
Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key
Primitives∗

Melissa Chase
Microsoft Research

David Derler
Graz University of Technology

Steven Goldfeder
Princeton

Claudio Orlandi
Aarhus University

Sebastian Ramacher
Graz University of Technology

Christian Rechberger
Graz University of Technology & DTU

Daniel Slamanig
Graz University of Technology

Greg Zaverucha
Microsoft Research

Abstract

We propose a new class of post-quantum digital signa-
ture schemes that: (a) derive their security entirely from
the security of symmetric-key primitives, believed to be
quantum-secure, and (b) have extremely small keypairs,
and, (c) are highly parameterizable.

In our signature constructions, the public key is an im-
age y = f (x) of a one-way function f and secret key x.
A signature is a non-interactive zero-knowledge proof of
x, that incorporates a message to be signed. For this
proof, we leverage recent progress of Giacomelli et al.
(USENIX’16) in constructing an efficient Σ-protocol for
statements over general circuits. We improve this Σ-
protocol to reduce proof sizes by a factor of two, at no
additional computational cost. While this is of indepen-
dent interest as it yields more compact proofs for any
circuit, it also decreases our signature sizes.

We consider two possibilities for making the proof
non-interactive, the Fiat-Shamir transform, and Unruh’s
transform (EUROCRYPT’12,’15,’16). The former has
smaller signatures, while the latter has a security anal-
ysis in the quantum-accessible random oracle model. By
customizing Unruh’s transform to our application, the
overhead is reduced to 1.6x when compared to the Fiat-
Shamir transform, which does not have a rigorous post-
quantum security analysis.

We implement and benchmark both approaches and
explore the possible choice of f , taking advantage of the
recent trend to strive for practical symmetric ciphers with
a particularly low number of multiplications and end up
using LowMC.

∗This paper is a merge of [32, 44]. D. Derler, S. Ramacher, C. Rech-
berger, and D. Slamanig have been supported by H2020 project PRIS-
MACLOUD, grant agreement n◦644962. C. Rechberger has additionally
been supported by EU H2020 project PQCRYPTO, grant agreement
n◦645622. C. Orlandi has been supported by COST Action IC1306.

1 Introduction

More than two decades ago Shor published his
polynomial-time quantum algorithm for factoring and
computing discrete logarithms [78]. Since then, we know
that a sufficiently powerful quantum computer is able to
break nearly all public key cryptography used in prac-
tice today. This motivates the invention of cryptographic
schemes with post quantum (PQ) security, i.e., security
against attacks by a quantum computer. While no suffi-
ciently powerful quantum computer currently exists, to
avoid a rushed transition from current cryptographic al-
gorithms to PQ secure algorithms, NIST recently an-
nounced a post-quantum crypto project.1 The project
is seeking proposals for public key encryption, key ex-
change and digital signatures thought to have PQ secu-
rity. The deadline for proposals is fall 2017.

In this paper we are concerned with constructing sig-
nature schemes for the post-quantum era. The build-
ing blocks of our schemes are interactive honest-verifier
zero-knowledge proof systems (Σ-protocols) for state-
ments over general circuits and symmetric-key primi-
tives, which are conjectured to remain secure in a post-
quantum world.

Post-Quantum Signatures. Perhaps the oldest signa-
ture scheme with post-quantum security are one-time
Lamport [61] signatures, built using hash functions. As
Grover’s quantum search algorithm can invert any black-
box function [50] with a quadratic speed-up over clas-
sical algorithms, this requires doubling the bit size of
the hash function’s domain, but requires no additional
assumptions to provably achieve post-quantum security.
Combined with Merkle-trees, this approach yields state-
ful signatures for any polynomial number of messages
[69], where the state ensures that a one-time signature
key from the tree is not reused. By making the tree very
large, and randomly selecting a key from it (cf. [45])

1http://csrc.nist.gov/groups/ST/post-quantum-crypto/

1

http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html

along with other optimizations, yields practical stateless
hash-based signatures [16].

There are also existing schemes that make struc-
tured (or number-theoretic) assumptions. Code-based
signature schemes can be obtained from identification
schemes based on the syndrome decoding (SD) prob-
lem [68, 79, 83] by applying a variant of the well-known
Fiat-Shamir (FS) transform [38]. Lattice-based signature
schemes secure under the short integer solution (SIS)
problem on lattices following the Full-Domain-Hash
paradigm [12] have been introduced in [41]. More ef-
ficient approaches [7, 8, 63, 64] rely on the FS transform
instead of FDH. BLISS [34], a very practical scheme,
also relies on the FS transform, but buys efficiency at the
cost of more pragmatic assumptions – i.e. a ring version
of the SIS problem. For signatures based on problems re-
lated to multivariate systems of quadratic equations only
recently have provably secure variants relying on the FS
transform been proposed [54].

When it comes to confidence in the underlying as-
sumptions, hash-based signatures are arguably the pre-
ferred candidate among all existing approaches. All
other practical signatures require an additional structured
assumption (in addition to assumptions related to hash
functions). Our approach, like hash-based signatures,
only requires security from symmetric primitives like
hash functions and pseudorandom functions (PRFs) and
we also require no additional structured assumptions.

1.1 Contributions
We contribute a novel class of practical post-quantum
signature schemes. Our approach only requires symmet-
ric key primitives like hash functions and PRFs and does
not require additional structured hardness assumptions.

Along the way to building our signature schemes, we
make several contributions of general interest to zero-
knowledge proofs both in the classical and post-quantum
setting:

• We improve ZKBOO [42], a recent Σ-protocol for
proving statements over general circuits. We reduce
the transcript size of by more than half without in-
creasing the computational cost. We call the im-
proved protocol ZKB++. This improvement is of
general interest outside of our application to post-
quantum signatures as it yields significantly more
concise zero knowledge proofs even, in the classi-
cal setting.
• We also show how to apply Unruh’s generic trans-

form [80, 81, 82] to obtain a non-interactive coun-
terpart of ZKB++ that is secure in the quantum-
accessible random oracle model (QROM; see [17]).
To our knowledge, we are the first to apply Unruh’s
transform in an efficient signature scheme.

• Unruh’s construction is generic, and does not im-
mediately yield compact proofs. However, we spe-
cialize the construction to our application, and we
find the overhead was surprisingly low – whereas a
generic application of Unruh’s transform incurs a 4x
increase in size when compared to FS, we were able
to reduce the size overhead of Unruh’s transform
to only 1.6x. Again, this has applications wider
than our signature protocol as the protocol can be
used for non-interactive post-quantum zero knowl-
edge proofs secure in the QROM.

We build upon these results to achieve our central
contribution: two concrete signature schemes. In both
schemes the public key is set up to be an image y = f (k)
with respect to one-way function f and secret key k. We
then turn an instance of ZKB++ to prove knowledge of
k into two signature schemes – one using the FS trans-
form and the other using Unruh’s transform. The FS vari-
ant, dubbed Fish, yields a signature scheme that is secure
in the ROM, whereas the Unruh variant, dubbed Picnic,
yields a signature scheme that is secure in the QROM,
and we include a complete security proof.

We review symmetric-key primitives with respect to
their suitability to serve as f in our application and con-
clude that the LOWMC family of block ciphers [4, 6]
is well suited. We explore the entire design space of
LOWMC and show that we can obtain various trade-offs
between signature size and computation time. Thereby,
our approach turns out to be very flexible as besides the
aforementioned trade-offs we are also able to adjust the
security parameter of our construction in a very fine-
grained way.

We provide a an implementation of both schemes for
128-bit post-quantum security, demonstrating the practi-
cal relevance of our approach. Moreover, we rigorously
compare our schemes with other practical provably se-
cure post-quantum schemes.

1.2 Related Work
We now give a brief overview of other candidate schemes
and defer a detailed comparison of parameters and per-
formance to Section 7. We start with the only existing
instantiation that only relies on standard assumptions,
i.e., comes with a security proof in the standard model
(SM). The remaining existing schemes rely on structured
assumptions related to codes, lattices and multivariate
systems of quadratic equations that are assumed to be
quantum-immune and have a security proof in the ROM.
By the end of the section, we review the state of the art
in zero-knowledge proofs for non-algebraic statements.

Hash-Based Signatures (SM). Hash-based signatures
are attractive as they can be proven secure in the standard

2

model (i.e., without ROs) under well-known properties
of hash functions such as second preimage resistance.
Unfortunately, highly efficient schemes like XMSS [21]
are stateful, which seems to be problematic for practi-
cal applications [66] and desirable to omit. Stateless
schemes like SPHINCS [16] are thus more desirable,
but this comes at reduced efficiency and increased signa-
tures. SPHINCS has a tight security reduction to the used
building blocks, i.e., hash functions, PRGs and PRFs.
On a 128 bit post-quantum security level, signatures are
about 41 kB in size, and keys are of size about 1 kB each.

Code-Based Signatures (ROM). In the code-based set-
ting the most prominent and provably secure approach is
to convert identification schemes due to Stern [79] and
Véron [83] to signatures using FS. For the 128 bit secu-
rity level and accounting for Grover one obtains signa-
ture sizes of around≈ 129 kB (in the best case) and pub-
lic key size of ≈ 160 bytes.2 We note that there are also
other code-based signatures [25] based on the Niederrei-
ther [70] dual of the McEliece cryptosystem [65], which
do not come with a security reduction, have shown to be
insecure [36] and also do not seem practical [62]. There
is a more recent provably secure approach [35], however,
it is not immediate if this leads to efficient signatures.

Lattice-Based Signatures (ROM). For lattice based sig-
natures there are two major directions. The first are
schemes that rely on the hardness of worst-to-average-
case problems in standard lattices [41, 64, 8, 28, 7]. Al-
though they are desirable from a security point of view,
they suffers from huge public keys, i.e., in the orders of
a few to some 10 MBs. TESLA [7] (based upon [8, 64])
improves all aspects in the performance of GPV [41],
but still has keys in the order of 1 MB. More efficient
lattice-based schemes are based on ring analogues of
classical lattice problems [51, 34, 9, 3, 10] whose secu-
rity is related to hardness assumptions in ideal lattices.
These constructions allow to drop key sizes to the order
of a few kBs. Most notable is BLISS [34, 33], which
achieves performance nearly comparable to RSA. How-
ever, it must be noted, that ideal lattices have not been
investigated nearly as deeply as standard lattices and thus
there is less confidence in the assumptions (cf. [73]).

MQ-Based Signatures (ROM). Recently, Hülsing et
al. in [54] proposed a post-quantum signature scheme
(MQDSS) whose security is based on the problem of
solving a multivariate system of quadratic equations.
Their scheme is obtained by building upon the 5-pass (or
3-pass) identification scheme in [76] and applying the FS
transform. For 128 bit post-quantum security signature
sizes are about 40 kB, public key sizes are 72 bytes and

2The given estimations are taken from a recent talk of Nicolas
Sendrier (available at https://pqcrypto.eu.org/mini.html), as,
unfortunately, there are no free implementations available.

secret key sizes are 64 bytes. We note that there are other
MQ-based approaches like Unbalanced Oil-and-Vinegar
(UOV) variants [72] or FHEv− variants (cf. [74]), having
somewhat larger keys (order of kBs) but much shorter
signatures. However, they have no provable security
guarantees, the parameter choice seems very aggressive,
there are no parameters for conservative (post-quantum)
security levels, and no implementations are available.

Supersingular Isogenies (QROM). Yoo et al. in [84]
proposed a post-quantum signature scheme whose secu-
rity is based on supersingular isogeny problems. The
scheme is obtained by building upon the identification
scheme in [37] and applying the Unruh transform. For
128 bit post-quantum securit signature sizes are about
140 kB public key sizes are 768 bytes and secret key
sizes are 49 bytes.

At the same time, Galbraith et al. [39] published a
preprint containing one conceptually identitcal isogeny-
based construction, and one based on endomorphism
rings. They report improved signature sizes using a time-
space tradeoff and only present their improvements in
term of classical security parameters.

Zero-Knowledge for Arithmetic Circuits. Zero-
knowledge (ZK) proofs [47] are a powerful tool and exist
for any language in NP [46]. Nevertheless, practically
efficient proofs were until recently only known for re-
stricted languages covering algebraic statements in cer-
tain algebraic structures, e.g., discrete logarithms [77,
26] or equations over bilinear groups [49]. Express-
ing any NP language as a combination of algebraic cir-
cuits could be done for example by expressing the rela-
tion as a circuit, however for circuits of practical interest
(such as hash functions or block ciphers), this gets pro-
hibitive. Even SNARKS, where proof size can be made
small (and constant) and verification is highly efficient,
have very costly proofs (cf. [40, 14, 24] and the refer-
ences therein).3 Unfortunately, signatures require small
proof computation times (efficient signing procedures),
and this direction is not suitable.

Quite recently, dedicated ZK proof systems for state-
ments expressed as Boolean circuits by Jawurek et
al. [56] and statements expressed as RAM programs by
Hu et al. [53] have been proposed. As we exclusively
focus on circuits, let us take a look at [56]. They pro-
posed to use garbled circuits to obtain ZK proofs, which
allow to efficiently prove statements like knowledge of
x for y = SHA-256(x). Unfortunately, this approach is
inherently interactive and thus not suitable for the de-
sign of practical signature schemes. The very recent
ZKBOO protocol due to Giacomelli et al. [42], which

3Using SNARKS is reasonable in scenarios where provers are ex-
tremely powerful (such as verifiable computing [40]) or the runtime of
the prover is not critical (such as Zerocash [13]).

3

https://pqcrypto.eu.org/mini.html

we build upon, for the first time, allows to construct non-
interactive zero-knowledge (NIZK) proofs with perfor-
mance being of interest for practical applications.
QROM vs ROM. One way of arguing security for signa-
tures obtained via the FS heuristic in the stronger QROM
is to assume that it simply holds as long as the under-
lying protocol and the hash function used to instantiate
the random oracle (RO) are quantum-secure. It is, how-
ever, known [17] that there are signature schemes secure
in the ROM that are trivially insecure in the quantum-
accessible ROM (QROM), i.e., when the adversary can
issue quantum queries to the RO. This is particularly
true for handling the rewinding of adversaries within se-
curity reductions as it is the case within the FS trans-
form [29]. Possibilities to circumvent this issue are via
history-free reductions [17] or the use of oblivious com-
mitments within the FS transform, which is not applica-
ble to our approach. Although many existing schemes
ignore QROM security, given the general uncertainty
of the capabilities of quantum adversaries, we prefer to
avoid this assumption. Building upon results from Un-
ruh [80, 81, 82], we achieve provable security in the
QROM under reasonable assumptions.

