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1 INTRODUCTION

Classical decidability results of fragments of logic [8] are based on careful systematic study of
restricted cases either by limiting allowed symbols of the language, limiting the syntax of the
formulas, �xing the background theory, or by using combinations of such restrictions. Many de-
cidable classes of problems, such as monadic �rst-order logic or the Löwenheim class [50], the
Löb-Gurevich class [49], monadic second-order logic with one successor (S1S) [11], and monadic
second-order logic with two successors (S2S) [62] impose at some level restrictions to monadic or
unary predicates to achieve decidability.

Problem de�nition. Here we study the problem of whether and how we can transform a formula
that uses multiple free variables into a simpler equivalent formula, but where the formula is not a
priori syntactically or semantically restricted to any �xed fragment of logic. Simpler in this con-
text means that we have eliminated all theory speci�c dependencies between the variables and
have transformed the formula into an equivalent Boolean combination of predicates that are “es-
sentially” unary. We call the problem monadic decomposition:

Given a �nite representation of a nonempty binary relation R, decide if R is equal to

a �nite union
⋃

0≤i<k Ai×Bi of �nitely represented Ai and Bi .

A relation is called monadic if it has a monadic decomposition. For example, the relation {(x ,y) |

(x + (y mod 2)) > 5} over integers is monadic because it has the equivalent monadic decomposi-
tion {(x ,y) | (x +1 > 5∧y mod 2 = 1)∨ (x +0 > 5∧y mod 2 = 0)}, where k = 2,A1 = {n | n > 4},
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B1 is odd numbers, A2 = {n | n > 5}, and B2 is even numbers. The fundamental assumption we
make here is:

We have a Boolean closed class of formulas Ψ and a solver for Ψ.

In the given example Ψ would be integer linear arithmetic. More precisely, we assume a back-
ground structure U with an r.e. (recursively enumerable) universe U and an r.e. set Ψ of formulas
such that:

(1) All elements of U can be named by ground terms in the language of U.1

(2) All quanti�er free formulas in the language of U are in Ψ.2

(3) For all φ(x̄) ∈ Ψ we can decide if U |= ∃x̄φ(x̄), i.e., if φ(x̄) is satis�able.

Variable independence. Monadic decomposition was originally studied by Libkin [48] under the
name variable independence in full �rst-order theories. Here we revisit and build on some of those
results. The aspect that is unique to our work is the specialization to the quanti�er free fragment
of theory combinations and the use of a solver as an oracle. In the general case we do not assume
that the full theory ofU is decidable. Our Theorem 4.6 is related to [48, Theorem 3] where the latter
looks at a general class of structures whose theory is decidable and where deciding �niteness and
Skolemization is de�nable in the language. The resulting formulas use quanti�ers. Rather than
assuming that Skolemization is de�nable in the language we use decidability of the satis�ability
procedure of the solver to construct witnesses.

Working with a solver. The specialization on quanti�er free formulas is important because we
use satis�ability modulo theories or SMT solvers [20] in our algorithms. Theory combination in
modern SMT solvers uses quanti�er free formulas and becomes undecidable in the more general
case when quanti�ers are allowed [10, 37, 51]. This limits what we are allowed to express in U
without sacri�cing decidability – in general, only positive existential quanti�ers are allowed, while
other quanti�ers are not.
When φ(x̄) is satis�able it follows (from U being r.e.) that we can also e�ectively generate a

witness ā such that φ(ā) holds. E�ectiveness means that there is a solver that uses a �nite number
of steps for deciding satis�ability and for �nding a witness. A �nite representation of a relation is
given by a formula from Ψ. This formulation is very natural from the standpoint of modern SMT
solvers. Practically, one can consider an SMT solver as an extension of an e�ective representation
of a Boolean algebra. The theory speci�c extensions of the solver are used to construct quanti�er
free formulas in di�erent subtheories but have otherwise no direct in�uence on the algorithms
that we discuss here. We show an executable python script of the main algorithm using the SMT
solver Z3 [19] in the Appendix; it demonstrates concretely how such interaction with an SMT
solver works in practice.

Semidecision procedure. A formula φ(x ,y) ∈ Ψ denotes the relation R = {(a,b) ∈ U × U |

U |= φ(a,b)}. The main two questions that we are interested in are: 1) deciding if R is monadic;
2) constructing a monadic decomposition of R if R is monadic. The key insight is given by the
following equivalence relation ∼ over A = {a | ∃b R(a,b)}. Let also R(a) denote the image of a by
R de�ned as the set {b | R(a,b)}.

x ∼ x ′
def
= ∀yy′((R(x ,y) ∧ R(x ′,y′)) ⇒ (R(x ′,y) ∧ R(x ,y′)))

Observe that, for all x , x ′ ∈ A, x ∼ x ′ is equivalent to the condition R(x) = R(x ′), i.e., that x and
x ′ are indistinguishable with respect to their images by R. Let A∼ denote the set of ∼-equivalence

1By slight abuse of notation we use elements of U also as terms.
2Formal equality symbol is ≃ and is always present, i.e., we assume logic with equality.
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classes of A. Now: 1) A∼ is �nite i� R is monadic, see Lemma 4.3, so we can decide if R is monadic
by deciding if A∼ is �nite; 2) we can e�ectively enumerate witnesses for all the ∼-equivalence
classes by using the solver as an oracle. This gives us, in the monadic case, a way to subdivide
A into its equivalence classes A∼, by using the solver for Ψ to exhaustively enumerate witnesses
that cover A∼. Such witnesses can subsequently be used to construct formulas for the monadic
decomposition. If, on the other hand, R is not monadic, then this enumeration will not terminate,
leaving us with a semidecision procedure in the general case. It also follows from Theorem 4.12
that the procedure mondec is a semidecision procedure that terminates and produces a monadic
decompositionmondec(φ) i� φ is monadic.
For the semidecision procedure of monadic decomposition to work, there are no assumptions

on U and Ψ other than the ones listed above. The technique works in all theories where a solver
is available, such as linear arithmetic over integers or rationals, bit-vectors, arrays, algebraic data
types, algebraic reals, as well as combinations of theories for which a DPLL(T ) [29] procedure with
Nelson-Oppen [53] style theory combination is known.

Decidable cases. While the general case of monadic decomposition is undecidable [48, Proposi-
tion 2], for some theories, such as integer linear arithmetic, it is possible to decide if A∼ is �nite.
We also consider the problem of monadic decomposition in the presence of uninterpreted function
symbols from a signature Σ. In this case we are no longer dealing with a single background struc-
ture, but with the class of all of its possible Σ-expansions. We show that monadic decomposition
is decidable for EUF, where equality is the only interpreted symbol, in Theorem 5.5.

Applications. Monadic decomposition is a general simpli�cation technique with many potential
applications. We discuss brie�y several concrete examples in the next section, and focus on more
details in § 7. Monadic decomposition can be used in many di�erent combinations of theories
and in many di�erent contexts where it is useful to simplify formulas by eliminating variable
dependencies, such as program analysis, theorem proving, and compiler optimization and where
solvers such as Z3 [19, 20], CVC4 [4], and Yices [24? ], are actively being used today. New areas
where the use of SMT solvers is being investigated are network protocols and query optimization.

