c and compare the proposed approach to a number of
baselines.

6.1 Crowdsourced Judgments
Our data consists of a random sample of user sessions from a major
US commercial search engine engine during a week in June 2016.
We randomly sampled user sessions with substantial user activity,
and included all queries and the search result page rendered for all
search impressions from that user in the timeframe. Additionally,
detailed user activity on the result page was logged for model
development. Crowdsourced judgments have commonly been used
to obtain labeled data [40, 41]. For each search impression, we
obtained human labeled judgments on whether the user interaction
was satisfying (labeled SAT) or not (labeled DSAT).

�e labeling was conducted using an in-house micro-tasking
platform that outsources crowd work to vendors, similar to Crowd-
Flower, and provides access to judges who regularly perform rel-
evance judgment tasks. Workers were under NDA and all data
containing personal identi�able information (PII), such as names,
phone numbers, addresses, or social security numbers, were re-
moved. �e internal human annotation platformwas used to design,
publish and manage human annotation tasks.

Detailed guidelines were issued to the judges to describe the task
and a number of examples were shown explaining how to judge for
satisfaction. To ensure the quality of the judging results, we apply
a series of quality control methods. One of the methods is creating
’gold hits’ that you already know the answer of, then measure the
judges by comparing how far o� their answers are from the gold
hits answers. We also measure the quality of the judgments with
the amount of consensus reached which required overlap on the
hits, i.e. the same hit to be judged by multiple judges.

In order to provide relevant information to the judges, we pro-
vided a detailed summary of user interaction with the SERP. �e
judges were provided a link to the SERP shown to the user along-
side details like number of clicks, time spent on the SERP and scroll
information. Additionally, for all the clicked documents, we pro-
vided URL level details which included the exact URL, the position
on the SERP where it was shown and the total dwell time on each
URL.

We randomly sampled over 2100 user sessions and over 450
judges provided judgments for about 6820 search impressions, re-
sulting in over 20460 judgments. Among the �rst two judgments
collected for each query, the judges agreed on the label 74% of
the time. We measured inter-rater agreement using Fleiss’ Kappa
[7], which allows for any number of raters and for di�erent raters
rating di�erent items. �is makes it an appropriate measure of
inter-rater agreement in our study since di�erent judges provided
labels for di�erent items. A kappa value of 0 implies that any rater
agreement is due to chance, whereas a kappa value of 1 implies
perfect agreement. In our data, κ = 0.64, which, according to Landis
and Locke [30], represents substantial agreement.

6.2 Baselines
We consider a number of baselines from recent published literature.

• Baseline 1 (click with dwell time): �is baseline is based
on the common approach in the literature as labeling satis-
faction as occurring if a user clicks on a search result and
then spends a minimum of t seconds on a page and does
not follow the query up with a reformulation. Spending
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Method Accuracy Pos P Pos R Neg P Neg R
Baseline 1 (Clicks + DwellTime) 0.56 0.99 0.559 0 0
Baseline 2 (Click based actions) 0.59 0.58 0.99 0 0
Baseline 3 (Mouse Movement) 0.606 0.643 0.741 0.587 0.454
Baseline 4 (Scroll & Viewport) 0.586 0.679 0.703 0.521 0.364
Baseline 5 (Reading Pa�ern Signals) 0.596 0.652 0.771 0.564 0.415
All Actions 0.62* 0.653 0.775 0.562 0.414
Action Bigrams 0.582 0.594 0.93 0.521 0.096
Frequent Subsequences 0.603 0.626 0.811 0.52 0.29
Discriminative Subsequences 0.592 0.61 0.886 0.56 0.18
Interleaved Subsequences 0.613 0.631 0.862 0.572 0.22
Actions + Frequent + Discriminative Subsequences 0.622* 0.65 0.8 0.581 0.39
Hawkes weighted Actions 0.631* 0.663 0.781 0.57 0.462*
Hawkes-weigthed-Actions + Hawkes-weigthed-Subsequences 0.672* 0.677 0.86 0.65* 0.37

Table 4: Measurements of prediction quality based on di�erent methods on all user study data. ∗ indicates statistical signi�cant (p ≤ 0.05) using paired t-tests
compared to the corresponding best performing baseline.

a minimum amount of time on a webpage is known as a
long dwell click and has been shown to be correlated with
satisfaction [26]. In this study, we set t = 30 seconds.

• Baseline 2 (click based actions): �is baseline is based on
predicting satisfaction based on clickthrough based fea-
tures [13].

• Baseline 3 (Mouse movement): �is baseline is based on
recent work aimed at predicting satisfaction using mouse
movement pa�erns.

• Baseline 4 (Scroll & Viewport): �is baseline is based on
the recently proposed scrolling and viewport features [41]

• Baseline 5 (Reading pa�ern signals): �is baseline is based
on the reading pa�ern signals from Kiseleva et al.[27]

We additionally consider variants of the proposed techniques: (i) All
Actions, (ii) action bigrams, (iii) the three di�erent types of extracted
subsequences, (iv) hawkes weighted actions and (v) combinations
of di�erent features.