2 Building Blocks

Below, we informally recall the notion of Σ-protocols
and other standard primitives.
Sigma Protocol. A sigma protocol (equivalently de-
noted Σ-protocol) is a three flow protocol between a
prover Prove and a verifier Verify, where transcripts
have the form (r,c,s). Thereby, r and s are computed by
Prove and c is a challenge chosen by Verify. Let f be
a relation such that f (x) = y, where y is common input
and x is a witness known only to Prove. Verify accepts
if φ(y,r,c,s) = 1 for an efficiently computable predicate
φ . Given two accepting transcripts (r,c,s) and (r,c′,s′)
where c 6= c′, there is an efficient algorithm to extract a
witness x′ such that f (x′) = y. There also exists an effi-
cient simulator, given y and a randomly chosen c, outputs
a transcript (r,c,s) for y that is indistinguishable from a
real run of the protocol for x,y.
n-Special Soundness. A Σ-protocol has n-special sound-
ness if n transcripts (r,c1,s1), . . . ,(r,cn,sn) with distinct
ci guarantee that a witness may be efficiently extracted.
Fiat-Shamir. The FS transform [38] allows to con-
vert a Σ-protocol into a non-interactive zero knowledge
proof of knowledge. A Σ-protocol consists of a tran-
script (r,c,s). The corresponding non-interactive proof
(r′,c′,s′) generates r′ and s′ as in the interactive case, but
obtains c′← H(r′) instead of receiving it from the veri-
fier. This is known to be a secure NIZK in the random or-
acle model against standard (non-quantum) adversaries

[38].

Other Building Blocks. This paper requires other com-
mon primitives, namely pseudorandom functions and
generators, and commitments. We use the canonical
hash-based commitment scheme and require that com-
mitments to be hiding and binding. Definitions are given
in Appendix C, where we also recall the definition of sig-
nature schemes, and existential unforgeability under cho-
sen message attacks (EUF-CMA), which is the standard
security notion for signature schemes.

3 ZKBOO and ZKB++

ZKBOO is a proof system for zero-knowledge proofs on
arbitrary circuits described in [43]. We recall the pro-
tocol here, and present ZKB++, an improved version of
ZKBOO with proofs that are less than half the size.

3.1 ZKBOO

We now present the details of of the ZKBOO protocol.
While ZKBOO is presented with various possible pa-
rameter options, we present only the final version from
[43] with the best parameters. Moreover, while ZKBOO
presents both interactive and non-interactive protocol
versions, we present only the non-interactive version
since our main goal is building a signature scheme for
which we need the non-interactive version.

Overview. ZKBOO builds on the MPC-in-the-head
paradigm of Ishai et al. [55], that we describe only infor-
mally here. The multiparty computation protocol (MPC)
will implement the relation, and the input is the witness.
For example, the MPC could compute y = SHA-256(x)
where players each have a share of x and y is public. The
idea is to have the prover simulate a multiparty compu-
tation protocol “in their head”, commit to the state and
transcripts of all players, then have the verifier “corrupt”
a random subset of the simulated players by seeing their
complete state. The verifier then checks that the com-
putation was done correctly from the perspective of the
corrupted players, and if so, he has some assurance that
the output is correct. Iterating this for many rounds then
gives the verifier high assurance.

ZKBOO generalizes the idea of [55] by replacing
MPC with so-called “circuit decompositions”, which do
not necessarily need to satisfy the properties of an MPC
protocol and therefore lead to more efficient proofs in
practice. In particular, to prove knowledge of a wit-
ness for a relation r := {(x,y),φ(x) = y}, we begin with
a circuit that computes φ , and then find a suitable cir-
cuit decomposition. This contains a Share function
(that splits the input into three shares), three functions
Outputi∈{1,2,3} (that take as input all of the input shares

4

and some randomness and produce an output share for
each of the parties), and a function Reconstruct (that
takes as input the three output shares and reconstructs
the circuit’s final output). This decomposition must sat-
isfy correctness and 2-privacy which intuitively means
that revealing the views of any two players does not leak
information about the witness x.

The decomposition is used to construct a proof as fol-
lows: the prover runs the computation φ using the de-
composition and commits to the views – three views per
run. Then, using the FS heuristic, the prover sends the
commitments and output shares from each view to the
random oracle to compute a challenge – the challenge
tells the prover which two of the three views to open for
each of the n runs. Because of the two-privacy property,
opening two views for each run does not leak informa-
tion about the witness. The number of runs, n, is chosen
to achieve negligible soundness error – i.e., intuitively it
would be infeasible for the prover to cheat without get-
ting caught in at least one of the runs. The verifier checks
that (1) the output of each of the three views reconstructs
to y, (2) each of the two open views were computed cor-
rectly, and (3) the challenge was computed correctly.

We now give a detailed description of the non-
interactive ZKBOO protocol. Throughout this paper,
when we perform arithmetic on the indices of the play-
ers, we omit the implicit mod 3 to simplify the notation.

Definition 1 ((2,3)-decomposition) Let f (·) be a func-
tion that is computed by an n-gate circuit φ such that
f (x) = φ(x) = y. Let k1,k2, and k3 be tapes of length
κ chosen uniformly at random from {0,1}κ correspond-
ing to players P1,P2 and P3, respectively. Consider the
following set of functions, D:

(view
(0)
1 , view

(0)
2 , view

(0)
3)← Share(x,k1,k2,k3)

view
(j+1)
i ← Update(view

(j)
i ,view

(j)
i+1,ki,ki+1)

yi← Output(Viewi)

y← Reconstruct(y1,y2,y3)

such that Share is a potentially randomized invertible
function that takes x as input and outputs the initial view
for each player containing the secret share of xi of x -
i.e. view

(0)
i = xi. The function Update computes the cir-

cuit decomposition for the next gate and updates the view
accordingly. The function Update computes the wire
values for the next gate and updates the view accord-
ingly. The function Outputi takes as input the final view,
Viewi ≡ view

(n)
i after all gates have been computed and

outputs player Pi’s output share, yi.

We require correctness and 2-privacy as informally out-
lined before. We defer a formal definition to Ap-
pendix A.1. The concrete decomposition used by
ZKBOO is presented in Appendix A.2.

3.1.1 ZKBOO Complete Protocol

Given a (2,3)-decomposition D for a function φ , the
ZKBOO protocol is a Σ-protocol for relations of the form
R := {(y,x) : y = φ(x)}. We note that this directly yields
a non-interactive zero-knowledge (NIZK) proof system
for the same relation using well known results. We recall
the details of ZKBOO in Appendix A.
Serializing the Views In the (2,3)-decomposition, the
view is updated with the output wire value for each gate.
While conceptually a player’s view includes the values
that they computed locally, when the view is serialized,
it is sufficient to include only the wire values of the gates
that require non-local computations (i.e., the binary mul-
tiplication gates). The verifier can recompute the parts
of the view due to local computations, and they do not
need to be serialized. Giving the verifier locally com-
puted values does not even save any computation as the
verifier will still need to recompute the values in order to
check them.

In ZKBOO, the serialized view includes: (1) the in-
put share, (2) output wire values for binary multiplication
gates, and (3) the output share.

The size of a view depends on the circuit as well as the
ring that it is computed over. Let φ : (Z2`)

m → (Z2`)
n

be the circuit being computed over Z2` such that there
are m input wires, n output wires, and each wire can be
expressed with ` bits. Moreover, assume that the circuit
has b binary-multiplication gates. The size of a view in
bits is thus given by: |Viewi|= `(m+n+b).
ZKBOO Proof Size. Using the above notation, we can
now calculate the size of ZKBOO proofs. Let κ denote
the size of the random tapes, and c the size of the com-
mitments (both in bits). In the hash based commitment
scheme used by ZKBOO, the openings D of the commit-
ments contain the value being committed to as well as
the randomness used for the commitments. Let s denote
the size of the randomness in bits used for each commit-
ment. The size of the output share yi is the same as the
output size of the circuit, (` ·n). Assume that there are r
iterations. The total proof size is thus given by

|p|= r · [3 · (|yi|+ |ci|)+2 · (|Viewi|+ |ki|+ s)]

= r · [3 · (`n+ c)+2 · (` · (m+n+b+ s)+κ)]

= r · [3c+2κ +2s+ ` · (5n+2m+2b)].

3.2 ZKB++
We now present ZKB++, an improved version of
ZKBOO with NIZK proofs that are less than half the size
of ZKBOO proofs. Moreover, our benchmarks show that
this size reduction comes at no extra computational cost.4

4Our analysis of the original ZKBOO source code uncovered some
errors which were corrected in the new implementation.

5

We present the ZKB++ optimizations in an incremen-
tal way over the original ZKBOO protocol.

Optimization 1: The Share Function. We make the
Share function sample the shares pseudorandomly as:

(x1,x2,x3)← Share(x,k1,k2,k3) :=
x1 = R1(0), x2 = R2(0), x3 = x− x1− x2.

Ri is a pseudorandom generator seeded with ki.
We note that sampling in this manner preserves the 2-

privacy of the decomposition. In particular, given only
two of {(k1,x1),(k2,x2),(k3,x3)}, x remains uniformly
distributed over the choice of the third unopened (ki,xi).

We specify the Share function in this manner as it
will lead to more compact proofs. Moving now to the
ZKBOO protocol, for each round, the prover is required
to “open” two views. In order to verify the proof, the
verifier must be given both the random tape and the input
share for each opened view. If these values are generated
independently of one another, then the prover will have
to explicitly include both of them in the proof. How-
ever, with our sampling method, in View1 and View2, the
prover only needs to include ki, as xi can be determinis-
tically computed by the verifier.

The exact savings depends on which views the prover
must open, and thus depends on the challenge. The
expected reduction in proof size resulting from using
the ZKB++ sampling technique instead of the technique
used in ZKBOO is (4r · |x|)/3 bits.

Optimization 2: Not Including Input Shares. Since
the input shares are now generated pseudorandomly us-
ing the seed ki, we do not need to include them in the
view when e = 1. However, if e = 2 or e = 3, we still
need to send one input share for the third view for which
the input share cannot be derived from the seed. Since
the challenge is generated uniformly at random from
{1,2,3}, the expected number of input shares that we’ll
need to include for a single iteration is 2/3.

Optimization 3: Not Including Commitments. In
ZKBOO proofs, the commitments of all three views are
sent to the verifier. This is unnecessary as for the two
views that are opened, the verifier can recompute the
commitment. Only for the third view that the verifier
is not given the commitment needs to be explicitly sent.

We stress that there is no lost security here (in some
sense we use e as a “commitment to the commitments”)
as even when the prover sends the commitments, the ver-
ifier must check that the prover has sent the correct com-
mitments by hashing the commitments to recompute the
challenge. Here too, the verifier checks that the commit-
ments that it computed are the same ones that were used
by the prover by hashing them as part of the input to re-
compute the challenge.

There is also no extra computational cost in this ap-
proach – whereas the verifier now must recompute the
commitments, in the original ZKBOO protocol, the ver-
ifier needed to verify the commitments in step 2 (see
Scheme 3 in Appendix A). For the hash-based commit-
ment scheme used in ZKBOO, the function to verify the
commitment first recomputes the commitment and thus
there is no extra computation.
Optimization 4: No Additional Randomness for
Commitments. Since the first input to the commitment
is the seed value ki for the random tape, the protocol input
to the commitment doubles as a randomization value, en-
suring that commitments are hiding. Further, each view
included in the commitment must be well randomized
for the security of the MPC protocol. In the random ora-
cle model the resulting commitments are hiding (the RO
model is needed here since ki is used both as seed for
the PRG and as randomness for the commitment. Since
one already needs the RO model to make the proofs non-
interactive, there is no extra assumption here).
Optimization 5: Not Including the Output Shares. In
ZKBOO proofs, as part of a, the output shares yi are in-
cluded in the proof. Moreover, for the two views that are
opened, those output shares are included a second time.

First, we do not need to send two of the output shares
twice. However, we actually do not need to send any
output shares at all as they can be deterministically com-
puted from the rest of the proof as follows:

For the two views that are given as part of the proof,
the output share can be recomputed from the remaining
parts of the view. Essentially, the output share is just
the value on the output wires. Given the random tapes
and the communicated bits from the binary multiplica-
tion gates, all wires for both views can be recomputed.

For the third view, recall that the Reconstruct func-
tion simply XORs the three output shares to obtain y. But
the verifier is given y, and can thus instead recompute the
third output share. In particular, given yi, yi+1 and y, the
verifier can compute: yi+2 = y+ yi + yi+1.
Computational Trade-Off. While we would expect some
computational cost from recomputing rather than send-
ing the output shares, our benchmarks show that there is
no additional computational cost incurred by this modi-
fication, perhaps because it is a small part of the overall
verification. For the challenge view, Viewe, the verifier
anyway needs to recompute all of the wire values in order
to do the verification, so there is no added cost.

For the second view, Viewe+1, the verifier must recom-
pute the wire values as well since the verifier will need
to compute the values which must be stored as output of
the (2,3)-decomposition, so there is effectively no cost.

For the third view, the extra cost of recomputing the
output share is just two additions in the ring, which is
exactly the cost of a single call to Reconstruct.

6

However, in step 2 of the verification in ZKBOO, the
verifier has to call Reconstruct in order to verify that
the three output shares given are correct (see Scheme 3
in Appendix A). But in our optimization, the verifier no
longer needs to perform this check as the derivation of
the third share guarantees that it will reconstruct cor-
rectly. Thus, the verifier is adding one Reconstruct but
saving one, and thus no cost is incurred.

We note that the outputs will be checked as the yi’s are
hashed with H to determine the challenge. The verifier
recomputes the challenge and if the yi values used by the
verifier do not match those used by the prover, the chal-
lenge will be different (by the collision resistance prop-
erty of H), and the proof will fail.

Optimization 6: Not Including Viewe. In step 2 of the
proof, the verifier recomputes every wire in Viewe and
checks as he goes that the received values are correct.
However we note that this is not necessary.

The verifier can recompute Viewe given just the ran-
dom tapes ke,ke+1 and the wire values of Viewe+1. But
the verifier does not need to explicitly check that each
wire value in Viewe is computed correctly. Instead, the
verifier will recompute the view, and check the commit-
ments using the recomputed view. By the binding prop-
erty of the commitment scheme, the commitments will
only verify if the verifier has correctly recomputed every
value stored in the view.

Notice that this modification reduces the computa-
tional time as the verifier does not need to perform part of
step 2, i.e., there is no need to check every wire as check-
ing the commitment will check these wires for us. But
more crucially, this modification reduces the proof size
significantly. There is no need to send the AND wire
values for Viewe as we can recompute them and check
their correctness. Indeed, for this view, the prover only
needs to send the input wire value and nothing else.

3.2.1 Putting it All Together: ZKB++

This series of optimizations results in our new protocol
ZKB++ is presented in Scheme 1.