The rest of the paper is organized as follows. § 2 describes some motivating scenarios. In § 3 and
§ 4 the problem is de�ned formally, we prove themain decomposition Theorem 4.6 and correctness
of the main algorithmmondec in Theorem 4.12. We show the general case to be undecidable as a
corollary of [48, Proposition 2]. In § 5 we show some decidable cases, in particular, Theorem 5.5
shows that monadic decomposition is decidable in EUF. § 6 provides some evaluation using a
micro-benchmark. § 7 describes in more detail concrete applications where we �rst encountered
the need for monadic decomposition. § 8 is related work. § 9 concludes.

2 MOTIVATION

String analysis. In the context of analysis of string manipulating code, characters are often
treated as bytes or 8-bit bit-vectors3 as in extended ASCII, or 16-bit bit-vectors4 as in UTF16 en-
coded strings that is the de facto standard in all programming environments. A popular formalism
that helps to scale the analysis of string manipulating code to such large alphabets is the theory of
symbolic �nite automata (SFAs) and symbolic �nite transducers (SFTs) [39, 73]. Instead of concrete
characters, SFAs use character predicates.
In encoders it is common that characters are composed and decomposed using arithmetic op-

erations. Certain composition operations lead to transitions that read a sequence of characters at

3Numbers between 0 and FF16.
4Numbers between 0 and FFFF16.

Journal of the ACM, Vol. 64, No. 2, Article 14. Publication date: May 2017.



14:4 Margus Veanes, Nikolaj Bjørner, Lev Nachmanson, and Sergey Bereg

once [17], such as this one from statep to stateq, where the sequence (x ,y) is read in one transition:

p
λ(x,y).127<(64(x mod32)+(y mod 64))≤2047∧x=192+(x mod32)∧y=138+(y mod 64)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

and whose guard checks that two consecutive bytes x and y form a valid two-byte UTF8 encoding
of a Unicode character. Such formulas hinder SFA based analysis because of the lookahead. In
this case, monadic decomposition of the guard produces the equivalent predicate λ(x ,y).194 ≤

x ≤ 223 ∧ 128 ≤ y ≤ 191. Therefore, the above transition can be split into two transitions, by
introducing an intermediate state r , where each transition reads a single character at a time:

p
λx .194≤x ≤223
−−−−−−−−−−−→ r

λy .128≤y≤191
−−−−−−−−−−−→ q

Monadic decomposition may in general introduce nondeterminism into the automaton but this
can be resolved through SFA determinization and does not a�ect the intended semantics in this
context. We revisit some analysis scenarios in more detail in Section 7.

Compiler optimizations. Monadic decomposition can be used to simplify expressions and thus
enable new (or enhance existing) automatic compiler optimization techniques [1] by localizing or
removing variable dependencies. It may also be used to enable parallelization of automata based
string processing procedures in typical scenarios by eliminating lookahead [74]. String processing
often involves pipelines of composed procedures such as Base64 decoding, UTF8 decoding, and
Html decoding, that are expressed as symbolic transducers, and where several characters need to
be read and combined �rst into bigger units before their processing can continue in the next step of
the pipeline. Such procedures often introduce multi-character lookahead that hinders paralleliza-
tion. Parallelization of �nite state machines is based on encoding the transition function of the
state machine (without lookahead) as matrix multiplication [46, 52], the latter is parallelizable due
to associativity.

Theorem proving. In the context of automated �rst-order resolution based theorem proving mod-
ulo theories, Skolemization may bene�t from monadic decomposition by enabling simpler Skolem
functions [44]. The use of SMT solvers in this context comes into play when the classical resolution
technique is extended to work modulo background theories [42, 43]. In theory based reasoning a
formula is typically �rst Skolemized. For example, consider integer linear arithmetic and the sen-
tence

∀x∃y(0 ≤ x ≤ 1 ⇒ (0 ≤ y ∧ x + y ≤ 1)).

Themain objective of antiprenexing [3] is to minimize the arity of the introduced Skolem functions.
In this case antiprenexing and subsequent Skolemization produces the formula

∀x(0 ≤ x ≤ 1 ⇒ (0 ≤ f (x) ∧ x + f (y) ≤ 1)).

However, introduction of the unary Skolem function f can be avoided in this context because the
formula 0 ≤ x ≤ 1 ⇒ (0 ≤ y ∧ x + y ≤ 1) is monadic and the initial formula is, after monadic
decomposition, equivalent to

∀x∃y(0 ≤ x ≤ 1 ⇒ ((x ≃ 0 ∧ 0 ≤ y ≤ 1) ∨ (x ≃ 1 ∧ y ≃ 0)))

In this case antiprenexing removes y from the scope of x and the subsequent Skolemization step
will replace y by an uninterpreted constant.

There is also a clear connection to quanti�er elimination in this case. When the quanti�er free
body of a formula in prenex normal form is monadic (when generalized to multiple variables), then
monadic decomposition followed by antiprenexing becomes e�ectively a quanti�er elimination
procedure.
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Program analysis. Monadic decomposition can be used to break down dependencies between
program variables and thus simplify various symbolic techniques that are used in the context of
modern program analysis [56]. The use of an SMT solver as a black box is particularly well suited
in this context because it allows seamless combination of di�erent theories for di�erent data types.

3 MONADIC RELATIONS

We assume U and Ψ as described before. The Boolean type is bool with truth values {⊤,⊥}. We
use λ-expressions to de�ne anonymous functions and relations, given φ(x̄) ∈ Ψ where all the free
variables of φ(x̄) are among x̄ = (x1, . . . , xn), we write λx̄ .φ(x̄) or simply φ, when the arity n and
the x̄ are clear from the context. We let [[φ]] denote the n-ary relation de�ned by φ.
We recall the following de�nitions from [48] with small notational adjustments. Consider a

sequence of distinct variables x̄ = (x1, . . . , xn) and a partition P of X = {xi }
n
i=1.

5 P is �nest if
P = {{x}}x ∈X . A formula φ(x̄) respects the partition P if φ(x̄) is a Boolean combination of formulas
each having its free variables in a single block in P . Two variables xi and x j are independent in φ(x̄)
if there exists a partition P such that xi and x j belong to two di�erent blocks of P and φ respects P .
The variable independence problem is to decide if xi and x j are independent in φ(x̄). The variable
partition problem is to decide if a formula φ respects a given partition P of its free variables. Both
problems are e�ectively equivalent [48, Lemma 1].
In order to decide if all variables are pairwise independent we can decide if φ respects the �nest

variable partition. In order to decide if two variables xi and x j are independent in φ(x̄) it is enough
to partition X into two blocks, one containing xi and the other containing x j , because if φ respects
P then it trivially also respects any variable partition P ′ that is coarser than P .6 We can view blocks
B ∈ P of variables as single block-variables xB , and reduce the variable independence problem to
the case x̄ = (xB , xC ) by making individual variables in a block B be projections from xB , and
decide if φ respects the variable partition {{xB }, {xC }}. We can therefore focus on �nest partitions
without loss of generality.