6.3 SAT Prediction
Based on the obtained judgments, we aim at predicting user satis-
faction for each impression. We used Gradient Boosted Decision
Trees (GBDT) as the classi�er with 5-fold cross-validation for all
the results reported. Each extracted subsequence was used as a
feature, �rst with a binary label marking its presence and then
with the temporal Hawkes weights. We compare the proposed
subsequence based features with a number of standard techniques
used in state-of-the-art user satisfaction prediction systems. Table
4 presents the prediction results for the crowdsourced data.

6.3.1 �antifying gains of detailed actions. We begin by investi-
gating the gains obtained by considering �ne-grained user actions
over traditionally used clickbased and dwell time based features.
Clicks and dwell times have been shown to accurately predict user
satisfaction [26] and power a number of industrial experimentation
metrics [42]. We observe a 6% increase in SAT prediction accu-
racy over dwell time based features and ∼ 3% increase over click
based actions. We also observe that considering all actions are more
predictive than individual scroll based or mouse movement based
signals. �is suggests that adding �ne grained user actions indeed

helps improve prediction performance, and that other types of ac-
tions beyond clicks, are also informative and should be considered
by developing metrics.

6.3.2 Comparing subsequences. Having shown the utility of
considering �ne grained actions beyond clicks, we investigate the
performance of the various proposed subsequence extraction tech-
niques. We observe that the action bigrams perform the worst
among the extracted subsequences, with all three frequent, dis-
criminatory and interleaved subsequences performing be�er. It is
interesting to note that the discriminatory subsequences do not
perform as well as the frequent ones, despite that the fact that
they’re discriminatory by de�nition. Such poor performance of
discriminatory might stem from the fact that most of the discrimi-
natory subsequences are ranked very low in terms of frequency;
hence, despite them being helpful in discriminating the SAT in-
teractions form DSAT ones, they may not always be present and
hence impact the prediction accuracy to a less extent. Additionally,
the joint encoding of discriminability and importance enables the
Interleaved subsequences to perform the best among the extracted
subsequences. Such subsequences, when combined with actions,
results in over 6% improvement over click and dwell time baseline.

6.3.3 �antifying Benefits of Incorporating Temporal Aspects.
We observe that incorporating temporal aspects of user interac-
tion helps. As can be seen from the improved performance of the
Hawkes process weighted actions, the SAT prediction accuracy
increases by ∼ 5% over the action bigrams and performs slightly
be�er than other subsequence extraction techniques as well as
the best baseline performance. When the temporal aspects of all
extracted subsequences are incorporated via Hawkes weighting
scheme, we observe an improvement of over 12% in terms of pre-
diction accuracy over traditionally used click and dwell time based
signals. Indeed, time plays a major role in di�erentiating satisfying
user interactions from DSAT interactions.

6.4 Feature Correlation Analysis
One major motivation for the current work is to extract meaningful
informative and interpretable subsequences from user interactions
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Top Positively Correlated Top Negatively Correlated
Subsequence Correlation Subsequence Correlation
longDwellTime 0.213252 Scroll, mediumPause, smallPause -0.05476
Clickalgo1 0.109037 smallPause, mediumPause, Move -0.05183
Clickalgo1, longDwellTime 0.102703 Move, smallPause, mediumPause, Move -0.03799
Move, Clickalgo1 0.102603 Move, Issue�ery -0.03356
smallPause, Move, ClickLI, longDwellTime 0.053584 longPause, Move -0.02571
smallPause, Move, mouseRead, Move 0.050649 Issue�ery -0.02363

Table 5: Correlation analysis of the di�erent subsequences.
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Figure 3: Impact on Abandonment Cases

for developing satisfaction metrics. To this end, we present the
feature correlation analysis in Table 5 to gauge the impact of the
di�erent subsequences on predicting user satisfaction. We com-
pute the Pearson correlation between the user SAT label and the
subsequences and show the top most informative subsequences.

�e correlation results re-establish known facts - clicks and long
dwell time features are strongly correlated with predicting SAT. Be-
yond clicks and dwell time, we observe that frequent subsequences
like Scroll→Move→ Pause are also predictive of SAT label. �e
discriminatory subsequence: smallPause→Move→MouseRead→
Move is strongly correlated with the satisfaction label. Additionally,
subsequences highlighting general random user movement in the
SERP, for example: Move→ smallPause→ mediumPause→ Move,
is negatively correlated with satisfaction. �ese correlation results
could provide insight into which kind of interaction signals should
be detected and used for gauging user satisfaction.