Notice that in ZKB++, the prover explicitly sends the
challenge e to the verifier. In the original ZKBOO proto-
col, the verifier is explicitly given all of the inputs to the
challenge random oracle, so it can compute the challenge
right away, and then check the proofs. However, in our
protocol, the verifier is no longer explicitly given these
inputs. Thus our verifier must first recompute all implic-
itly given values. To be able to compute those values,
the challenge e is required which is why we explicitly
include e in the proof.

There are 3 possible challenges for each iteration, so
the cost of sending e for an r iteration proof is r · log2(3).

ZKB++ Proof Size. The expected proof size is

|p|= r[|ci|+2|ki|+ 2/3|xi|+b|wi|+ |ei|]
= r[c+2κ + 2/3`m+b`+ log2(3)]
= r[c+2κ + log2(3)+ ` · (2/3 ·m+b)]

The ZKB++ improvements reduce the proof size com-
pared to ZKBOO by a factor of 2.

As an example, we can consider concrete examples
with ` = 1 (for Boolean circuits), c = 256 (SHA-256 as
a commitment scheme) and s = 128 (the randomness for
the commitment in ZKBOO) and κ = 128 (the PRG is
implemented with AES in counter mode). If we want
to prove statements about the SHA-256 circuit (with b =
23,296 AND gates and input/output size of m = 512,n =
256) then the ZKB++ proof is 401.037 kilobytes, which
is only 48% of the ZKBoo proof size.

4 The Fish Signature Scheme

The FS transform is an elegant way to obtain EUF-CMA
secure signature schemes. The basic idea is similar as
constructing NIZK proofs from Σ-protocols, but the chal-
lenge c is generated by hashing the prover’s first message
r and the message m to be signed, i.e., c← H(r,m). In
the following we will index the non-interactive PPT al-
gorithms (ProveH ,VerifyH) by the hash function H,
which we model as a random oracle.

Let us consider a language LR with associated witness
relation R of pre-images of a pseudorandom function fk :
K×D→ R: (y,k,x) ∈ R ⇐⇒ y = fk(x).

When using ZKBOO to prove knowledge of such a
pre-image, we know [42] that this Σ-protocol provides
3-special soundness. We apply the FS transform to
this Σ-protocol to obtain an EUF-CMA secure signature
scheme. In the so-obtained signature scheme the pub-
lic verification key pk contains the image y, the input x
(and a description of f) and the secret signing key sk is
a random key k from K. The corresponding signature
scheme, dubbed Fish, is illustrated in Scheme 2. The
function f could be any one-way function, but since we
found block ciphers gave the most efficient signatures,
we tailor our description to this choice of f . The ratio-
nale for using a random block x as input to fk when creat-
ing the key pair is to improve security against multi-user
key recovery attacks and generic time-memory trade-off
attacks like [52]. To reduce the size of the public key, one
could choose a smaller value that is unique per user, or
use a fixed value (with a potential decrease in security).
Since public keys in our schemes are small (at most 64
bytes), our design uses a full random block.

If we view ZKBOO as a canonical identification
scheme that is secure against passive adversaries one just
needs to keep in mind that most definitions are tailored

7

For public φ and y ∈ Lφ , the prover has x such that y = φ(x). The prover and verifier use the hash functions G(·) and
H(·) and H ′(·) which will be modeled as random oracles (H ′ will be used to commit to the views). The integer t is the
number of parallel iterations.
p← Prove(x):

1. For each iteration ri, i ∈ [1, t]: Sample random tapes k(i)1 ,k(i)2 ,k(i)3 and simulate the MPC protocol to get an output

view View
(i)
j and output share y(i)j . For each player Pj compute

(x(i)1 ,x(i)2 ,x(i)3)← Share(x,k(i)1 ,k(i)2 ,k(i)3) = (G(k(i)1),G(k(i)2),x⊕G(k(i)1)⊕G(k(i)2)),

View
(i)
j ← Update(Update(· · ·Update(x(i)j ,x(i)j+1,k

(i)
j ,k(i)j+1) . . .) . . .) . . .),

y(i)j ← Output(View
(i)
j).

Commit [C(i)
j ,D(i)

j]← [H ′(k(i)j ,View
(i)
j),k(i)j ||View

(i)
j], and let a(i) = (y(i)1 ,y(i)2 ,y(i)3 ,C(i)

1 ,C(i)
2 ,C(i)

3).
2. Compute the challenge: e← H(a(1), . . . ,a(t)). Interpret the challenge such that for i ∈ [1, t], e(i) ∈ {1,2,3}
3. For each iteration ri, i ∈ [1, t]: let b(i) = (y(i)

e(i)+2
,C(i)

e(i)+2
) and set

z(i)←

(View

(i)
2 ,k(i)1 ,k(i)2) if e(i) = 1,

(View
(i)
3 ,k(i)2 ,k(i)3 ,x(i)3) if e(i) = 2,

(View
(i)
1 ,k(i)3 ,k(i)1 ,x(i)3) if e(i) = 3.

4. Output p← [e,(b(1),z(1)),(b(2),z(2)), · · · ,(b(t),z(t))].
b← Verify(y, p):

1. For each iteration ri, i ∈ [1, t]: Run the MPC protocol to reconstruct the views, input and output shares that were
not explicitly given as part of the proof p. In particular:

x(i)
e(i)
←

G(k(i)1) if e(i) = 1,

G(k(i)2) if e(i) = 2,

x(i)3 given as part of z(i) if e(i) = 3.

x(i)
e(i)+1

←

G(k(i)2) if e(i) = 1,

x(i)3 given as part of z(i) if e(i) = 2,

G(k(i)1) if e(i) = 3.

Obtain View
(i)
e(i)+1

from z(i) and compute

View
(i)
e ← Update(. . .Update(x(i)e ,x(i)e+1,k

(i)
e ,k(i)e+1) . . .),

y(i)
e(i)
← Output(View

(i)
e(i)

), y(i)
e(i)+1

← Output(View
(i)
e(i)+1

), y(i)
e(i)+2

← y⊕ y(i)
e(i)
⊕ y(i)

e(i)+1

Compute the commitments for views View
(i)
e(i)

and View
(i)
e(i)

. For j ∈ {e(i),e(i)+1}:

[C(i)
j ,D(i)

j]← [H ′(k(i)j ,View
(i)
j),k(i)j ||View

(i)
j]

Let a′(i) = (y(i)1 ,y(i)2 ,y(i)3 ,C(i)
1 ,C(i)

2 ,C(i)
3) and note that y(i)

e(i)+2
and C(i)

e(i)+2
is a part of z(i).

2. Compute the challenge: e′← H(a′(1), . . . ,a′(t)). If, e′ = e, output Accept, otherwise output Reject.

Scheme 1: The ZKB++ proof system, made non-interactive using the Fiat-Shamir transform.

to (2-)special soundness, and the 3-special soundness of
ZKBOO requires an additional rewind. In particular, an
adapted version of the proof of [59, Theorem 8.2] which
considers this additional rewind attests the security of
Scheme 2. The security reduction, however, is a non-
tight one, like most signature schemes constructed from
Σ-protocols.5 We obtain the following:

5There are numerous works on signatures from (three move) identi-
fication schemes [71, 75, 1, 2, 60, 11, 30]. Unfortunately existing proof

Corollary 1 Scheme 2 instantiated with ZKB++ and a
secure pseudorandom function yields an EUF-CMA se-
cure signature scheme in the ROM.

techniques do not give tight security reductions.

8

Gen(1κ) : Choose x←R D, k←R K, compute y← fk(x), set pk← (y,x) and sk← (pk,k) and return (sk,pk).
Sign(sk,m) : Parse sk as (pk,k), compute p = (r,s)← ProveH((y,x,m),k) and return σ ← p, where internally the

challenge is computed as c← H(r,m).
Verify(pk,m,σ) : Parse pk as (y,x), and σ as p = (r,s). Return 1 if the following holds, and 0 otherwise:

VerifyH((y,x,m), p) = 1,

where internally the challenge is computed as c← H(r,m).

Scheme 2: Generic description the Fish and Picnic signature schemes. In both schemes Prove is implemented with
ZKB++, in Fish it is made non-interactive with the FS transform, while in Picnic, Unruh’s transform is used.

5 The Picnic Signature Scheme

The Picnic signature scheme is the same as Fish, except
for transform used to make ZKB++ noninteractive. Un-
ruh [80] presents an alternative to the FS transform that
is provably secure in the QROM. Indeed, Unruh even
explicitly presents a construction for a signature scheme
and proves its security. We use his approach to argue that
with a few modifications, our signature scheme is also
provably secure in this model. One interesting aspect is
that, while on first observation Unruh’s transform seems
much more expensive than the standard FS transform,
we show how to make use of the structure of ZKB++ to
reduce the cost significantly.

Unruh’s Transform: Overview. At a high level, Un-
ruh’s transform works as follows: Given a Σ-protocol
with challenge space C an integer t, a statement x and
a random permutation G, the prover will

1. Run the first phase of the Σ-protocol t times to pro-
duce r1, . . . ,rt .

2. For each i ∈ {1, . . . , t}, and for each j ∈C, compute
the response si j for ri and challenge j. Compute
gi j = G(si j).

3. Compute H(x,r1, . . . ,rt ,g11, . . . ,gt|C|) to obtain a set
of indices J1, . . . ,Jt .

4. Output π = (r1, . . . ,rt ,s1J1 , . . . ,stJt ,g11, . . . ,gt|C|).
Similarly, the verifier will verify the hash, verify that the
given siJi values match the corresponding giJi values, and
that the siJi values are valid responses w.r.t. the ri values.

Informally speaking, in Unruh’s security analysis,
zero knowledge follows from HVZK of the underlying
Σ-protocol - the simulator just generates t transcripts and
then programs the random oracle to get the appropriate
challenges. The proof of knowledge property is more
complex, but the argument is that any adversary who has
non-trivial probability of producing an accepting proof
will also have to output some gi j for j 6= Ji which is a
correct response for a different challenge - then the ex-
tractor can invert G and get the second response, which
by special soundness allows it to produce a witness.

To instantiate the function G in the protocol, Unruh
shows that one does not need a random oracle that is ac-
tually a permutation. Instead, as long as the domain and

range of G are the same, it can be used, since it is indis-
tinguishable from a random permutation.

Applying the Unruh transform to ZKB++: The Di-
rect Approach. We can apply Unruh to ZKB++ in a rel-
atively straightforward manner by modifying our proto-
col. Although ZKB++ has 3-special soundness, whereas
Unruh’s transform is only proven for Σ-protocols with 2-
special soundness, the proof is easily modified to three
special soundness.

Since ZKB++ has three special soundness, we would
need at least three responses for each iteration. More-
over, since there only are three possible challenges in
ZKB++, we would run Unruh’s transform with C =
{1,2,3} – i.e., every possible challenge and response.
We would then proceed as follows

Let G : {0,1}|si j |→{0,1}|si j | be a hash function mod-
eled as a random oracle.6 Non-interactive ZKB++ proofs
would then proceed as follows:

1. Run the first ZKB++ phase t times to produce
r1, . . . ,rt .

2. For each i∈ {1, . . . , t}, and for each j ∈ 1,2,3, com-
pute the response si j for ri and challenge j. Com-
pute gi j = G(si j).

3. Compute H(x,r1, . . . ,rt ,g11, . . . ,gt3) to obtain a set
of indices J1, . . . ,Jt .

4. Output π = (r1, . . . ,rt ,s1J1 , . . . ,stJt ,g11, . . . ,gt3).
While this works, it comes as a significant overhead in
the size of the proof. That is, we have to additionally in-
clude g11, . . . ,gt3. Each gi j is a permutation of an output
share and there are 3t such values, so in particular the
extra overhead would yield a proof size of

t · [c+2κ + log2(3)+ ` · (2/3 ·m+b)]+

3t · [2κ + ` · (2/3 ·m+b)] =

t · [c+8κ + log2(3)+ ` · (8/3m+4b)].

Since for most functions, the size of the proof is domi-
nated by t ·`b, this proof is roughly four times as large as

6Actually, the size of the response changes depending on what the
challenge is. If the challenge is 0, the response is slightly smaller as it
does not need to include the extra input share. So more precisely, this is
actually two hash functions, G0 used for the 0-challenge response and
G1,2 used for the other two.

9

in the FS version. To this end, we again introduce some
optimizations.
Optimization 1: Making Use of Overlapping Re-
sponses. We can make use of the structure of the ZKB++
proofs to achieve a very significant reduction in the proof
size. Although we refer to three separate challenges, in
the case of the ZKB++ protocol, there is a large over-
lap between the contents of the responses corresponding
to these challenges. In particular, there are only three
distinct views in the ZKB++ protocol, two of which are
opened for a given challenge.

Instead of computing a permutation of each response,
si j, we can compute a permutation of each view, vi j. For
each i ∈ {1, . . . , t}, and for each j ∈ {1,2,3}, the prover
computes gi j = G(vi j).

The verifier checks the permuted value for each of the
two views in the response. In particular, for challenge i∈
{1,2,3}, the verifier will need to check that gi j = G(vi j)
and gi(j+1) = G(vi(j+1)).
Optimization 2: Omit Re-Computable Values. More-
over, since G is a public function, we do not need to
include G(vi j) in the transcript if we have included vi j
in the response. Thus for the two views (correspond-
ing to a single challenge) that the prover sends as part of
the proof, we do not need to include the permutations of
those views. We only need to include G(vi(j+2)), where
vi(j+2) is the view that the prover does not open for the
given challenge.
Putting it Together: New Proof Size. Combining these
two modifications yields a major reduction in proof size.
For each of the t iterations of ZKB++, we include just a
single extra G(v) than we would in the FS transform.

As G is a permutation, the per-iteration overhead of
ZKB++/Unruh over ZKB++/FS is the size of a single
view. This overhead is less that one-third of the overhead
that would be incurred from the naive application of Un-
ruh as described in Section 5. In particular, the expected
proof size of our optimized version is then

t · [c+2κ + log2(3)+ ` · (2/3 ·m+b)]+

t · [κ + ` · (1/3 ·m+b)] =

t · [c+3κ + log2(3)+ ` · (m+2b)].

The overhead depends on the circuit. For LOWMC, we
examined the overhead ranges from 1.6 to 2 compared to
the equivalent ZKB++/FS proof.
Security of the Modified Unruh Transform. To argue
zero knowledge, we can take the same approach as in
Unruh [81]: to simulate the proof we choose the set of
challenges J1, . . . ,Jt , run the (2,3)-decomposition simu-
lator to obtain views for each pair of dishonest parties
Ji,Ji+1, honestly generate giJi and giJi+1 and the commit-
ments to those views, and choose gJi+2 and the corre-
sponding commitment at random. Then we program the

random oracle to output J1, . . . ,Jt on the resulting tuple.
The analysis follows exactly as in [81].