Let R be an n-ary relation for some n ≥ 2. R is Cartesian if R is the direct product
∏n

i=1Ui of
some sets Ui . R is monadic if R equals to a �nite union ∪ki=1Ri of Cartesian relations Ri , called a
monadic decomposition of R. The (monadic) width of R is the smallest such k if R is monadic, k = ω
otherwise. Note that R has width 1 i� it is Cartesian. We say that a formula φ(x̄) or the predicate
λx̄ .φ(x̄) is monadic i� [[φ]] is monadic. The following proposition relates monadic predicates to
variable partitioning in Ψ.

Proposition 3.1. A formula φ ∈ Ψ is monadic i� there exists an equivalent formula ψ ∈ Ψ that

respects the �nest partition of its free variables.

Proof. The direction⇐ follows by taking the DNF ofψ and de�ning the Cartesian components
from its disjuncts. For direction ⇒ use Theorem 4.6. �

Example 3.2. Letφ(x ,y) be the formula (x+(y mod 2)) > 5, whereU is integers. Then R = [[φ]]

is the corresponding binary relation over integers. R is not Cartesian but it is monadic and has
monadic width 2 because a monadic decomposition of R is

([[λx .x > 5]] × [[λy.⊤]]) ∪ ([[λx .x > 4]] × [[λy.odd(y)]]).

Another possible monadic decomposition of R is

([[λx .x > 5]] × [[λy.even(y)]]) ∪ ([[λx .x > 4]] × [[λy.odd(y)]]).

5All the blocks in P are nonempty pairwise disjoint sets, and their union equals X .
6P ′ is coarser than P if each block of P is a subset of some block of P ′.
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So monadic decompositions are clearly not unique. �

Example 3.3. Letφ(x1, x2,y) be the formula (x1+x2+(y mod 2)) > 5, where the universeU is in-
tegers. Thenφ is not monadic, but similarly to Example 3.2, the formulaφ ′(x ,y) = φ(π1(x), π2(x),y)

is monadic because [[φ ′]] = ([[λx .π1(x) + π2(x) > 5]] × [[λy.⊤]]) ∪ ([[λx .π1(x) + π2(x) > 4]] ×
[[λy.odd(y)]]). Equivalently, there is a formula equivalent to φ ′(x1, x2,y) that respects the partition
{{x1, x2}, {y}}. �

As noted in [48], a naive algorithm to �nding a formula that respects a partition P and is equiv-
alent to φ is to exhaustively enumerate all possible formulasψ (x̄) that respect P and for each one
decide ifU |= ∀x̄(φ(x̄) ⇔ ψ (x̄)). After a �nite number of steps such a formulaψ is eventually found
if it exists. This statement is also true here, by using Proposition 3.1 and that ¬(φ(x̄) ⇔ ψ (x̄)) ∈ Ψ,
so we can decide validity of ∀x̄(φ(x̄) ⇔ ψ (x̄)) by checking unsatis�ability of ¬(φ(x̄) ⇔ ψ (x̄)).
A unary formula is a formula with at most one free variable. A monadic normal form or MNF

of a formula is an equivalent Boolean combination of unary formulas. Observe that the di�erence
between being monadic and being in monadic normal form, is that the �rst notion is semantic
(depends on U) while the second is syntactic (independent of U). An important point about MNF,
when it exists, is that it does not have to be in disjunctive normal form (DNF) as the Cartesian
based de�nition would suggest. A formula φ being in MNF is equivalent to saying that φ respects
the �nest partition of its free variables that is equivalent to saying that all free variables of φ are
pairwise independent.
An open problem, that we are not going to discuss here, but that is relevant in many practi-

cal contexts is how to discover the “best” partition of the free variables, so that dependent free
variables fall into the same block, as for example {x1, x2} in Example 3.3.

4 MONADIC DECOMPOSITION

We are interested in the following two problems: 1) Deciding if a predicate φ is monadic; 2) Given
a monadic predicate φ, e�ectively constructing its MNF. We restrict our attention to binary predi-
cates �rst.

4.1 Deciding if a predicate is monadic

Consider any formula P(x) in Ψ denoting a subset of some in�nite domain, integers say, and let
ϕP (x ,y) be the formula P(x) ∧x ≃ y. Then ϕP is monadic i� [[P]] is �nite. Deciding �niteness is an
undecidable problem in general by using Rice’s Theorem [64]. Can we use a similar argument here
by �nding a structure U that allows us to reduce the halting problem to deciding �niteness? The
following proposition is a corollary of [48, Proposition 2(b)] and Proposition 3.1 but we include
the direct argument here to make the connection to deciding �niteness more transparent.

Proposition 4.1. There exists U such that monadic decomposition is undecidable in U.

Proof. Consider the theory of partial computations of Turing Machines [66]. The atomic for-
mulas have the form P(pMq, pwq, ptq) encoding statements: t is a valid (partial) trace of the Turing
machine M with input word w . The theory is decidable and satis�es the requirements for U and
Ψ. For �xedM andw de�ne the predicate PM,w as λx .P(pMq, pwq, x). Then [[PM,w ]] is �nite i�M
halts onw . Thus, ϕPM ,w

is monadic i�M halts onw . �

Use of formal equality ≃ plays a key role in the above constructions. It is unclear what the
implications are if ≃ is disallowed.
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4.2 Decomposition procedure

In the following, we provide a brute force semidecision procedure for monadic decomposition.
While the procedure is complete for monadic predicates, in the nonmonadic case it will not termi-
nate. The input is a binary predicate φ(x ,y) ∈ Ψ.
Let R = [[φ]] ⊆ A × B, where we assume that R , ∅ and

A = {a | ∃b R(a,b)}, B = {b | ∃a R(a,b)}.

De�ne the relations:

x ∼ x ′
def
= ∀yy′((φ(x ,y) ∧ φ(x ′,y′)) ⇒ (φ(x ′,y) ∧ φ(x ,y′)))

y ∽ y′
def
= ∀x x ′((φ(x ,y) ∧ φ(x ′,y′)) ⇒ (φ(x ′,y) ∧ φ(x ,y′)))

Intuitively, x ∼ x ′ means that x and x ′ are indistinguishable with respect to their images by R, i.e.,
R(x) = R(x ′), and y ∽ y′ means that y and y′ are indistinguishable with respect to their preimages

by R, i.e., R−1(y) = R−1(y′)where R−1(y)
def
= {x | R(x ,y)}. The following lemmamakes this intuition

precise.

Lemma 4.2. Let R and A be given as above. 1) For all a,a′ ∈ A: a ∼ a′ if and only if R(a) = R(a′).

2) The relation ∼ is an equivalence relation over A.