6.5 Impact on Abandonment Cases
O�en, there are cases where a user may not click on any search
result but still be satis�ed. �is scenario is referred to as good aban-
donment and presents a challenge for most approaches measuring
search satisfaction, which are usually based on clicks and dwell
time. As our �nal crowdsourcing experiment, we consider the util-
ity of the proposed methods in the abandonment cases. We consider
all impressions which had no click activity in the user interaction
sequence and repeat the user satisfaction prediction experiment on
the considered sequences. Figure 3 presents the results. We observe
that the same approach works well in abandonment cases too. SAT
prediction accuracy increases as we incorporate signals and actions
beyond clicks and dwell time. We observe that a combination of
di�erent subsequences and temporal aspects via Hawkes process
outperforms all other approaches and boosts the SAT prediction ac-
curacy to over 74%. We leave the detailed exploration of interaction
signals for good abandonment cases for future work.

7 LARGE SCALE PSEUDO-LABELLED DATA
Owing to the limited scale of experimentation possible with crowd-
sourced judgments as well as the di�erences in opinion of crowd-
sourced judges and actual users, we may have insu�cient data and
labels to reliably evaluate the performance of the proposed subse-
quence extraction techniques. To resolve this problem, we build a
pseudo-labeled dataset comprised of large-scale query logs wherein
we randomly extracted over 148000 query impressions from the
query logs of the same search engine that provided the data for
the crowd-sourced assessment. To assign pseudo satisfaction labels
to search interactions, we assume that a click followed by a query
reformulation is a dissatis�ed click, while a click with a dwell time
of ≥ 30 seconds not followed by a query reformulation is a satis�ed
click. A query reformulation is the act of submi�ing a follow up
query to modify a previous search query in hope of retrieving be�er
results. Post-click query reformulation is considered a strong DSAT
predictor and has been used as a predictor of search satisfaction in
previous work [16, 26]. �e intuition here is that dissatis�ed users
will reformulate their queries, while satis�ed users will not. �is
is a crude estimate of user satisfaction but it allows us to easily
generate large numbers of pseudo labeled instances without lever-
aging any information about the click itself (which could lead to
confounding).

To identify query reformulations we use a method similar to
that described in Boldi et al.[4], where features of query similarity
(e.g. edit distance, word overlap, etc.) and time between queries are
used to identify query reformulations. Using these assumptions,
we randomly collected 14,670 user sessions with 148561 search
impressions from the search logs of the engine described earlier.

Table 6 presents measurement of prediction quality on this
dataset. We observe a similar trend with respect to the relative
performance of the actions and subsequences for satisfaction pre-
diction. We �nd that �ne grained actions perform be�er than the
baseline methods, and the interleaved subsequences performing the
best among the extracted subsequences. Finally, adding temporal
aspect via Hawkes weighting scheme helps boost predictive power
by over 7% compared to the best performing baseline.

8 DISCUSSION
Predicting user satisfaction plays an instrumental role in designing
and experimenting with search systems. We adopted a novel way of
considering user interactions, and constructed universal interaction
sequences and leveraged them via three methods to extract informa-
tive subsequences which performed be�er than generic click and
dwell time based action signals for predicting user satisfaction. Fur-
ther, we proposed a Hawkes process model to incorporate temporal



SIGIR ’17, , August 07-11, 2017, Shinjuku, Tokyo, Japan R. Mehrotra et al.

Method Accuracy Pos P Pos R Neg P Neg R
Baseline 1 (Clicks + DwellTime) 0.522 0.965 0.511 0.22 0.18
Baseline 2 (Click based actions) 0.59 0.602 0.3 0.531 0.79
Baseline 3 (Mouse Movement) 0.583 0.592 0.92 0.531 0.11
Baseline 4 (Scroll & Viewport) 0.605 0.61 0.81 0.51 0.28
Baseline 5 (Reading Pa�ern Signals) 0.563 0.581 0.742 0.54 0.13
All Actions 0.62 0.655 0.771 0.562 0.4
Action Bigrams 0.595 0.59 0.937 0.512 0.09
Frequent Subsequences 0.603 0.611 0.812 0.51 0.283
Discriminative Subsequences 0.591 0.6 0.88 0.55 0.17
Interleaved Subsequences 0.613* 0.645 0.761 0.572 0.32
Actions + Frequent + Discriminative Subsequences 0.622* 0.64 0.802 0.582 0.38
Hawkes weighted Actions 0.635* 0.657 0.77 0.565* 0.41
Hawkes-weigthed-Actions + Hawkes-weigthed-Subsequences 0.667* 0.665 0.872 0.656* 0.37

Table 6: Measurements of prediction quality based on di�erent methods on large scale pseudo-labelled dataset. ∗ indicates statistical signi�cant (p ≤ 0.05) using
paired t-tests compared to the corresponding best performing baseline.

aspects of user interactions while modeling the extracted subse-
quences, which when combined with other signals, outperforms
all the baselines considered.

�e promising results call for deeper investigation into such
detailed user activity. Our investigation suggests three concrete
areas of further investigation: (i) the type of search result shown, (ii)
user type analysis to detect user groups for personalized interaction
modeling and (iii) development of sequential models around the
extracted universal interaction sequences.
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