For the soundness argument, our protocol has two
main differences from Unruh’s general version: (1) the
underlying protocol we use only has 3-special sound-
ness, rather than the normal 2-special soundness, and
(2) we have one commitment for each view, and one
G(v) for each view, rather than having a separate
G(viewi,viewi+1) for each i.

As mentioned above, the core of Unruh’s argu-
ment [81, Lemma 17], says that the probability that the
adversary can find a proof such that the extractor cannot
extract but the proof still verifies is negligible.

For our case, the analysis is as follows: For a given tu-
ple of commitments r1 . . .rt , and G-values g11,gt|C| that
is queried to the random oracle either one of the follow-
ing is true: (1) There is some i for which (G−1(gi1),
G−1(gi2)), (G−1(gi2), G−1(gi3)), (G−1(gi3), G−1(gi1)),
are valid responses for challenges 1,2,3 respectively7,
or (2) For all i at least one of these pairs is not a valid
response. In particular this means that if this is the chal-
lenge produced by the hash function, A will not be able
to produce an accepting response. From that, we can ar-
gue that if the extractor cannot extract from a given tuple,
then the probability (over the choice of a RO) that there
exists an accepting response for A to output is at most
(2/3)t . Then, we can rely on [81, Lemma 7], which tells
us that given qH queries, the probability that A produces
a tuple from which we cannot extract but A can produce
an accepting response is at most 2(qH +1)(2/3)t .

The rest of our argument can proceed exactly as in Un-
ruh’s proof and we obtain the following:

Corollary 2 Scheme 2 instantiated with ZKB++ and a
secure function permutation yields an EUF-CMA secure
signature scheme in the QROM.

The full proof is given in Appendix F. The security re-
duction in our proof is non-tight, the gap is proportional
to the number of RO queries.
Unruh’s Transform with Constant Overhead? We
conjecture that we may be able to further reduce the over-
head of Unruh’s transform to a fixed size that does not
depend on the circuit being used. We leave this as a con-
jecture for now as it does not follow from Unruh’s proof,
and we have not yet proved it.

If we were to include just the hash using G of the seeds
(and the third input share that is not derivable from its
seed), it seems that this would be enough for the extrac-
tor to produce a witness. Combining this with the previ-
ous optimizations, we only need to explicitly give the ex-
tractor a permutation of the input share of the third view.

7In fact G is not exactly a permutation, but we ignore that here. We
can make this formal exactly as in Unruh’s proof, by considering the
set of preimages.

10

For the first two views, the views are communicated in
the open, and the extractor can compute the permutation
himself. This would reduce the overhead when compared
to FS from about 1.6x to 1.16x.

6 Selecting an Underlying Primitive

We require one or more symmetric primitives suitable to
instantiate a one-way function. We now first investigate
how choosing a primitive with certain properties impacts
the instantiations of our schemes. From this, we derive
concrete requirements, and present our choice, LowMC.

6.1 Survey of Suitable Primitives

The signature size depends on constants that are close to
the security expectation (cf. Section 7 for our choices).
The only exceptions are the number of binary multiplica-
tion gates, and the size of the rings, which all depend on
the choice of the primitive. Hence we survey existing de-
signs that can serve as a one-way function subsequently.

Standardized General-Purpose Primitives. The small-
est known Boolean circuit of AES-128 needs 5440 AND
gates, AES-192 needs 6528 AND gates, and AES-256
needs 7616 AND gates [19]. An AES circuit in F24 might
be more efficient in our setting, as in this case the number
of multiplications is lower than 1000 [23]. This results
in an impact on the signature size that is equivalent to
4000 AND gates. Even though collision resistance is of-
ten not required, hash functions like SHA-256 are a pop-
ular choice for proof-of-concept implementations. The
number of AND gates of a single call to the SHA-256
compression function is about 25000 and a single call to
the permutation underlying SHA-3 is 38400.

Lightweight Ciphers. Most early designs in this domain
focused on small area when implemented in hardware
where an XOR gate is by a small factor larger than an
AND or NAND gate. Notable designs with a low number
of AND gates at the 128-bit security level are the block
ciphers Noekeon [27] (2048) and Fantomas [48] (2112).
Furthermore, one should mention Prince [18] (1920), or
the stream cipher Trivium [31] (1536 AND gates to com-
pute 128 output bits) with 80-bit security.

Custom Ciphers with a Low Number of Multiplica-
tions. Motivated by applications in SHE/FHE schemes,
MPC protocols and SNARKs, recently a trend to design
symmetric encryption primitives with a low number of
multiplications or a low multiplicative depth started to
evolve. This is a trend we can take advantage of.

We start with the LOWMC [6] block cipher family. In
the most recent version of the proposal [4], the number of
AND gates can be below 500 for 80-bit security, below

800 for 128-bit security, and below 1400 for 256-bit se-
curity. The stream cipher Kreyvium [22] needs similarly
to Trivium 1536 AND gates to compute 128 output bits,
but offers a higher security level of 128 bit. Even though
FLIP [67] was designed to have especially low depth, it
needs hundreds of AND gates per bit and is hence not
competitive in our setting.

Last but not least there are the block ciphers and hash
functions around MiMC [5] which need less than 2 · s
multiplications for s-bit security in a field of size close to
2s. Note that MiMC is the only design in this category
which aims at minimizing multiplications in a field larger
than F2. However, since the size of the signature depends
on both the number of multiplications and the size of the
field, this leads to a factor 2s2 which, for all arguably
secure instantiations of MiMC, is already larger than the
number of AND gates in the AES circuit.

LOWMC has two important advantages over other de-
signs: It has the lowest number of AND gates for every
security level: The closest competitor Kreyvium needs
about twice as many AND gates and only exists for the
128-bit security level. The fact that it allows for an easy
parameterization of the security level is another advan-
tage. We hence use LOWMC for our concrete proposal
and discuss it in more detail in the following.

6.2 LowMC

LOWMC is a flexible block cipher family based on a
substitution-permutation network. The block size n, the
key size k, the number of 3-bit S-boxes m in the substi-
tution layer and the allowed data complexity d of attacks
can independently be chosen. To reduce the multiplica-
tive complexity, the number of S-boxes applied in paral-
lel can be reduced, leaving part of the substitution layer
as the identity mapping. The number of rounds r needed
to achieve the goals is then determined as a function of
all these parameters. For the sake of completeness we
include a brief description of LOWMC in Appendix B.

To minimize the number of AND gates for a given k
and d, we want to minimize r ·m. A natural strategy
would be to set m to 1, and to look for an n that minimizes
r. Examples of such an approach are already given in the
document describing version 2 of the design [4]. In our
setting, this approach may not lead to the best results, as
it ignores the impact of the large amount of XOR oper-
ations it requires. To find the most suitable parameters,
we thus explore a larger range of values for m.

Whenever we want to instantiate our signature scheme
with LOWMC with s-bit security, we set k = n = 2 · s.
This choice to double the parameter in the quantum set-
ting takes into account current knowledge of quantum-
cryptanalysis for models that are very generous to the
attacker [58, 57]. In Appendix D, we prove that a block

11

cipher with k = n = 2s gives 2s-bit classical security, and
thus gives us the s-bit post-quantum security that we de-
sire.

Furthermore, we observe that the adversary only ever
sees a single plaintext-ciphertext pair, and in the secu-
rity proof given in Appendix D, we build a distinguisher
that needs to see one additional pair. This is why we can
set the data complexity d = 18. As LowMC is explic-
itly specified without a security margin against yet un-
known attacks, we increase the number of rounds output
by the LOWMC parameterization script (provided by the
authors of [4]) by 30%.

7 Implementation and Parameters

We pursue two different directions. First, we present
a general purpose implementation for the Fish signa-
ture scheme. This library exposes an API to generate
LOWMC instances for a given parameter set, as well as
an easy to use interface for key generation, signature gen-
eration/verification in both schemes. Using this library
we explore the whole design space of LOWMC to find
the most suitable instances. Second, we present a library
which implements the Picnic signature scheme. This
implementation is parameterized with the previously se-
lected LOWMC instance, since the QROM instantiation
imposes a constant overhead which is independent of the
LOWMC instance. Both libraries are implemented in C
using the OpenSSL9 and m4ri10 libraries.

7.1 Implementation of Building Blocks

The building blocks in the protocol are instantiated sim-
ilar to the implementation of ZKBOO [42]. In Appen-
dices C and D, we give more formal arguments regarding
our choices.

PRG. Random tapes are generated pseudorandomly us-
ing AES in counter mode, where the keys are generated
using OpenSSL’s secure random number generator. In
the linear decomposition of the AND gates we use a
function that picks the random bits from the bit stream
generated using AES. Since the number of AND gates is
known a-priori, we can pre-compute all random bits at
the beginning. Concretely, we assume that AES-256 in
counter mode provides 128 bits of PRG security, when
used to expand 256-bit seeds to outputs ≈ 1kB in length.

Commitments. The commitment function (used to com-
mit to the views) is implemented using SHA-256.

8d is given in units of log2(n), where n is the number of pairs. Thus
setting d = 1 corresponds to 2-pairs, which is exactly what we need for
our signature schemes.

9https://openssl.org
10https://bitbucket.org/malb/m4ri

Challenge Generation. For both schemes the challenge
is computed with a hash function H : {0,1}∗→{0,1,2}t

implemented using SHA-256 and rejection sampling: we
split the output bits of SHA-256 in pairs of two bits and
reject all pairs with both bits set.
Pseudorandom Function. The PRF fk used for key
generation in both signature schemes is instantiated
with LOWMC. Our implementations support multiple
LOWMC parameter sets.
Function G. As explained in Section 5, G may be imple-
mented with a random function with the same domain
and range. We implement G(x) as h(0‖x)‖h(1‖x) . . .,
where h is SHA-256 and the output length is |x|.
Hash function security. We make the following con-
crete assumptions for the security of our schemes. We
assume that SHA-256 provides 128 bits of pre-image re-
sistance against quantum adversaries. For collision re-
sistance, when considering quantum algorithms, in the-
ory it may be possible to find collisions using a generic
algorithm of Brassard et al. [20] with cost O(2n/3). A
detailed analysis of the costs of the algorithm in [20] by
Bernstein [15] found that in practice the quantum algo-
rithm is unlikely to outperform the O(2n/2) classical al-
gorithm. Multiple cryptosystems have since made the as-
sumption that standard hash functions with n-bit digests
provide n/2 bits of collision resistance against quantum
attacks (for examples, see papers citing [15]). We make
this assumption as well, and in particular, that SHA-256
provides 128 bits of PQ collision-resistance.

7.2 Circuit for LOWMC
For the linear (2,3)-decomposition we view LOWMC as
circuit over F2. The circuit consists only of AND and
XOR gates. The number of bits we have to store per
view is 3 · r ·m, where r is the number of rounds and m is
the number of S-boxes.

Since the affine layer of LOWMC only consists of
AND and XOR operations, it benefits from using block
sizes such that all computations of this layer can be per-
formed using SIMD instruction sets like SSE2, AVX2
and NEON, i.e., 128 bit or 256 bit. Since our implemen-
tation uses (arrays of) native words to store the bit vec-
tors, the implementation benefits from a choice of pa-
rameters such that 3 ·m is close to the word size. This
choice allows us to maximize the number of parallel S-
box evaluations in the bitsliced implementation.

7.3 Experimental Setup and Results
Our experiments were performed on an Intel Core i7-
4790 CPU (4 cores with 3.60 GHz) and 16 GB RAM
running Ubuntu 16.10. Henceforth, we target the 128 bit
post-quantum setting.

12

https://openssl.org
https://bitbucket.org/malb/m4ri

Number of Parallel Repetitions For 128-bit PQ secu-
rity, we must set our repetition count to t := 438. This
is double the repetition count required for classical se-
curity due to Grover’s algorithm [50]. To see the effects
of the search algorithm, an adversary at first computes
t views such that it can answer two of the three possi-
ble challenges honestly for each view. Considering the
possible permutations of the individual views, the adver-
sary is thus able to answer 2t out of the 3t challenges.
Grover’s algorithm is then tasked to find a permutation of
the views such that they correspond to one of the 2t chal-
lenges. Out of the 2t permutations, the expected number
of solutions is (4/3)t , hence Grover’s algorithm reduces
the time to find a solution to (3/2)t/2. So for the 128 bit
security level, we require t be large enough to satisfy
(3/2)t/2 ≥ 2128, and so t = 438 is the smallest possible
repetition count.

Each of the parallel repetitions are largely indepen-
dent, and in Appendix E we discuss the benefits of using
multiple cores.

Selection of the Most Suitable LowMC Instances. We
now explore the design space of LOWMC. Figure 1
shows that choosing a concrete LOWMC instance allows
a trade-off between computational efficiency and signa-
ture size, parameterized by the number of rounds and by
the number of S-boxes.

100 150
Size [kB]

50

100

150

200

300

400

Ti
m
e
[m

s]

256-256-42-14

256-256-1-316

256-256-10-38

Runtime vs. Signature Size, [n]-[k]-[m]-[r], n=256

Sign (Fish)
Verify (Fish)

Figure 1: Measurements for instance selection (128 bit
post-quantum security, average over 100 runs).

Using the notation [blocksize]-[keysize]-[#sboxes]-
[#rounds], we recommend the 256-256-10-38 instance as
a good balance between speed and size.

To support our choice of LOWMC, we note that
running the implementation for the SHA-256 circuit
from [42] with t = 438 repetitions on the same ma-
chine yields roughly 2.7MB proof size, signing times
of 237ms, and verification times of 137ms. Informally
speaking, this can be seen as a baseline instantiation of
our scheme Fish with SHA-256 instead of LOWMC and
ZKBOO instead of ZKB++.

7.4 Comparison with Related Work
To compare our schemes to other post-quantum signature
candidates, we focused on those that have a reference
implementation available and ran the benchmarks on our
machine. Table 1 gives an overview of the results, in-
cluding MQDSS [54], the lattice based schemes TESLA
[7], ring-TESLA [3] and BLISS [34], the hash-based
scheme SPHINCS-256 [16], the supersingular isogeny-
based scheme SIDHp751 [84], and also give sizes for the
code-based scheme FS-Véron [83] to complete the pic-
ture.11 For our schemes, we include LowMC instances
with 256 bit block- and keysize and with 30% security
margin.