Proof. Proof of 1: Let a,a′ ∈ A.

⇒: Assume a ∼ a′. We show that R(a) ⊆ R(a′). Let (a,b) ∈ R. We show that (a′,b) ∈ R. There
is some b ′ such that (a′,b ′) ∈ R. So, by de�nition of ∼, (a′,b), (a,b ′) ∈ R.

⇐: Assume R(a) = R(a′). Let (a,b), (a′,b ′) ∈ R, i.e., b ∈ R(a) and b ′ ∈ R(a′). So, byR(a) = R(a′),
we have b ∈ R(a′) and b ′ ∈ R(a). It follows that (a,b ′), (a′,b) ∈ R.

Proof of 2: Immediate by using 1. �

By symmetry, Lemma 4.2 holds also for ∽ and B. We let [a]∼ (resp. [b]∽) denote the equivalence
class {e ∈ A | e ∼ a} (resp. {e ∈ B | e ∽ b}). The following is a technical lemma used for proving
Theorem 4.6. Similar statement was �rst proved in [48, Lemma 4 in Theorem 3]. The proof here
also shows a relationship between the number of ∼-equivalence classes and the monadic width
that we will make use of below.

Lemma 4.3. R is monadic⇔ the number of ∼-equivalence classes is �nite. Moreover, ifR is monadic

then the number of ∼-equivalence classes is at most 2k − 1 where k is the monadic width of R.

Proof. ⇒: Assume R has a monadic decomposition {Ai ×Bi }i<n . Let Ãi =
⋃
a∈Ai [a]∼. We show

�rst that {Ãi × Bi }i<n is also a monadic decomposition of R. Suppose (a,b) ∈ Ãi × Bi . So there is
ai ∈ Ai such that a ∼ ai . Since (ai ,b) ∈ Ai × Bi it follows that (ai ,b) ∈ R, so b ∈ R(ai ). But R(ai ) =
R(a) by Lemma 4.2 because ai ∼ a, so b ∈ R(a), i.e., (a,b) ∈ R. The direction R ⊆

⋃
i<n Ãi × Bi is

immediate because R ⊆
⋃
i<n Ai × Bi and Ai ⊆ Ãi .

Next, we normalize {Ãi ×Bi }i<n into a form {A′
i ×B

′
i }i<m where eachA′

i ends up being exactly

one ∼-equivalence class ofA. For all I ⊆ {i | 0 ≤ i < n} letMI be theminterm (
⋂
i ∈I Ãi )\(

⋃
j<I Ãj ).

By using standard Boolean laws, each Ãi is a �nite union of disjoint nonempty minterms. Apply
the following equivalence preserving transformations to the monadic decomposition {Ãi ×Bi }i<n
until no more transformations can be made:

• replace (MI ∪M) × Bi by (MI × Bi ) ∪ (M × Bi ),
• replace (MI × Bi ) ∪ (MI × Bj ) byMI × (Bi ∪ Bj ).

Journal of the ACM, Vol. 64, No. 2, Article 14. Publication date: May 2017.



14:8 Margus Veanes, Nikolaj Bjørner, Lev Nachmanson, and Sergey Bereg

Let the resulting decomposition be {A′
i ×B

′
i }i<m , where, for all a ∈ A and b ∈ B, we have (a,b) ∈ R

i� there exists exactly one i such that (a,b) ∈ A′
i × B′

i . In other words, for all a ∈ A, R(a) is the set
B′
i such that a ∈ A′

i . It follows that a ∼ a′ for all a,a′ ∈ A′
i .

Thus, the number of ∼-equivalence classes is bounded by 2k −1 where k is the monadic width of
R, because the numberm of di�erent (nonempty)mintermsMI is, due to the powerset construction,
at most 2k − 1.
⇐: Assume that the number of∼-equivalence classes is �nite. LetA =

⋃n−1
i=0 Ai whereAi = [ai ]∼.

Let Bi = R(ai ) for 0 ≤ i < n. Thus if (a,b) ∈ Ai ×Bi then a ∼ ai and b ∈ R(ai ), i.e., R(a) = R(ai ) and
b ∈ R(ai ). So b ∈ R(a), i.e., (a,b) ∈ R. Conversely, if (a,b) ∈ R then b ∈ R(a). But R(a) = R(ai ) = Bi ,
for some i < n, where a ∈ Ai and b ∈ Bi . Thus, {Ai ×Bi }i<n is a monadic decomposition of R. �

Next, we provide an iterative procedure to compute a witness setWA that covers A∼. We use the
negated form of ∼:

x / x ′ ⇔ ∃yy′(φ(x ,y) ∧ φ(x ′,y′) ∧ (¬φ(x ′,y) ∨ ¬φ(x ,y′)))

So, for all a,a′ ∈ A, a / a′ means that a and a′ must participate in distinct Cartesian components
of a monadic decomposition of φ, i.e., if {Ri }i<k is a monadic decomposition of R, then there exist
b,b ′ ∈ B and i , j such that (a,b) ∈ Ri \ Rj and (a′,b ′) ∈ Rj \ Ri .

Computation ofWA : Let (a0,b0) ∈ [[φ]] and letWA = {a0}. Repeat:
(1) Letψ (x) be theormula

∧
a∈WA

x / a.
(2) If there exists a such thatψ (a) holds thenWA :=WA ∪ {a} else terminate.

Recall that Ψ is closed under Boolean connectives. This means that the formula ψ (x) with all
the existentially quanti�ed variables (which all occur positively) replaced by fresh free variables z̄
is a formulaψ ′(x , z̄) that belongs to Ψ and therefore, the satis�ability checking of ψ ′, and thus ψ ,
as well as generating the witness a is decidable. When ψ becomes unsatis�able then any further
element from A must be ∼-equivalent to one of the elements already inWA, while all elements in
WA belong to distinct ∼-equivalence classes. Therefore, if φ is monadic then the process terminates
by Lemma 4.3, and upon terminationWA is a �nite collection of witnesses that divides A into a set
A∼ of ∼-equivalence classes [a]∼ for a ∈WA. For example, if φ is Cartesian then ψ is unsatis�able
initially, because then A∼ = {[a0]∼}.
Computation ofWB is analogous to computation ofWA. Observe that max(|WB |, |WA |) < 2k

where k is the monadic width of φ, which follows from Lemma 4.3. Also k ≤ min(|WB |, |WA |). So
the size di�erence between |WB | and |WA | is at most exponential.

Example 4.4. Consider the relation

Rk (x ,y)
def
= y>0 ∧ y&(y−1)=0 ∧ x&(ymod (2k − 1)),0

de�ned over 32-bit bit-vectors where & is bit-wise-AND. The width of Rk is k . R3 is illustrated in
Figure 1. Figure 1(a) illustrates a geometrical view of R3 where (x ,y) is marked i� R3(x ,y) holds.
We have

A∼ = {[a]∼ | 1 ≤ a ≤ 7} where [a]∼ = {n | n 〈2,0〉 = a}

and

B∽ = {[20]∽, [2
1]∽, [2

2]∽} where [2
m]∽ = {2n | nmod 3 =m}.