Scheme Gen Sign Verify |sk| |pk| |σ | Model[ms] [ms] [ms] [bytes] [bytes] [bytes]
Fish-1-316 0.01 364.11 201.17 32 64 108013 ROM
Fish-10-38 0.01 29.73 17.46 32 64 118525 ROM
Fish-42-14 0.01 13.27 7.45 32 64 152689 ROM
Picnic-10-38 0.01 31.31 16.30 32 64 195458 QROM
MQ 5pass 0.96 7.21 5.17 32 74 40952 ROM
SPHINCS-256 0.82 13.44 0.58 1088 1056 41000 SM
BLISS-I 44.16 0.12 0.02 2048 7168 5732 ROM
Ring-TESLA∗ 16k 0.06 0.03 12288 8192 1568 ROM
TESLA-768 48k 0.65 0.36 3216k 4128k 2336 (Q)ROM
FS-Véron n/a n/a n/a 32 160 129024 ROM
SIDHp751 16.41 7.3k 5.0k 48 768 141312 QROM

Table 1: Timings and sizes of private keys (sk), public
keys (pk) and signatures (σ). ∗An errata to [3] says that
this parameter set is not supported by the security analy-
sis (due to a flaw in the analysis).

Our implementation is a general-purpose implementa-
tion, flexible enough to cover the entire design spectrum
of our approaches. In contrast, the implementations of
other candidates used for comparison come with a highly
optimized implementation targeting a specific security
level (and often also specific instances). Thus, our tim-
ings are more conservative than the ones of the other
schemes. Yet, while timings and sizes can largely not
compete with efficient lattice-based schemes using ideal
lattices, they are comparable to all other existing post-
quantum candidates. We want to stress that ideal lattices
have not been investigated nearly as deeply as standard
lattices and thus there is less confidence in the assump-
tions (cf. [73]) and also the choice of parameters of these
schemes can be seen as quite aggressive.

8 Summary

We have proposed two post-quantum signature schemes,
i.e., Fish and Picnic. On our way, we optimize ZKBOO
to obtain ZKB++. For Fish, we then apply the FS trans-
form ZKBOO, whereas we optimize the Unruh transform

11Key sizes and signature sizes from BLISS were taken from [34],
as they were not readily available in the implementation. Sizes for FS-
Véron are taken from https://pqcrypto.eu.org/mini.html.

13

https://pqcrypto.eu.org/mini.html

and apply it to ZKB++ for Picnic. Fish is secure in the
ROM, while Picnic is secure in the QROM. ZKB++ op-
timizes ZKBOO by reducing the proof sizes by a fac-
tor of two, at no additional computational cost. While
this is of independent interest as it yields more compact
(post-quantum) zero-knowledge proofs for any circuit,
it also decreases our signature sizes. Our work estab-
lishes a new direction to design post-quantum signature
schemes and we believe that this is an interesting direc-
tion for future work, e.g., by the design of new symmetric
primitives especially focusing on optimizing the metrics
required by our approach.

References
[1] ABDALLA, M., AN, J. H., BELLARE, M., AND NAMPREMPRE,

C. From identification to signatures via the fiat-shamir transform:
Minimizing assumptions for security and forward-security. In
EUROCRYPT (2002).

[2] ABDALLA, M., FOUQUE, P., LYUBASHEVSKY, V., AND TI-
BOUCHI, M. Tightly-secure signatures from lossy identification
schemes. In EUROCRYPT (2012).

[3] AKLEYLEK, S., BINDEL, N., BUCHMANN, J. A., KRÄMER,
J., AND MARSON, G. A. An efficient lattice-based signature
scheme with provably secure instantiation. In AFRICACRYPT
(2016).

[4] ALBRECHT, M., RECHBERGER, C., SCHNEIDER, T., TIESSEN,
T., AND ZOHNER, M. Ciphers for MPC and FHE. Cryptology
ePrint Archive, Report 2016/687, 2016.

[5] ALBRECHT, M. R., GRASSI, L., RECHBERGER, C., ROY, A.,
AND TIESSEN, T. MiMC: Efficient encryption and cryptographic
hashing with minimal multiplicative complexity. In ASIACRYPT
(2016), pp. 191–219.

[6] ALBRECHT, M. R., RECHBERGER, C., SCHNEIDER, T.,
TIESSEN, T., AND ZOHNER, M. Ciphers for MPC and FHE.
In EUROCRYPT (2015).

[7] ALKIM, E., BINDEL, N., BUCHMANN, J., DAGDELEN, Ö.,
AND SCHWABE, P. Tesla: Tightly-secure efficient signa-
tures from standard lattices. Cryptology ePrint Archive, Report
2015/755, 2015.

[8] BAI, S., AND GALBRAITH, S. D. An improved compression
technique for signatures based on learning with errors. In CT-
RSA (2014).

[9] BANSARKHANI, R. E., AND BUCHMANN, J. A. Improvement
and efficient implementation of a lattice-based signature scheme.
In SAC (2013).

[10] BARRETO, P. S. L. M., LONGA, P., NAEHRIG, M., RICAR-
DINI, J. E., AND ZANON, G. Sharper ring-lwe signatures. IACR
Cryptology ePrint Archive 2016 (2016), 1026.

[11] BELLARE, M., POETTERING, B., AND STEBILA, D. From iden-
tification to signatures, tightly: A framework and generic trans-
forms. In ASIACRYPT (2016).

[12] BELLARE, M., AND ROGAWAY, P. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In ACM CCS
(1993).

[13] BEN-SASSON, E., CHIESA, A., GARMAN, C., GREEN, M.,
MIERS, I., TROMER, E., AND VIRZA, M. Zerocash: Decen-
tralized anonymous payments from bitcoin. In IEEE SP (2014).

[14] BEN-SASSON, E., CHIESA, A., GENKIN, D., TROMER, E.,
AND VIRZA, M. Snarks for C: verifying program executions
succinctly and in zero knowledge. In CRYPTO (2013).

[15] BERNSTEIN, D. J. Cost analysis of hash collisions: Will quan-
tum computers make SHARCS obsolete? http://cr.yp.to/

hash/collisioncost-20090823.pdf.

[16] BERNSTEIN, D. J., HOPWOOD, D., HÜLSING, A., LANGE, T.,
NIEDERHAGEN, R., PAPACHRISTODOULOU, L., SCHNEIDER,
M., SCHWABE, P., AND WILCOX-O’HEARN, Z. SPHINCS:
practical stateless hash-based signatures. In EUROCRYPT
(2015).

[17] BONEH, D., DAGDELEN, Ö., FISCHLIN, M., LEHMANN, A.,
SCHAFFNER, C., AND ZHANDRY, M. Random oracles in a quan-
tum world. In ASIACRYPT (2011).

[18] BORGHOFF, J., CANTEAUT, A., GÜNEYSU, T., KAVUN, E. B.,
KNEZEVIC, M., KNUDSEN, L. R., LEANDER, G., NIKOV,
V., PAAR, C., RECHBERGER, C., ROMBOUTS, P., THOMSEN,
S. S., AND YALÇIN, T. PRINCE - a low-latency block cipher
for pervasive computing applications - extended abstract. In ASI-
ACRYPT (2012).

[19] BOYAR, J., MATTHEWS, P., AND PERALTA, R. Logic mini-
mization techniques with applications to cryptology. Journal of
Cryptology 26, 2 (2013), 280–312.

[20] BRASSARD, G., HØYER, P., AND TAPP, A. Quantum crypt-
analysis of hash and claw-free functions. In LATIN 1998 (Apr.
1998), C. L. Lucchesi and A. V. Moura, Eds., vol. 1380 of LNCS,
Springer, Heidelberg, pp. 163–169.

[21] BUCHMANN, J. A., DAHMEN, E., AND HÜLSING, A. XMSS
- A practical forward secure signature scheme based on minimal
security assumptions. In PQCrypto (2011).

[22] CANTEAUT, A., CARPOV, S., FONTAINE, C., LEPOINT,
T., NAYA-PLASENCIA, M., PAILLIER, P., AND SIRDEY, R.
Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In FSE (2016).

[23] CARLET, C., GOUBIN, L., PROUFF, E., QUISQUATER, M.,
AND RIVAIN, M. Higher-order masking schemes for s-boxes.
In FSE (2012).

[24] COSTELLO, C., FOURNET, C., HOWELL, J., KOHLWEISS, M.,
KREUTER, B., NAEHRIG, M., PARNO, B., AND ZAHUR, S.
Geppetto: Versatile verifiable computation. In IEEE SP (2015).

[25] COURTOIS, N., FINIASZ, M., AND SENDRIER, N. How to
achieve a mceliece-based digital signature scheme. In ASI-
ACRYPT (2001).

[26] CRAMER, R., DAMGÅRD, I., AND SCHOENMAKERS, B. Proofs
of partial knowledge and simplified design of witness hiding pro-
tocols. In CRYPTO (1994).

[27] DAEMEN, J., PEETERS, M., VAN ASSCHE, G., AND RIJMEN,
V. Nessie proposal: Noekeon. In First Open NESSIE Workshop
(2000).

[28] DAGDELEN, Ö., BANSARKHANI, R. E., GÖPFERT, F.,
GÜNEYSU, T., ODER, T., PÖPPELMANN, T., SÁNCHEZ, A. H.,
AND SCHWABE, P. High-speed signatures from standard lattices.
In LATINCRYPT (2014).

[29] DAGDELEN, Ö., FISCHLIN, M., AND GAGLIARDONI, T. The
fiat-shamir transformation in a quantum world. In ASIACRYPT
(2013).

[30] DAGDELEN, Ö., GALINDO, D., VÉRON, P., ALAOUI, S. M.
E. Y., AND CAYREL, P. Extended security arguments for signa-
ture schemes. Des. Codes Cryptography 78, 2 (2016), 441–461.

[31] DE CANNIÈRE, C., AND PRENEEL, B. Trivium. In New Stream
Cipher Designs - The eSTREAM Finalists. 2008.

14

http://cr.yp.to/hash/collisioncost-20090823.pdf
http://cr.yp.to/hash/collisioncost-20090823.pdf

[32] DERLER, D., ORLANDI, C., RAMACHER, S., RECHBERGER,
C., AND SLAMANIG, D. Digital signatures from symmetric-key
primitives. IACR Cryptology ePrint Archive 2016 (2016), 1085.

[33] DUCAS, L. Accelerating bliss: the geometry of ternary polyno-
mials. IACR Cryptology ePrint Archive 2014 (2014).

[34] DUCAS, L., DURMUS, A., LEPOINT, T., AND LYUBASHEVSKY,
V. Lattice signatures and bimodal gaussians. In CRYPTO (2013).

[35] EZERMAN, M. F., LEE, H. T., LING, S., NGUYEN, K., AND
WANG, H. A provably secure group signature scheme from code-
based assumptions. In Advances in Cryptology - ASIACRYPT
(2015), pp. 260–285.

[36] FAUGÈRE, J., GAUTHIER-UMAÑA, V., OTMANI, A., PERRET,
L., AND TILLICH, J. A distinguisher for high-rate mceliece cryp-
tosystems. IEEE Trans. Information Theory 59, 10 (2013), 6830–
6844.

[37] FEO, L. D., JAO, D., AND PLÛT, J. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. J.
Mathematical Cryptology 8, 3 (2014), 209–247.

[38] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical
solutions to identification and signature problems. In CRYPTO
(1986), pp. 186–194.

[39] GALBRAITH, S. D., PETIT, C., AND SILVA, J. Signature
schemes based on supersingular isogeny problems. IACR Cryp-
tology ePrint Archive 2016 (2016), 1154.

[40] GENNARO, R., GENTRY, C., PARNO, B., AND RAYKOVA, M.
Quadratic span programs and succinct nizks without pcps. In
EUROCRYPT (2013).

[41] GENTRY, C., PEIKERT, C., AND VAIKUNTANATHAN, V. Trap-
doors for hard lattices and new cryptographic constructions. In
STOC (2008).

[42] GIACOMELLI, I., MADSEN, J., AND ORLANDI, C. Zkboo:
Faster zero-knowledge for boolean circuits. In USENIX Security
(2016).

[43] GIACOMELLI, I., MADSEN, J., AND ORLANDI, C. ZKBoo:
Faster zero-knowledge for boolean circuits. Cryptology ePrint
Archive, Report 2016/163, 2016. http://eprint.iacr.org/
2016/163.

[44] GOLDFEDER, S., CHASE, M., AND ZAVERUCHA, G. Efficient
post-quantum zero-knowledge and signatures. IACR Cryptology
ePrint Archive 2016 (2016), 1110.

[45] GOLDREICH, O. Two remarks concerning the goldwasser-
micali-rivest signature scheme. In CRYPTO (1986).

[46] GOLDREICH, O., MICALI, S., AND WIGDERSON, A. How to
prove all np-statements in zero-knowledge, and a methodology of
cryptographic protocol design. In CRYPTO (1986).

[47] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In STOC (1985).

[48] GROSSO, V., LEURENT, G., STANDAERT, F., AND VARICI, K.
Ls-designs: Bitslice encryption for efficient masked software im-
plementations. In FSE (2014).

[49] GROTH, J., AND SAHAI, A. Efficient Non-interactive Proof Sys-
tems for Bilinear Groups. In EUROCRYPT (2008).

[50] GROVER, L. K. A fast quantum mechanical algorithm for
database search. In STOC (1996).

[51] GÜNEYSU, T., LYUBASHEVSKY, V., AND PÖPPELMANN, T.
Practical lattice-based cryptography: A signature scheme for em-
bedded systems. In CHES (2012).

[52] HELLMAN, M. A cryptanalytic time-memory trade-off. IEEE
transactions on Information Theory 26, 4 (1980), 401–406.

[53] HU, Z., MOHASSEL, P., AND ROSULEK, M. Efficient zero-
knowledge proofs of non-algebraic statements with sublinear
amortized cost. In CRYPTO (2015).

[54] HÜLSING, A., RIJNEVELD, J., SAMARDJISKA, S., AND
SCHWABE, P. From 5-pass mq-based identification to mq-based
signatures. In Cryptology ePrint Archive, Report 2016/708, to
appear in Asiacrypt 2016 (2016).

[55] ISHAI, Y., KUSHILEVITZ, E., OSTROVSKY, R., AND SAHAI,
A. Zero-knowledge proofs from secure multiparty computation.
SIAM Journal on Computing 39, 3 (2009), 1121–1152.

[56] JAWUREK, M., KERSCHBAUM, F., AND ORLANDI, C. Zero-
knowledge using garbled circuits: how to prove non-algebraic
statements efficiently. In ACM CCS (2013).

[57] KAPLAN, M., LEURENT, G., LEVERRIER, A., AND NAYA-
PLASENCIA, M. Quantum Differential and Linear Cryptanalysis.
ArXiv e-prints (Oct. 2015).

[58] KAPLAN, M., LEURENT, G., LEVERRIER, A., AND NAYA-
PLASENCIA, M. Breaking symmetric cryptosystems using quan-
tum period finding. In CRYPTO (2016).

[59] KATZ, J. Digital Signatures. Springer, 2010.

[60] KILTZ, E., MASNY, D., AND PAN, J. Optimal security proofs
for signatures from identification schemes. In CRYPTO (2016).

[61] LAMPORT, L. Constructing digital signatures from one-way
functions. Tech. Rep. SRI-CSL-98, SRI Intl. Computer Science
Laboratory, 1979.

[62] LANDAIS, G., AND SENDRIER, N. Cfs software implementa-
tion. Cryptology ePrint Archive, Report 2012/132, 2012.

[63] LYUBASHEVSKY, V. Fiat-shamir with aborts: Applications to
lattice and factoring-based signatures. In ASIACRYPT (2009).

[64] LYUBASHEVSKY, V. Lattice signatures without trapdoors. In
EUROCRYPT (2012).

[65] MCELIECE, R. J. A public-key cryptosystem based on algebraic
coding theory. Tech. Rep. DSN PR 42-44, 1978.

[66] MCGREW, D. A., KAMPANAKIS, P., FLUHRER, S. R.,
GAZDAG, S., BUTIN, D., AND BUCHMANN, J. A. State man-
agement for hash-based signatures. In Security Standardisation
Research (2016).

[67] MÉAUX, P., JOURNAULT, A., STANDAERT, F., AND CARLET,
C. Towards stream ciphers for efficient FHE with low-noise ci-
phertexts. In EUROCRYPT (2016).

[68] MELCHOR, C. A., GABORIT, P., AND SCHREK, J. A new zero-
knowledge code based identification scheme with reduced com-
munication. In ITW (2011).

[69] MERKLE, R. C. A certified digital signature. In CRYPTO (1989).

[70] NIEDERREITER, H. Knapsack-type cryptosystems and algebraic
coding theory. Problems of Control and Information Theory
(1986).

[71] OHTA, K., AND OKAMOTO, T. On concrete security treatment
of signatures derived from identification. In CRYPTO (1998).

[72] PATARIN, J., COURTOIS, N., AND GOUBIN, L. Quartz, 128-bit
long digital signatures. In CT-RSA (2001).

[73] PEIKERT, C. A decade of lattice cryptography. Foundations and
Trends in Theoretical Computer Science 10, 4 (2016).

[74] PETZOLDT, A., CHEN, M., YANG, B., TAO, C., AND DING, J.
Design principles for hfev- based multivariate signature schemes.
In ASIACRYPT (2015).

[75] POINTCHEVAL, D., AND STERN, J. Security proofs for signa-
ture schemes. In EUROCRYPT (1996).

15

http://eprint.iacr.org/2016/163
http://eprint.iacr.org/2016/163

[76] SAKUMOTO, K., SHIRAI, T., AND HIWATARI, H. Public-key
identification schemes based on multivariate quadratic polynomi-
als. In CRYPTO (2011).

[77] SCHNORR, C. Efficient signature generation by smart cards. J.
Cryptology 4, 3 (1991).

[78] SHOR, P. W. Polynominal time algorithms for discrete loga-
rithms and factoring on a quantum computer. In ANTS-I (1994).

[79] STERN, J. A new identification scheme based on syndrome de-
coding. In CRYPTO (1993).

[80] UNRUH, D. Quantum proofs of knowledge. In EURO-
CRYPT 2012 (Apr. 2012), D. Pointcheval and T. Johansson, Eds.,
vol. 7237 of LNCS, Springer, Heidelberg, pp. 135–152.

[81] UNRUH, D. Non-interactive zero-knowledge proofs in the quan-
tum random oracle model. In EUROCRYPT 2015, Part II (Apr.
2015), E. Oswald and M. Fischlin, Eds., vol. 9057 of LNCS,
Springer, Heidelberg, pp. 755–784.

[82] UNRUH, D. Computationally binding quantum commitments. In
EUROCRYPT (2016).

[83] VÉRON, P. Improved identification schemes based on error-
correcting codes. Appl. Algebra Eng. Commun. Comput. 8, 1
(1996).

[84] YOO, Y., AZARDERAKHSH, R., JALALI, A., JAO, D., AND
SOUKHAREV, V. A post-quantum digital signature scheme based
on supersingular isogenies. Cryptology ePrint Archive, Report
2017/186, 2017. http://eprint.iacr.org/2017/186.

A Additional Material on ZKBOO

In Scheme 3 we restate the full ZKBOO protocol.

A.1 (2,3)-Decomposition

We define the experiment EXP
(φ ,x)
decomp in Scheme 4, which

runs the decomposition over a circuit φ on input x: We
say that D is a (2,3)-decomposition of φ if the following
two properties hold when running EXP

(φ ,x)
decomp: (Correct-

ness) For all circuits φ , for all inputs x and for the yi’s
produced by , for all circuits φ , for all inputs x,

Pr[φ(x) = Reconstruct(y1,y2,y3)] = 1

(2-Privacy) Let D be correct. Then for all e ∈
{1,2,3} there exists a PPT simulator Se such that for
any probabilistic polynomial-time (PPT) algorithm A,
for all circuits φ , for all inputs x, and for the dis-
tribution of views and ki’s produced by EXP

(φ ,x)
decomp

we have that
∣∣Pr[A(x,y,ke,Viewe,ke+1,Viewe+1,ye+2) =

1]−Pr[A(x,y,Se(φ ,y)) = 1]
∣∣ is negligible.

A.2 Linear Decomposition of a Circuit
ZKBOO uses an explicit (2,3)-decomposition, which we
recall here. Let R be an arbitrary finite ring and φ a
function such that φ : Rm → R` can be expressed by an
n-gate arithmetic circuit over the ring using addition by
constant, multiplication by constant, binary addition and

binary multiplication gates. A (2,3)−decomposition of
φ is given by the following functions. In the notation
below, arithmetic operations are done in Rs where the
operands are elements of Rs):

• (x1,x2,x3) ← Share(x,k1,k2,k3) samples random
x1,x2,x3 ∈ Rm such that x1 + x2 + x3 = x.
• yi← Outputi(view

(n)
i) selects the ` output wires of

the circuit as stored in the view view
(n)
i .

• y← Reconstruct(y1,y2,y3) = y1 + y2 + y3

• view
(j+1)
i ← Update

(j)
i (view

(j)
i ,view

(j)
i+1,ki,ki+1)

computes Pi’s view of the output wire of gate g j
and appends it to the view. Notice that it takes as
input the views and random tapes of both party Pi
as well as party Pi+1. We use wk to refer to the k-th
wire, and we use w(i)

k to refer to the value of wk in
party Pi’s view. The update operation depends on
the type of gate g j.

The gate-specific operations are defined as follows.

Addition by Constant (wb = wa + k).

w(i)
b =

{
w(i)

a + k if i = 1,

w(i)
a otherwise.

Multiplication by Constant (wb = wa · k).

w(i)
b = k ·w(i)

a

Binary Addition (wc = wa +wb).

w(i)
c = w(i)

a +w(i)
b

Binary Multiplication (wc = wa ·wb).

w(i)
c = w(i)

a ·w(i)
b +w(i+1)

a ·w(i)
b +

w(i)
a ·w(i+1)

b +Ri(c)−Ri+1(c),

where Ri(c) is the c-the output of a pseudorandom
generator seeded with ki.

Note that with the exception of the constant addition
gate, the gates are symmetric for all players. Also note
that Pi can compute all gate types locally with the excep-
tion of binary multiplication gates as this requires inputs
from Pi+1. In other words, for every operation except
binary multiplication, the Update function does not use
the inputs from the second party, i.e., view

(j)
i+1 and ki+1.

While we do not give the details here, [43] shows that
this decomposition meets the correctness and 2-privacy
requirements of Definition 1.

16

http://eprint.iacr.org/2017/186

For public φ and y ∈ Lφ , the prover has x, such that y = φ(x). Com(·) is a secure commitment scheme. The prover
and verifier use the hash function H(·), which is modeled as random oracle. The integer t is the number of parallel
iterations.
p← Prove(x):

1. For each iteration ri, i ∈ [1, t]: Sample random tapes k(i)1 ,k(i)2 ,k(i)3 and run the decomposition to get an output view

View
(i)
j and output share y(i)j . In particular, for each player Pj:

(x(i)1 ,x(i)2 ,x(i)3)← Share(x,k(i)1 ,k(i)2 ,k(i)3),

View
(i)
j ← Update(Update(· · ·Update(x(i)j ,x(i)j+1,k

(i)
j ,k(i)j+1) . . .) . . .) . . .),

y(i)j ← Output(View
(i)
j)

Commit [C(i)
j ,D(i)

j]← Com(k(i)j ,View
(i)
j) and let a(i) = (y(i)1 ,y(i)2 ,y(i)3 ,C(i)

1 ,C(i)
2 ,C(i)

3).
2. Compute the challenge: e← H(a(1), . . . ,a(t)). Interpret the challenge such that for i ∈ [1, t], e(i) ∈ {1,2,3}
3. For each iteration ri, i ∈ [1, t], let z(i) = (D(i)

e ,D(i)
e+1).

4. Output p = [(a(1),z(1)),(a(2),z(2)), · · · ,(a(t),z(t))]
b← Verify(y, p):

1. Compute the challenge: e′← H(a(1), · · · ,a(t)). Interpret the challenge such that for i ∈ [1, t], e′(i) ∈ {1,2,3}.
2. For each iteration ri, i ∈ [1, t]: If there exists j ∈ {e′(i),e′(i)+ 1} such that Open(C(i)

j ,D(i)
j) = ⊥, output Reject.

Otherwise, for all j ∈ {e′(i),e′(i)+1}, set {k(i)j ,View
(i)
j }← Open(C(i)

j ,D(i)
j).

3. If Reconstruct(y(i)1 ,y(i)2 ,y(i)3) 6= y, output Reject. If there exists j ∈ {e′(i),e′(i) + 1} such that y(i)j 6= Output(

View
(i)
j), output Reject. For each wire value w(e)

j ∈ Viewe, if w(e)
j 6= update(view

(j−1)
e ,view

(j−1)
e+1 ,ke,ke+1) output

Reject.
4. Output Accept.

Scheme 3: The ZKBOO non-interactive proof system

EXP
(φ ,x)
decomp:

1. First run the Share function on x: view
(0)
1 ,view

(0)
2 ,view

(0)
3 ← Share(x,k1,k2,k3)

2. For each of the three views, call the update function successively for every gate in the circuit: view
(j)
i =

Update(view
(j−1)
i ,view

(j−1)
i+1 ,ki,ki+1) for i ∈ [1,3], j ∈ [1,n]

3. From the final views, compute the output share of each view: yi← output(Viewi)

Scheme 4: Decomposition Experiment

B Description of LowMC

LOWMC by Albrecht et al. [6, 4] is very parameterizable
symmetric encryption scheme design enabling instantia-
tion with low AND depth and low multiplicative com-
plexity. Given any blocksize, a choice for the number
of S-boxes per round, and security expectations in terms
of time and data complexity, instantiations can be cre-
ated minimizing the AND depth, the number of ANDs,
or the number of ANDs per encrypted bit. Table 2 lists
the choices for the parameters which are also highlighted
in the figures.

The description of LOWMC is possible independently
of the choice of parameters using a partial specification
of the S-box and arithmetic in vector spaces over F2. In

Blocksize S-boxes Keysize Rounds
n m k r

256 1 256 243
256 10 256 29
256 42 256 11
256 1 256 316
256 10 256 38
256 42 256 14

Table 2: A range of different parameter sets for
LOWMC. All parameters are computed for data com-
plexity d = 1, but the second half of the table also in-
cludes additional rounds for a 30% security margin.

17

particular, let n be the blocksize, m be the number of S-
boxes, k the key size, and r the number of rounds, we
choose round constants Ci←R Fn

2 for i ∈ [1,r], full rank
matrices Ki←R Fn·k

2 and regular matrices Li←R Fn·n
2 inde-

pendently during the instance generation and keep them
fixed. Keys for LOWMC are generated by sampling from
Fk

2 uniformly at random.
LOWMC encryption starts with key whitening which

is followed by several rounds of encryption. A single
round of LOWMC is composed of an S-box layer, a lin-
ear layer, addition with constants and addition of the
round key, i.e.

LOWMCROUND(i) = KEYADDITION(i)

◦ CONSTANTADDITION(i)

◦ LINEARLAYER(i)◦SBOXLAYER.

SBOXLAYER is an m-fold parallel application of the
same 3-bit S-box on the first 3 ·m bits of the state. The S-
box is defined as S(a,b,c) = (a⊕bc,a⊕b⊕ac,a⊕b⊕
c⊕ab).

The other layers only consist of F2-vector space arith-
metic. LINEARLAYER(i) multiplies the state with the
linear layer matrix Li, CONSTANTADDITON(i) adds the
round constant Ci to the state, and KEYADDITION(i)
adds the round key to the state, where the round key is
generated by multiplying the master key with the key ma-
trix Ki.

Algorithm 1 gives a full description of the encryption
algorithm.

Algorithm 1 LOWMC encryption for key matrices Ki ∈
Fn·k

2 for i∈ [0,r], linear layer matrices Li ∈Fn·n
2 and round

constants Ci ∈ Fn
2 for i ∈ [1,r].

Require: plaintext p ∈ Fn
2 and key y ∈ Fk

2
s← K0 · y+ p
for i ∈ [1,r] do

s← Sbox(s)
s← Li · s
s←Ci + s
s← Ki · y+ s

end for
return s

C Building Blocks

Commitments. Formally a (non-interactive) commit-
ment scheme consists of three algorithms KG, Com,
Open with the following properties:

KG(1κ) : The key generation algorithm, on input the se-
curity parameter κ it outputs a public key pk.

Com(M) : On input of a message M the commitment
algorithm outputs [C(M),D(M)] = Com(pk,M,R)
where R are the coin tosses. C(M) is the com-
mitment string, while D(M) is the decommitment
string which is kept secret until opening time.

Open(C,D) : On input C,D, the verification algorithm
either outputs a message M or ⊥.

We note that if the sender refuses to open a commitment
we can set D = ⊥ and Open(pk,C,⊥) = ⊥. Computa-
tionally secure commitments must satisfy the following
properties

Correctness If [C(M),D(M)] = Com(M,R) then Ver(
pk,C(M),D(M)) = M.

Hiding For every message pair M,M′ the probability en-
sembles {C(M)}n∈N and {C(M′)}n∈N are compu-
tationally indistinguishable for security parameter
n.

Binding We say that an adversary A wins if it outputs
C,D,D′ such that Open(C,D) = M, Open(C,D′) =
M′ and M 6= M′. We require that for all efficient
algorithms A, the probability that A wins is negli-
gible in the security parameter.

To simplify our notation, we will often not explicitly
write the public key pk when we make use of commit-
ments. Our implementation uses hash-based commit-
ments, which requires modeling the hash function as a
random oracle in our security analysis. Note also that
randomizing the Com function may not be necessary if
M has high entropy.