If R(m) and R(n) are identical thenm ∼ n, e.g., 1 ∼ 9. If R−1(m) and R−1(n) are identical thenm ∽ n,
e.g., 22 ∽ 25.
Figure 1(b) illustrates the equivalence classes as nonempty regions of a Venn Diagram view of

R3. R3 =
⋃3
i=1Ai × Bi . �
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[1]∼

[2]∼

[4]∼[5]∼

[6]∼[3]∼
[7]∼ [1]∽

[2]∽

[4]∽

A2

x

y

(a) (b)

A1 A3

B1

B2

B3

20
1 7
•

•

• • •

• • • •

• • • •

• • •

• • • •

• • • •

•• • •

•• • •

•• • •

22

24

26

28

3 5
•

•

• • •

• • • •

• • • •

• • •

• • • •

• • • •

•• • •

•• • •

•• • •

9 11 13 15

Fig. 1. a) Geometrical view of R3; b) Venn diagram view of R3; Rk is defined in Example 4.4.

Lemma 4.5. If R is monadic then, for all [a]∼ ∈ A∼ and [b]∽ ∈ B∽ , we can e�ectively construct

αa , βa ∈ Ψ such that [[αa]] = [a]∼ and [[βb ]] = [b]∽.

Proof. By using Lemma 4.3 letWA be constructed as above, soA∼ = {[a]∼ | a ∈WA}. Construct
a �niteWB similarly such that B∽ = {[b]∽ | b ∈WB}. Let

(for b ∈WB ) βb (y)
def
= (

∧

a∈WA∩R−1(b )

φ(a,y)) ∧ (
∧

a∈WA\R−1(b )

¬φ(a,y))

(for a ∈WA) αa(x)
def
= (

∧

b ∈WB∩R(a)

φ(x ,b)) ∧ (
∧

b ∈WB\R(a)

¬φ(x ,b))

Observe that [[αa]] = [[αa′]] for all a′ ∼ a. Similarly for βb . Fix a ∈WA and consider the de�nition
of αa . We prove that [[αa]] = [a]∼. Proof of [[βb ]] = [b]∽ is similar.
SupposeWB ∩ R(a) = {bi }i ∈I andWB \ R(a) = {bj }j∈J whereWB = {bi }i ∈I∪J . For any i ∈ I

we have that [a]∼ ⊆ R−1(bi ) because a ∈ R−1(bi ). For any j ∈ J we have that [a]∼ ∩ R−1(bj ) = ∅

because a < R−1(bj ). Then

[a]∼ ⊆ (
⋂

i ∈I

R−1(bi )) \ (
⋃

j∈J

R−1(bj )) = [[(
∧

i ∈I

φ(x ,bi )) ∧ ¬(
∨

j∈J

φ(x ,bj ))]] = [[αa]]

For the direction [[αa]] ⊆ [a]∼ take a′ ∈ [[αa]]. Suppose, by way of contradiction that, a / a′ and
thus R(a′) , R(a). Then there exists b ∈WB \ R(a) such that a′ ∈ R−1(b). But then, by de�nition of
αa , ¬φ(a′,b) holds, contradicting that that a′ ∈ R−1(b) (φ(a′,b) holds). �

Lemma 4.5 is essentially a quanti�er elimination property that allows us to eliminate the ∀

quanti�er from the de�nition of λx .x ∼ a (resp. λy.y ∽ b) by stating that it is enough to consider
the elements inWB (resp.WA). We can now prove the following result. It gives us a brute force
method for monadic decomposition.

Theorem 4.6. If φ(x ,y) is monadic then

a) φ(x ,y) is equivalent to λ(x ,y).
∨
a∈WA

(αa(x) ∧ φ(a,y)).

b) φ(x ,y) is equivalent to λ(x ,y).
∨
b ∈WB

(βb (y) ∧ φ(x ,b)).

c) φ(x ,y) is equivalent to λ(x ,y).
∨
a∈WA,b ∈WB, (a,b )∈[[φ]](αa(x) ∧ βb (y)).

Proof. We prove (a). The other cases are similar. By Lemma 4.5 we have [[αa]] = [a]∼. By
construction ofWA we have that, for all a ∈ WA we have [a]∼ × R(a) ⊆ [[φ]] where [a]∼ × R(a) =

[[λ(x ,y).αa(x)∧φ(a,y)]]. In the other direction, if (a,b) ∈ [[φ]] then a ∈ [[αa]] and b ∈ R(a). In other
words, (a,b) ∈ [[λ(x ,y).αa(x) ∧ φ(a,y)]]. �
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Theorem 4.6 does not guarantee smallest monadic width. Example 4.7 shows that the monadic
width may be strictly smaller than min(|WB |, |WA |).

Example 4.7. Take

R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 1), (5, 2), (3, 5), (4, 5)}

where A = B = {1, 2, 3, 4, 5}. Then |WA | = 5 and |WB | = 5 but R has width 4:

R = ({1, 5} × {1}) ∪ ({2, 5} × {2}) ∪ ({3} × {3, 5}) ∪ ({4} × {4, 5}).

�

Example 4.8. Let ϕ(x ,y) := (0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 ∧ x + y < 2). The example illustrates a case
where ϕ is satis�ed by a �nite model of the form:

1 0

0 1

We get the following predicates by using Lemma 4.5 and applying some simpli�cations.

α0(x)
def
= x ≃ 0, α1(x)

def
= x ≃ 1, β0(y)

def
= y ≃ 0, β1(y)

def
= y ≃ 1

Monadic decomposition of ϕ reconstructs the formula

α0(x) ∧ β0(y) ∨ α0(x) ∧ β1(y) ∨ α1(x) ∧ β0(y)

by using Theorem 4.6(c). Case α1(x) ∧ β1(y) is not included because ϕ(1, 1) is false. �

4.3 Algorithm mondec

The algorithm suggested by Theorem 4.6 has some disadvantages. It forces the decomposition to be
in disjunctive normal form (DNF) with respect to the unary sub-formulas, while an exponentially
more succinctMNFmay exist. Moreover, it forces full exploration of both the setWA and the setWB .
Furthermore, it does not easily generalize to non-binary relations. Here we describe an algorithm
mondec that addresses all these concerns.
First, we lift the de�nitions of ∼ (resp. ∽) to all x , x ′,y,y′ ∈ U:

x / x ′
def
= ∃z(¬(φ(x , z) ⇔ φ(x ′, z))), y * y′

def
= ∃z(¬(φ(z,y) ⇔ φ(z,y′))).

Equivalently

x ∼ x ′
def
= R(x) = R(x ′), y ∽ y′

def
= R−1(y) = R−1(y′).