Pseudorandom Functions and Generators. We require
the notion of pseudorandom functions and generators,
which we formally recall below.

Definition 2 (Pseudorandom Function) Let F : {0,1}n

×{0,1}n→{0,1}n be an efficiently computable, length-
preserving keyed function. We say that F is a pseudoran-
dom function (PRF), if for all probabilistic polynomial
time distinguishers D,

|Pr[DFk(1n) = 1]−Pr[D fn(1n) = 1]|

is negligible where k ← {0,1}n is chosen uniformly at
random and fn is chosen uniformly at random from the
set of functions mapping n-bit strings to n-bit strings.

We now define a weaker notion of a pseudorandom
function in which we put an upper bound on the number
of queries that the distinguisher can make to its oracle.

Definition 3 (q-Pseudorandom Function) Let Fk and
fn be as defined in Definition 2, and let q be a positive
integer constant. We say that F is a q-pseudorandom
function (q-PRF) if for all probabilistic polynomial time

18

distinguishers D that make at most q queries to their or-
acle,

|Pr[DFk(1n) = 1]−Pr[D fn(1n) = 1]|

is negligible.

Note that a pseudorandom function is also a q-
pseudorandom function for any constant q. When con-
sidering concrete security of PRFs against quantum at-
tacks, we assume that an n-bit function provides n/2 bits
of security.

Definition 4 (Pseudorandom Generator) An (n, `)
pseudorandom generator (PRG) is a function
P : {0,1}n → {0,1}` that expands an n-bit seed to
an `-bit random string. Informally, the PRG is said
to be secure if for randomly chosen seeds, the output
is indistinguishable from the uniform distribution on
{0,1}`.

Concretely, we assume that AES-256 in counter mode
provides 128 bits of PRG security, when used to expand
256-bit seeds to outputs less than 1kB in length.
Signature Schemes. Below we recall a standard defini-
tion of signature schemes.

Definition 5 A signature scheme Σ is a triple (Gen,
Sign,Verify) of PPT algorithms, which are defined as fol-
lows:

Gen(1κ) : This algorithm takes a security parameter κ

as input and outputs a secret (signing) key sk and a
public (verification) key pk with associated message
spaceM (we may omit to make the message space
M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a
message m ∈M as input and outputs a signature
σ .

Verify(pk,m,σ) : This algorithm takes a public key pk,
a message m ∈M and a signature σ as input and
outputs a bit b ∈ {0,1}.

Besides the usual correctness property, Σ needs to pro-
vide some unforgeability notion. In this paper we are
only interested in schemes that provide existential un-
forgeability under adaptively chosen message attacks
(EUF-CMA security), which we define below.

Definition 6 (EUF-CMA) A signature scheme Σ is
EUF-CMA secure, if for all PPT adversaries A there is
a negligible function ε(·) such that

Pr
[
(sk,pk)← Gen(1κ), (m?,σ?)←ASign(sk,·)(pk) :

Verify(pk,m?,σ?) = 1 ∧ m? /∈QSign
]
≤ ε(κ),

where the environment keeps track of the queries to the
signing oracle via QSign.

D Security of Key Generation

In this section, we show that a block cipher in which
the block size and key size are equal, and in particu-
lar equal to the security parameter n can serve as our
hard instance generator to generate keys for our signa-
ture scheme. While it is clear that a quantum preimage-
resistant hash function has this property, we show that a
block cipher has this property as well.

Definition 7 (Hard Instance Generators) (see Defini-
tion 20 in [80]) We call an algorithm G a hard instance
generator for a relation R iff

1. Pr[(p,s) ∈ R : (p,s)← G()]is overwhelming and
2. for any polynomial-time algorithm A, Pr[(p,s′) ∈

R : (p,s)← G,s′← A(p)] is negligible.

Construction 1 Let F : K×M→M be a pseudoran-
dom function.

1. Choose a value r ∈M uniformly at random.
2. Choose a key k←K uniformly at random.
3. Compute y = Fk(x).
4. Output (y,r,k) ((y,r) is the instance and k is the wit-

ness).

Theorem 1 Construction 1 is a hard instance generator
for relation R := {(y,r,k) : Fk(x) = y} if F is a pseudo-
random function with |M| ≥ |K|.

Proof. The first condition of Definition 7 clearly holds as
a triple (y,r,k) output by Construction 1 will always be
in R. Thus, we need only show that the second condition
holds. In particular, we need to show that the following
probability is negligible for any PPT algorithm A:

P1 := Pr[(y,r,k′ = k) ∈ R : (y,r,k)← G,k′← A(y)]

We denote by keyset(y) the set of keys B such that
for all k ∈ B,Fk(r) = y. If there is no such satisfying key,
keyset(y) returns the empty set. For an algorithm A,
denote by ty the probability that A will output a key k′ on
input y such that Fk′(r) = y. Then, using this notation we
can rewrite P1 as

P1 := ∑
y

|keyset(y)|
|K|

· ty

and we need to show that P1 is negligible for any A.
First, we define, probability P2, which is the proba-

bility that A will output the “correct key”, by which we
mean the same key that was chosen to generate y. Since
the key was chosen uniformly at random, information-
theoretically, there is no way for A to distinguish between
the “correct key” and any other valid key (i.e. any k′ for
which Fk′(r) = y). Thus, the only strategy that A has is to

19

output any valid key and with probability 1
keyset(y) , the

key that it outputs will be the “correct key”. Thus, we
have:

P2 : = Pr[k = k′ : (y,r,k)← G,k′← A(y)]

= ∑
y

|keyset(y)|
|K|

· ty ·
1

|keyset(y)|

=
1
|K|∑y

ty

We now show that P2 is negligible. Assume that there
exists an A for which P2 is equal to non-negligible ε .
Then we can build a distinguisher D that distinguishes
between F and a random function as follows:

DO(1|k|)
1. y′←O(r). Queries the oracle on r and receive re-

sponse y′.
2. Invoke A on input y′.

(a) if ⊥← A(y′), output 0.

(b) if k∗ ← A(y′), check that this is the “correct
key” as follows

i. First check that Fk∗(r) = y. If not, output
0. Else, continue

ii. Next, choose a value q←M uniformly
at random and query on that value – i.e.
query for z←O(q).

iii. Check that z = Fk∗(q). If it does not, out-
put 0. If it does, output 1.

Now, let’s analyze the output of D. Whenever A out-
puts the “correct key”, D will output 1. Moreover, A will
output the correct key with probability ε . Thus, if D’s
oracle is a pseudorandom function – i.e. if O = F , then
with probability at least ε , D will output 1. To see that
this is true notice that when O = F , the key for F is cho-
sen from the same distribution as it is in Construction 1,
and thus A’s success probability on outputting the “cor-
rect key” will be exactly ε .12

If, however,O is a random function – i.e. O= fn, then
D will only output 1 in the event that fn(q) = Fk∗(q). In
step (iii), once we have chosen a key k∗, the probability
of the random function agreeing with Fk∗ on q is δ =

1
|M|−1 , which is negligible in |k| since |M| ≥ |K|= 2|k|.

Thus, we have built a good distinguisher since:

|Pr[DFk,F
−1
k (1|k|) = 1]−Pr[D fn, f−1

n (1|k|) = 1]| ≥ ε−δ

12It is possible that when O = F , D will output 1 with probability
greater than ε –i.e. if A outputs the wrong key that happens to agree
with the “correct key” on the queried values, but for the sake of our
argument it suffices to show that it outputs 1 with probability at least ε .

which is non-negligible.
This contradicts our assumption that F is a pseudo-

random function, and we therefore conclude that P2 is
negligible.

We now show that |P1−P2| is negligible. Once again,
consider an algorithm A that on input y outputs a key
k′ such that Fk′(r) = ywith probability ty. Consider the
following two games.
Game 1. A key k← K is chosen uniformly at random
and y = Fk(r) is given to the adversary. The adversary
wins if it can produce a key K′ such that FK′(r) = y. The
probability of A succeeding at this game is exactly P1:

∑
y

|keyset(y)|
|K|

· ty

Game 2. y ←M is chosen uniformly at random and
given to the adversary. The adversary wins if it can out-
put a key k′ such that Fk′(r) = y. The difference between
this game and the previous one is that now we choose y
uniformly irrespective of the keys. Thus all y’s will be
chosen with equal probability no matter how many keys
(if any) map r to y. The success probability of A in this
game is

P3 :=
1
|M|∑y

ty

Now if you could distinguish between Game 1 and
Game 2, you could build an algorithm D that distin-
guishes F from a random function. D simply queries
its oracle at r, and send the response y to A. If the oracle
is a pseudorandom function, then the success probability
will be exactly the same as Game 1, namely P1. If it is
a random function, the success probability is exactly the
same as Game 2, namely P3. Thus, by Definition 2, we
know that |P1−P3| is negligible.

Since |K| ≤ |M|, then P2 ≤ P3, and in particular, when
|K| = |M|, P2 = P3. We thus have that |P1−P2| is neg-
ligible. Since we have shown that both P2 and |P1−P2|
are negligible, it follows that P1 is negligible as well.�

E Parallelization of Proofs

One positive aspect regarding the t parallel repetitions is
that they are independent of each other. This observa-
tion was also made for ZKBOO in [42]. In particular,
this holds for all steps in the signing and verification al-
gorithm up to the initial requests to OpenSSL’s random
number generator and the computation of the challenge.
This allows us to take advantage of the multi-core archi-
tecture of modern processors using OpenMP.13 As ex-
emplified for Fish in Figure 2, we can observe a signif-
icant performance increase until the number of threads

13http://openmp.org

20

http://openmp.org

matches the actual number of CPU cores14. We note that
exactly the same effects also occur for instantiations of
Picnic. Furthermore, they also occur regardless of the
LOWMC parameters. The speed-up is not linear with our
current implementation. The speed-up from one to two
threads is about 2x, but becomes smaller as additional
cores are added, likely because memory access becomes
a bottleneck.

60 65 70 75 80 85 90 95
Size [kB]

0

5

10

15

20

25

30

35

40

Ti
m
e
[m

s]

1 thread
2 threads
3 threads
4 threads

(a) Sign

60 65 70 75 80 85 90 95
Size [kB]

0

5

10

15

20

Ti
m
e
[m

s]

1 thread
2 threads
3 threads
4 threads

(b) Verify

Figure 2: Runtime of the parallelized version of Sign
and Verify of Fish using an increasing number of threads.
The x-axis shows the running time, while y-axis shows
the various LowMC parameter sets, sorted by signature
size (as in Figure 1).

F Security of the proof system in the quan-
tum random oracle model

Here we prove that the proof system we get by applying
our modified Unruh transform to ZKB++ as described

14HyperThreading was disabled to reduce noise in the benchmarks.

in Section 5 is both zero knowledge and simulation-
extractable in the quantum random oracle model.

Before we begin, we note that the quantum random
oracle model is highly non-trivial, and a lot of the tech-
niques used in standard random oracle proofs don’t ap-
ply. The adversary is a quantum algorithm that may
query the oracle on quantum inputs which are a super-
position of states and receive superposition of outputs. If
we try to measure those states, we change the outcome,
so we don’t for example have the same ability to view
the adversary’s input and program the responses that we
would in the standard ROM.

Here we rely on lemmas from Unruh’s work on
quantum-secure Fiat-Shamir like proofs[81]. We follow
his proof strategy as closely as possible, modifying it
to account for the optimizations we made and the fact
that we have only 3-special soundness in our underlying
sigma protocol.

Zero Knowledge This proof very closely follows the
proof from [81]. The main difference is that we also use
the random oracle to form our commitments, which is
addressed in the transition from game 2 to game 3 below.

Consider the simulator described in Figure 5.
We proceed via a series of games.

Game 1 This is the real game in the quantum random
oracle model. Let Hcom be the random oracle used
for forming the commitments, Hchal be the random
oracle used for forming the challenge, and G be the
additional random permutation.

Game 2 In Game 2, we change the prover
so that it first chooses random e∗ =
e∗(1), . . . ,e∗(t), and then on step 2, it programs
Hchal(a(1), . . . ,a(t),h(1), . . . ,h(t)) = e∗.

Note that each the a(1), . . . ,a(t),h(1), . . . ,h(t) has suf-
ficient collision-entropy, since it includes {h(i) =
(g(i)1 ,g(i)2 ,g(i)3)}, the output of a permutation on in-

put whose first k bits are chosen at random (the k(i)j),
so we can apply Corollary 11 from [81] (using a hy-
brid argument) to argue that Game 1 and Game 2
are indistinguishable.

Game 3 In Game 3, we replace the output of each
Hcom(ke∗(i) ,Viewe∗(i)) and G(ke∗(i) ,Viewe∗(i)) with a
pair of random values.

First, note that Hcom and G are always called (by the
honest party) on the same inputs, so we will con-
sider them as a single random oracle with a longer
output space, which we refer to as H for this proof.

Now, to show that Games 2 and 3 are indistinguish-
able, we proceed via a series of hybrids, where the
ith hybrid replaces the first i such outputs with ran-
dom values.

21

p← Sim(x): In the simulator, we follow Unruh, and replace the initial state (before programming) of the random
oracles with random polynomials of degree 2q−1 where q is an upper bound on the number of queries the adversary
makes.

1. For i ∈ [1, t], choose random e(i)←{1,2,3}. Let e be the corresponding binary string.
2. For each iteration ri, i ∈ [1, t]: Sample random seeds k(i)

e(i)
,k(i)

e(i)+1
and run the circuit decomposition simulator to

generate View
(i)
e(i)

, View
(i)
e(i)+1

and output shares y(i)1 , y(i)2 , y(i)3 .

For j = e(i),e(i)+1 commit [C(i)
j ,D(i)

j]← [H(k(i)j ,View
(i)
j),k(i)j ||View

(i)
j], and compute g(i)j = G(k(i)j ,View

(i)
j).

Choose random Ce(i)+2,g
(i)
e(i)

Let a(i) = (y(i)1 ,y(i)2 ,y(i)3 ,C(i)
1 ,C(i)

2 ,C(i)
3). And h(i) = g(i)1 ,g(i)2 ,g(i)3 .

2. Set the challenge: program H(a(1), . . . ,a(t)) := e.
3. For each iteration ri, i ∈ [1, t]: let b(i) = (y(i)

e(i)+2
,C(i)

e(i)+2
) and set

z(i)←

(View

(i)
2 ,k(i)1 ,k(i)2) if e(i) = 1,

(View
(i)
3 ,k(i)2 ,k(i)3 ,x(i)3) if e(i) = 2,

(View
(i)
1 ,k(i)3 ,k(i)1 ,x(i)3) if e(i) = 3.

4. Output p← [e,(b(1),z(1)),(b(2),z(2)), · · · ,(b(t),z(t))].
Scheme 5: The zero knowledge simulator

To show that the ith and i + 1st hybrid are indis-
tinguishable, we rely on Lemma 9 from [81]. This
lemma says the following: For any quantum A0,A1
which make q0,q1 queries to H respectively and
classical AC, all three of which may share state,
let PC be the probability that if we choose a ran-
dom function H and a random output B, then run
AH

0 followed by AC to generate x, and then run
AH

1 (x,B), that for a random j, the jth query AH
1

makes is measured as x′ = x. Then as long as the
output of AC has collision-entropy at least k, the ad-
vantage with which AH

1 , when run after A0,AC as
described, distinguishes (x,B) from (x,H(x)) is at
most (4+

√
2)
√

q02−k/4 +2q1
√

PC.

In other words, if we can divide our game into three
such algorithms and argue that the A1 queries H
on something that collapses to x with only negli-
gible probability, then we can conclude that the two
games are indistinguishable. Let A0 run the game
up until just before the i th iteration in the proof
generation. Let AC be the process which chooses
k(i)1 ,k(i)2 ,k(i)3 and generates View

(i)
1 ,View

(i)
2 ,View

(i)
3 ,

and outputs x = ke∗(i) ,Viewe∗(i) . (Note that this has
collision entropy |ke∗(i) | which is sufficient.) Let A1
be the process which runs the rest of the proof, and
then runs the adversary on the response.

Now we just have to argue that the probability that
we make a measurement of A1’s jth query to H and
get x is negligible. To do this, we reduce to the
security of the PRG used to generate the random
tapes (and hence the views). Note that ke∗(i) be-

sides the one RO query, ke∗(i) is only used as input to
the PRG. So, suppose there exists a quantum adver-
sary A for which the resulting A1 has non-negligible
probability of making an H-query that collapses to
x. Then we can construct a quantum attacker for
the PRG: we run the above A0,AC, but instead of
choosing ke∗(i) we use the PRG challenge as the re-
sulting random tape, and return a random value as
the RO output. Then we run A1, which continues
the proof (which should query ke∗(i) only with neg-
ligible probability since ks are chosen at random),
and then runs the adversary. We pick a random j,
and on the adversary’s jth query, we make a mea-
surement and if it gives us a seed consistent with
our challenge tape, we output 1, otherwise a ran-
dom bit. If PC is non-negligible then we will obtain
the correct seed and distinguish with non-negligible
probability.

Game 4 In game 4, for each i instead of choosing ran-
dom ke∗(i) and expanding it via the PRG to get the
random tape used to compute the views, we choose
those tapes directly at random.

Note that in Game 3, ke∗(i) are now only used as
seeds for the PRG, so this follow from pseudoran-
domness via a hybrid argument.

Game 5 In game 5, we use the simulator to generate the
views that will be opened, i.e. j 6= e∗(i) for each i.
We note that now the simulator no longer uses the
witness.

This is identical by perfect privacy of the circuit de-
composition.

22

Game 6 To allow for extraction in the simulation-
extractability game we replace the random oracles
with random polynomials whose degree is larger
than the number of queries the adversary makes.
The argument here identical to that in [81].

Online Extractability Before we prove online
simulation-extractability, we define some notation
to simplify the presentation:

For any proof π = e,{b(i),g(i),z(i)}i=1...t , let
hash-input(π) = {a(i),h(i) = (g(i)1 ,g(i)2 ,g(i)3)} be the
values that the verifier uses as input to Hchal in the
verification of π as described in Figure 1.

For a proof π = (e,{b(i),g(i),z(i)}i=1...t), let
open0(z(i)),open1(z(i)) denote the values derived
from z(i) and used to compute C(i)

ei and C(i)
ei+1 respectively

in the description of Ver in Figure 1.
We say a tuple (a, j,(o1,o2)) is valid if a =

(y1,y2,y3,C1,C2,C3), C j = Hcom(o1), C j+1 = Hcom(o2)
and o1,o2 consist of k,View pairs for player j, j+1 that
are consistent according to the circuit decomposition.
We say (a, j,(O1,O2)) is set valid if there exists o1 ∈ O1
and o2 ∈ O2 such that (a, j,(o1,o2)) is set valid.

We first restate lemma 16 from [81] tailored to our ap-
plication, in particular the fact that our proofs do not ex-
plicitly contain the commitment but rahther the informa-
tion the verifier needs to recompute it.

Lemma 1 Let qG be the number of queries to G made
by the adversary A and the simulator S in the simulation
extractability game, and let n be the number of proofs
generated by S. Then the probability that A produces
x,π /∈ simproofs where x,π∗ is accepted by VerH , and
hash-input(π∗) = hash-input(π ′) for a previous proof π ′

produced by the simulator, is at most n(n+1)/2(2−k)3t +
O((qG +1)32−k) (Call this event MallSim.)

Proof. This proof follows almost exactly in [81].
First, we argue that G is indistinguishable from a ran-

dom function exactly in [81].
Then, observe that there are only two ways MallSim

can occur:
Let e′ be the hash value in π ′. Then either S re-

programs H sometime after π ′ is generated so that
H(hash-input(π ′)) is no longer e′, or π∗ also contains
the same e as π , i.e. e = e′. S only reprograms H
if it chooses the same hash-input in a later proof - and
hash-input includes g(i)j , i.e. a random function ap-
plied to an input which includes a randomly chosen seed.
Thus, the probability that S chooses the same hash-input
twice is at most n(n + 1)/2(2−k)3t + O((qG + 1)32−k,
where (2−k)3t is the probability that two proofs use all
the same seeds, and O((qG + 1)32−k is the probability
that two different seeds result in a collision in G, where
the latter follows from Theorem 8 in [81].

The other possibility is that hash-input(π∗) =
hash-input(π ′) , and e = e′, but b(i),g(i),z(i) 6=
b′(i),g′(i),z′(i) for some i. First note, that if e = e′ and
hash-input(π∗) = hash-input(π ′), then g(i) = g′(i) and
b(i) = b′(i) for all i, by definition of hash-input. Thus,
the only remaining possibility is that z(i) 6= z′(i) for some
i. But since h(i) = h′(i) for all i, this implies a collision in
G, which again by Lemma? in [81] occurs with proba-
bility at most O((qG +1)32−k.

We conclude that MallSim occurs with probability at
most n(n+1)/2(2−k)3t +O((qG +1)32−k. �

Here, next we present our variant of lemma 17 from
[81]. Note that this is quoted almost directly from Un-
ruh with two modifications to account for the fact that
our proofs do not explicitly contain the commitment but
rather the information the verifier needs to recompute it,
and the fact that our underlying sigma protocol has only
3 challenges and satisfies 3-special soundness. H0 in this
lemma will correspond in our final proof to the initial
state of Hchal.

Lemma 2 Let G,Hcom be an arbitrarily distributed func-
tions, and let Hchal : {0,1}≤` → {0,1}2t be uniformly
random (and independent of G). , Then, it is hard
to find x and π such that for ({a(i),(g(i)1 ,g(i)2 ,g(i)3)) =
hash-input(π)

(i) g(i)Ji
= G(open0(z(i))) and g(i)Ji+1 = G(open1(z(i)))

for all i with J1|| . . . ||Jt := H0(hash-input(π)).
(ii) (a(i),Ji,(openi,Ji

,openi,Ji+1)) is valid for all i.
(iii) For every i, there exists a j such that

(a(i), j,(G−1(gi, j),G−1(gi, j+1))) is set-invalid.
More precisely, if AG,H0 makes at most qH queries to H0,
it outputs (x,π) with these properties with probability at
most 2(qH +1)(2

3)
t/2

Proof. Without loss of generality, we can assume that
G,Hcom are fixed functions which A knows, so for this
lemma we only treat H0 as a random oracle.

For any given value, of H0, we call a tuple
c= (x,{a(i)}i,{g(i)j }i, j) a candidate iff: for each i, among

the three transcripts, (a(i),1,G−1(g1)
(i),G−1(g(i)2),

(comi,2,G−1(g(i)2),G−1(g(i)3), and

(comi,3,G−1(g(i)3),G−1(g(i)1) at least one is set-valid,
and at least one is set-invalid. Let ntwovalid(c) be the
number of i’s for which there are 2 set-valid transcripts.
Let Evalid(c) be the set of challenge tuples which cor-
respond to only opens set-valid conversations. We call
a candidate an H0-solution if the challenge produced
by H0 only opens set-valid conversations, i.e. in lies in
Evalid(c). We now aim to prove that AH outputs an H0
solution with negligible probability.

For any given candidate c, for uniformly random H0,
the probability that c is an H0-solution is ≤ (2

3)
t . In par-

ticular, for candidate c the probability is (2
3)

t ∗2−ntwovalid .

23

Let Cand be the set of all candidates. Let F : Cand→
{0,1} be a random function such that for each c F(c) is
i.i.d. with Pr[F1(c) = 1] = (2/3)t .

Given F , we construct HF : {0,1}∗→ Z3t as follows:

• For each c /∈ Cand, HF(c) is set to a uniformly ran-
dom y ∈ Z3t .
• For each c ∈ Cand such that F(c) = 0, HF(c) is set

to a uniformly random y ∈ Z3t \Evalid(c).
• For each c ∈ Cand with F(c) = 1 where c is type 1,

with probability 2ntwovalid−t , choose a random chal-
lenge tuple e from Evalid(c), and set HF(c) := e.
Otherwise HF(c) is set to a uniformly random y ∈
Z3t \ (c).

Note that for each c, and e the probability of H(c) be-
ing set to e is 3−t . Suppose AH

0 outputs an H0-solution
with probability µ , then since HF has the same distribu-
tion as H0, AHF () outputs an HF solution c with proba-
bility µ . By our definition of HF , if c is an HF solution,
then F(c) = 1. Thus, AHF () outputs c such that F(c) = 1
with probability at least µ .

As in [81], we can simulate AHF () with another algo-
rithm which generates HF on the fly, and thus makes at
most the same number of queries to F that A makes to
HF . Thus by applying Lemma 7 from [81], we get

µ ≤ 2(qH +1)(
2
3
)t/2

.

Lemma 3 There exists an extractor EΣ such that for
any ppt quantum adversary A, the probability that
A can produce (a,{(ν1, j,ν2, j)} j = 1,2,3) such that
(a, j,(ν1, j,ν2, j)) is a valid transcript for j = 1,2,3, but
EΣ(a,{(ν1, j,ν2, j)} j = 1,2,3) fails to extract a proof, is
negligible.

Proof. Recall that a′ = (y1,y2,y3,C1,C2,C3), and
if all three transcripts are valid, C j = Hcom(ν1, j) =
Hcom(ν2, j−1) for j = 1,2,3. Thus, either we have ν1, j =
ν2, j−1 for all j or A has found a collision in Hcom. But,
Theorem 8 in [81] tells us that the probability of find-
ing a collision in a random function with k-bit output us-
ing at most q queries is at most O((q+ 1)32−k, which
is negligible. If ν1, j = ν2, j−1 for all j, then we have 3
k j||View j values, all of which are pairwise consistent, so
we conclude by the correctness of the circuit decompo-
sition, and the fact that (x = y,w) ∈ R iff φ(w) = y that if
we sum the input share in View1,View2,View3, we get a
witness such that (x,w) ∈ R. �

Theorem 2 Our version of the Unruh protocol satisfies
simulation-extractability against a quantum adversary.

Proof. We define the following extractor:

1. On input π , compute hash-input(π) = {a(i),h(i) =
(g(i)1 ,g(i)2 ,g(i)3)}

2. For i ∈ 1, . . . , t: For j ∈ 1,2,3, check whether there
is a solution ν1, j ∈ G−1(g(i)j),ν2, j ∈ G−1(g(i)j+1)

such that (a(i), j,(ν1, j,ν2, j) is a valid transcript.
If there is a valid transcript for all j, out-
put Eσ ((a(i),{(ν1, j,ν2, j)} j = 1,2,3)) as defined by
Lemma 3 and halt.

3. If no solution is found, output ⊥.
First we define some notation, again borrowed heavily
from [81]:

Let Evi,Evii,Eviii be events denoting that A in the sim-
ulation extractability game produces a proof satisfying
conditions (i), (ii), and (iii) from Lemma 2 respectively.

Let SigExtFail be the event that the extractor finds
a successful (a,{(ν1, j,ν2, j)} j = 1,2,3), but EΣ fails to
produce a valid witness.

Let ShouldExt denote the event that A produces x,π
such that VerH accepts and (x,π) /∈ simproofs.

Then our goal is to prove that the w produced by the
extractor is such that (x,w) ∈ R. I.e., we want to prove
that the following probability is negligible.

Pr[ShouldExt∧ (x,w) /∈ R]

≤Pr[ShouldExt∧ (x,w) /∈ R∧¬MallSim]

+Pr[MallSim]

=Pr[ShouldExt∧ (x,w) /∈ R∧¬MallSim∧¬Eviii]

+Pr[ShouldExt∧ (x,w) /∈ R∧¬MallSim∧Eviii]

+Pr[MallSim]

≤Pr[(x,w) /∈ R∧¬Eviii]

+Pr[ShouldExt∧ (x,w) /∈ R∧¬MallSim∧Eviii]

+Pr[MallSim]

=Pr[SigExtFail]

+Pr[ShouldExt∧ (x,w) /∈ R∧¬MallSim∧Eviii]

+Pr[MallSim]

=Pr[SigExtFail]

+Pr[ShouldExt∧ (x,w) /∈ R∧¬MallSim∧Evi∧Evii∧Eviii]

+Pr[MallSim]

≤Pr[SigExtFail]

+Pr[Evi∧Evii∧Eviii]

+Pr[MallSim]

Here, the second equality follows from the defini-
tion of SigExtFail and Eviii, and the description of
the extractor. The third equality follows from the
fact that ¬MallSim means that the hash function on
hash-input(π) has not been reprogrammed, and the

24

fact that ShouldExt means verification succeeds, which
means that conditions (i) and (ii) are satisfied.

Finally, by Lemmas 3, 2, and 1, we conclude that this
probability is negligible. �

25

	Introduction
	Contributions
	Related Work

	Building Blocks
	ZKBoo and ZKB++
	ZKBoo
	ZKBoo Complete Protocol

	ZKB++
	Putting it All Together: ZKB++

	The Fish Signature Scheme
	The Picnic Signature Scheme
	Selecting an Underlying Primitive
	Survey of Suitable Primitives
	LowMC

	Implementation and Parameters
	Implementation of Building Blocks
	Circuit for LowMC
	Experimental Setup and Results
	Comparison with Related Work

	Summary
	Additional Material on ZKBoo
	(2,3)-Decomposition
	Linear Decomposition of a Circuit

	Description of LowMC
	Building Blocks
	Security of Key Generation
	Parallelization of Proofs
	Security of the proof system in the quantum random oracle model