In other words, we let a1 ∼ a2 when R(a1) = R(a2) = ∅, and, symmetrically, b1 ∽ b2 when
R−1(b1) = R−1(b2) = ∅. This is consistent with the earlier de�nition (due to Lemma 4.2) when ∼

was applied to elements in A and ∽ was applied to elements in B. Here it is easier to work withU

because the equivalence classes are identical for φ and ¬φ.

Example 4.9. Consider the ∼-equivalence classes in Figure 1. Then [0]∼ is the complement of
A1 ∪ A2 ∪ A3. �
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Instead of creating what amounts to a DNF, we use case analysis on φ(a,y) ∧ φ(x ,b) for all
([a]∼, [b]∽) ∈ U∼ × U∽ . The output may be any formula in MNF, not necessarily in DNF. We
avoid full exploration ofU∼ andU∽ by maintaining a shared datastructure where the equivalence
classes are represented implicitly.
The algorithm mondec is described in Figure 2. It takes as input a monadic formula φ and

creates an MNF of φ in terms of nested if-then-else formulas that is either ⊤ or ⊥ or has the form
if(ψ ,ϕt ,ϕf ) that represents the equivalent formula ((ψ ∧ ϕt ) ∨ (¬ψ ∧ ϕf )), and where ϕt and ϕf
are again nested if-then-else formulas.

mondecx,y(φ)
def
= dec(⊤,⊤), where

dec(ν , π )
def
=





⊥, if not sat(π ∧ φ);
⊤, else if not sat(π ∧ ¬φ);
if(πa

b
, dec(ν ∧ ν

a
b
, π ∧ π

a
b
), dec(ν ∧ ν

a
b
, π ∧ ¬πa

b
))),

else, where (a,b) are such that x = a,y = b |=U ν .

ν
a
b

def
= a / x ∨y * b,

π
a
b

def
= φ(a,y) ∧ φ(x ,b).

Fig. 2. Algorithm mondec.

Each “node”ψ in if(ψ ,ϕt ,ϕf ) has the form φ(a,y) ∧ φ(x ,b) for some a,b ∈ U. The if-then-else
formula is created recursively by the procedure dec(ν , π ) where ν is the condition that removes
redundant solutions fromU∼ ×U∽ while π is the “path condition” or the condition from the root
of the if-then-else formula to the current node, that determines the termination condition of the
branch. If π or π ∧φ is unsatis�able, then π implies ¬φ and the leaf is ⊥. Else, if π ∧¬φ is unsatis�-
able, this means that π implies φ and the leaf is⊤. If both π ∧φ and π ∧¬φ are satis�able then there
exists a new pair (a,b) that can be used to build a new node and the decomposition continues lo-
cally. The check that (a,b) satis�es ν guarantees that the pair ([a]∼, [b]∽) has not already been used
along this path. Observe that neitherWA norWB are explicitly computed. In the case of decompo-
sition involving more than 2 variables, say y is a pair (y1,y2),mondec can be invoked recursively
on node subformulas φ(a,y), i.e., the de�nition of πa

b
becomesmondecy1,y2(φ(a,y)) ∧ φ(x ,b).

Upon termination, the disjunction of all branches that end with ⊤ amounts to an MNF of φ, or
equivalently, the disjunction of all branches that end with ⊥ amounts to an MNF of ¬φ.

Example 4.10. We illustrate execution of mondec with the example formula φ taken from Ex-
ample 3.2, φ = (x + (ymod 2)) > 5. When choosing a witness (a,b) we use the additional heuristic
that {x = a,y = b} |= ν ∧π ∧φ. In the initial call to dec(⊤,⊤) both φ and ¬φ are satis�able. Choose
(a,b) = (8, 0). Then π

8
0 equals 8 + (ymod 2) > 5 ∧ x + (0mod2) > 5 that simpli�es to x > 5. The

following if-then-else formula is created

dec(⊤,⊤) = if(x > 5, dec(ν8
0, x > 5), dec(ν8

0, x ≤ 5))

In the call dec(ν 8
0, x > 5) the condition x > 5∧¬((x + (ymod 2)) > 5) is unsatis�able which means

that dec(ν8
0, x > 5) = ⊤. In the call dec(ν8

0, x ≤ 5), both formulas x ≤ 5 ∧ φ and x ≤ 5 ∧ ¬φ are
satis�able. Choose the next witness (a,b) = (5, 1). Thenπ 5

1 equals 5+(ymod2) > 5∧x+(1mod2) >
5 that simpli�es to (ymod 2) > 0 ∧ x > 4. So

dec(ν8
0, x ≤ 5) = if(π 5

1, dec(ν
8
0 ∧ ν

5
1, x ≤ 5 ∧ π

5
1), dec(ν

8
0 ∧ ν

5
1, x ≤ 5 ∧ ¬π 5

1))
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In the call to dec(ν 8
0 ∧ ν

5
1, x ≤ 5 ∧ π

5
1) the formula x ≤ 5 ∧ π

5
1 ∧ ¬φ is unsatis�able, so

dec(ν 8
0 ∧ ν

5
1, x ≤ 5 ∧ π

5
1) = ⊤.

In the call to dec(ν 8
0 ∧ ν

5
1, x ≤ 5 ∧ ¬π 5

1) the formula x ≤ 5 ∧ ¬π 5
1 ∧ φ is unsatis�able, so

dec(ν 8
0 ∧ ν

5
1, x ≤ 5 ∧ ¬π 5

1) = ⊥.

Thus, the �nal MNF of φ equals if(x > 5,⊤, if((ymod 2) > 0 ∧ x > 4,⊤,⊥)) which is equivalent
to the disjunction x > 5 ∨ (x ≤ 5 ∧ (ymod 2) > 0 ∧ x > 4). �

Example 4.11. To illustratemondecwith a slightly more complicated input formula, takeφ(x ,y)
to be the predicate R3 in Figure 1. Consider the result of mondec(φ) that starts with (4, 4) |= φ so

π
4
4

π
3
1

π
1
1

⊤

π
3
2

⊥
⊤

⊤
⊥

π
2
2

⊤

Fig. 3. mondec(R3).

the root is π 4
4. In the depiction ofmondec(φ) in Figure 3, the left subtree of a node is the true case

and right subtree of a node is the false case. For example, ¬π 4
4 ∧ π

3
2 ∧ π

2
2 is a branch that implies

φ, it covers the case A2 × B2 in Figure 1(b). �

Theorem 4.12. mondec(φ) terminates i�φ is monadic. Ifmondec(φ) terminates thenmondec(φ)

is in MNF and mondec(φ) is equivalent to φ.

Proof. Assume φ is monadic. Assume also that φ is satis�able or else it is trivially equivalent to
⊥. Let A and B be as above. By using Lemma 4.3, A∼ and B∽ are �nite. Observe that the argument
ν of dec remains of the form that all existential quanti�ers occur positively in it, so the selection
of (a,b) |= ν in dec is decidable (using the solver for Ψ).
The procedure mondec creates an if-then-else formula that can be thought of as a binary tree

whose leaves are either ⊤ or ⊥ and whose nodes are formulas πa
b
for some a ∈ A and b ∈ B. The

formulamondec(φ) is in MNF because each π
a
b
is in MNF.

First, we show that mondec(φ) is well-de�ned (terminates) by showing that there are �nitely
many nodes. A new node πa

b
is created only when there exists a ∈ A and b ∈ B such that (a,b) |= ν .

In the subsequent recursive calls, any node that is equivalent to πa
b
is eliminated by the constraint

ν
a
b
. Termination follows because A∼ and B∽ are �nite and πa

b
⇔ π

a′

b ′
i� a ∼ a′ and b ∽ b ′.

Next, we show that ν must be satis�able if both π∧φ and π∧¬φ are satis�able. Let (a,b) |= π∧φ
and (a′,b ′) |= π ∧ ¬φ. We know that it is possible to strengthen π to π1 so that π1 is equivalent to
αa(x) ∧ βb (y) and currently this is not the case because a / a′ or b * b ′. Moreover, and without
loss of generality, π1 is of the form π ∧ ψ where ψ is a conjunction of predicates πc

d
or ¬π c

d
for

some c ∈ A and d ∈ B. We have, by de�nition of dec, that π has the form
m∧

i=1

π
ai
bi
∧

n∧

i=m+1

¬π
ai
bi

for some n ≥ m ≥ 0 and n ≥ 1, and that ¬ν is equivalent to
∨n
i=1 ai ∼ x ∧ bi ∽ y. Thus, any use

of a predicate πc
d
such that (c,d) |= ¬ν is useless because it makes πc

d
equivalent to some πai

bi
for

some i , 1 ≤ i ≤ n, and so π ∧ π
c
d
or π ∧ ¬π c

d
is either equivalent to π or to ⊥. Therefore, ν must
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be satis�able or else π1 cannot be constructed. Observe that if π ∧ π
a
b
or π ∧ ¬πa

b
is unsatis�able

then the corresponding call to dec will return ⊥.
To show thatmondec(φ) ⇔ φ is immediate from the de�nition of dec. First, consider a branch π

inmondec(φ) ending in⊤. We know thatπ impliesφ as a condition for⊤. The case¬mondec(φ) ⇒

¬φ is symmetrical by considering branches π in mondec(φ) ending in ⊥. �

4.4 Improved search heuristic

We write (a,b) |= ψ for {x = a,y = b} |=U ψ where x and y are the only free variables in ψ . We
let mondec1 be a variant of mondec with the following di�erence, mondec1 uses the following
strengthened constraint for selecting a witness (a,b) in Figure 2:

(a,b) |= ν ∧ π ∧ φ

This heuristic states that, for selecting the witness (a,b), do so in the context of π ∧ φ. It follows
from the proof of Theorem 4.6 that selecting (a,b) |= ν avoids formulas πa

b
that already occur (in

equivalent form) as conjunct or negated conjunct of π . Since π ∧φ is satis�able, say (a,b) |= π ∧φ,
but π does not imply φ (because π ∧ ¬φ is also satis�able) it must be possible to strengthen π to
π ∧ π

a
b
while at the same time (a,b) |= ν . Observe that from (a,b) |= φ follows that (a,b) |= π

a
b
.

As we will demonstrate in Section 6, this heuristic is important for performance of mondec.
Otherwise (a,b) |= ν may be chosen so that π ∧ π

a
b
is unsatis�able and therefore π implies ¬πa

b
and hence π is equivalent with π ∧ ¬πa

b
. In this case the constructed node πa

b
in the if-then-else

formula serves no purpose from the point of view of case analysis with respect to pairs from
U∼ ×U∽ that are relevant in the current branch condition π .

5 SOME DECIDABLE CASES

We illustrate decidability of monadic decomposition in some cases. Proposition 5.1 is also shown
in [48, Corollary 7]. Its proof is nevertheless informative because it adds additional insight about
problem structure and complexity. We also prove that monadic decomposition is decidable in EUF,
i.e., in the presence of uninterpreted function symbols but no interpreted symbols besides equality
(≃). Moreover, for o-minimal structures [68], there exists a uniform polynomial time decision pro-
cedure [48, Proposition 9] for variable independence. O-minimality means that there is a symbol
that is interpreted as a linear order over the universe and every de�nable subset is a �nite union
of points and open intervals with respect to this order. Further decidable cases, are mentioned in
Section 8.

5.1 Arithmetic

Consider �rst integer linear arithmetic. It clearly meets the requirements of U. Take a linear arith-
metic formula φ(x ,y).

Proposition 5.1. Monadic decomposition is decidable for integer linear arithmetic.

Proof. Let φ(x ,y) be a formula in integer linear arithmetic. Let the predicate ∼ be de�ned as
above, let ‘x ∈ A’ stand for the formula ∃yφ(x ,y). Construct the following quanti�ed formula:

IsMonadic(φ)
def
= ∃x̂(∀x(x ∈ A⇒ ∃x ′(|x ′| < x̂ ∧ x ∼ x ′)))

We show thatφ is monadic i� IsMonadic(φ) is true in Presburger arithmetic. Decidability follows
by [61]. Proof of⇒: Assume φ is monadic. Then A∼ is �nite by Lemma 4.3. Let

â = max{min(abs(C)) | C ∈ A∼} + 1,
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where abs(C) is the set of absolute values inC . Then, for all a ∈ A, a belongs to someC in A∼, and
so there is a′ ∈ C such that |a′ | = min(abs(C)) and so |a′ | < â and a ∼ a′. Proof of ⇐: Assume
IsMonadic(φ) holds. Choose a witness â for x̂ and consider the classes A = {[a]∼ | 0 ≤ |a | < â}. It
follows that A = A∼ is �nite, so φ is monadic by Lemma 4.3. �

The formula IsMonadic(φ) has the quanti�er pre�x ∃∀∃∀ in Prenex normal formwhenφ is quan-
ti�er free. So there are three quanti�er alternations in IsMonadic(φ). This implies an upper bound

on time complexity 22
cn7

for some constant c and size n of φ for deciding if φ is monadic [63]. This

is one exponent lower than the upper bound 22
2cn

known for the full Presburger arithmetic [28].
Moreover, the structure of the formula is quite speci�c and may justify the design of a special
purpose algorithm.
Likewise, but for a di�erent reason:

Proposition 5.2. Monadic decomposition is decidable for real algebraic arithmetic with addition

and multiplication.

Proof. The atomic subformulas of φ are of the form p(x ,y) ≥ 0, where p(x ,y) is in general
a multi-variate polynomial. Thus, for every value b, φ(x ,b) is a uni-variate polynomial, and the
sign of such polynomials induce a �nite set of intervals that partition the reals. Without loss of
generality consider the case for an a, b and ϵ , such that for all b ′ where ϵ ≥ b ′ > b we have φ(a,b)
but ¬φ(a,b ′). Then φ contains an atomic formula p(x ,y) ≥ 0 whose truth value changes over b,
b ′. Monadicity of φ fails if it is determined by signs of polynomials p(x ,y) that depend on both x
and y (recall that polynomials are continuous and di�erentiable). Thus, we can limit the search for
a monadic decomposition up to the maximal number of regions induced by the polynomials in φ.
This (potentially very large) number is bounded by the polynomial degrees and number of atomic
subformulas. �

5.2 Uninterpreted functions

Here we brie�y consider the problem of monadic decomposition in the presence of uninterpreted
function symbols from a signature Σ. In this casewe are no longer dealing with a single background
structure, but with the class of all of its possible Σ-expansions. We limit the discussion here to
pure logic, with equality as the only interpreted symbol, also called EUF. Deciding satis�ability of
quanti�er free formulas in EUF is decidable [35] and in fact NP-complete [8, Proposition 6.4.27],
with practical decision procedures based on congruence closure [54] and completion [23, 47].

Consider a quanti�er free Σ-formulaφ(x ,y)with two free variables x andy. We lift the de�nition
of monadic formulas to EUF as follows: φ(x ,y) is monadic if it has an equivalent monadic normal
form (MNF) (recall the de�nition of MNF from section 3). For example, the formula x ≃ y ∧ c ≃ x

is monadic because it is equivalent to x ≃ c ∧ y ≃ c , while the formula x ≃ y is not monadic.
Many classical techniques use disjunctive or conjunctive normal forms to reduce decision prob-

lems to a simpler form. Here, it is in general not enough to consider the DNF of a formula φ(x ,y)
and to decide if the individual disjuncts are monadic or not in order to determine if φ(x ,y) is
monadic or not. A trivial example is e ∨¬e for some equation e . The following example illustrates
a slightly more complicated situation.

Example 5.3. Suppose φ has the form (ψ ∧¬e1∧¬e2)∨ (ψ ′∧e ′1)∨ (ψ ′∧e ′2)whereψ is equivalent
with ψ ′ and where ψ is in MNF but e1, e2, e ′1 and e

′
2 are not monadic. Then φ has the equivalent

form ψ ∧ (¬(e1 ∨ e2) ∨ e ′1 ∨ e ′2). Moreover, suppose ψ |= e1 ⇔ e ′1 and ψ |= e2 ⇔ e ′2. Then φ is
equivalent toψ and thus φ is monadic. �
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Moreover, as the following example illustrates, it is not enough to consider all subterms already
occurring in a monadic formula as the only source of terms for constructing its MNF.

Example 5.4. Consider the formula f (y) ≃ д(h(x)) ∧h(x) ≃ f (c). Its MNF (that is essentially its
only possible MNF) is f (y) ≃ д(f (c)) ∧ h(x) ≃ f (c) where д(f (c)) is a term that does not occur in
the original formula. �

We show next that monadicity is decidable in EUF. We make use of the following basic notions
from term rewriting [23]. A term s is embedded in a term t , in symbols s ≤emb t if either s is a
constant and s = t , or s = f (s1, . . . , sn) and t = f (t1, . . . , tn) for some n-ary f ∈ Σ, n ≥ 1, and si is
embedded in ti for 1 ≤ i ≤ n, or if s is embedded in a subterm of t .
A crucial point is that all simpli�cation orderings [21] ≺ in term rewriting contain the strict

embedding relation <emb, i.e., if s <emb t then s ≺ t . Σ is assumed to be �nite, this is needed to
guarantee that ≤emb is well-founded [22]. A simpli�cation order ≺ extends <emb to a total order
over terms. A central task, called completion, is to replace a set of equations E with a simpler set
of directed equations (or rewrite rules) where all equations are of the form l → r with r ≺ l . Let
E≺ stand for some completion of E. Clearly, there are �nitely many possible E≺.

Theorem 5.5. The problem of deciding if a quanti�er free formulaφ in EUF is monadic is decidable.

Proof. Let φ be given. All variables in φ are, from the point of view of rewriting, treated the
same way as uninterpreted constants. First, we construct a �nite set Kφ (Kruskal closure of φ) of
terms that is going to be used as an over-approximation of all terms that are relevant during the
search of an MNF candidate of φ. Let E be the set of all equations that occur in φ. De�ne Kφ to be
the set of all terms ti occurring in all possible sequences

t0 ⊢E≺
1
t1 ⊢E≺

2
t2 · · · ⊢E≺

i
ti · · ·

where t0 is a subterm that occurs in φ, ti 6≤emb tj for i < j and ti ⊢R ti+1 means that ti+1 is obtained
from ti by rewriting a subterm of ti using a rewrite rule in R. Each Ei is a subset of E. Each such
sequence is �nite by Kruskal’s Tree theorem [45]. Moreover, since E is �nite and the number of
possible completions of E is �nite, given ti , the number of possible ti+1’s such that ti ⊢E≺

i
ti+1 holds

is �nite. So the set Kφ is �nite by König’s Lemma. The sets E≺
i above may potentially be pairwise

di�erent completions.
Now consider all possible conjunctions of literals overKφ ×Kφ , these correspond to all possible

pairs of subsets over Kφ ×Kφ (one subset for atoms and one subset for negated atoms). The set Θ
of all possible Boolean combinations of such conjunctions is also �nite. So Θ represents DNFs of
all possible formulas whose equations belong to Kφ × Kφ .
We show that φ is monadic⇔ there existsψ ∈ Θ such thatψ is in MNF andψ is equivalent to φ,

where the latter check is decidable because it reduces to unsatis�ability in EUF. The only nontrivial
direction is⇒. Assumeφ is monadic. Soφ has anMNFψ and there exists an equivalence preserving
transformation from φ = ψ0 toψ = ψn where each step of the transformation fromψi toψi+1 uses
either, de MorganŠs laws, distributivity of connectives, logical simpli�cations, or in some logical
context where a set of equations E j holds, rewrites a term using some equation in E j as a rewrite
rule in some direction. This process may introduce new equations, but some subsets of the original
E are enough to characterize all such rewriting steps by using Birkho�’s Theorem [7]. Suppose
there is some term t inψ that does not occur in Kφ . Then there exists some t0 in φ and

t0 ⊢E1 t1 ⊢E2 t2 · · · ⊢En tn = t .

where each Ei is a subset of E. Each equation in Ei is viewed as a rewrite rule in both directions,
e.g., an equation x ≃ f (x)would correspond to two rules x → f (x) and f (x) → x (where the �rst
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Fig. 4. Micro benchmark.

one violates the embedding relation because x <emb f (x)).7 To show that there exists ψ ′ ∈ Θ that
is equivalent to ψ it is enough to show that we can replace such t by some term t ′ from Kφ such
that vars(t ′) ⊆ vars(t), which preserves MNF, where vars(u) denotes the set of all variables in a
term u.
Observe that if u <emb v then vars(u) ⊆ vars(v). We can consider a class of simpli�cation

orders ≺ over terms such that if vars(u) ( vars(v) then u ≺ v because then v 6<emb u and if
vars(u) * vars(v) and vars(v) * vars(u) then both u ≺ v as well as v ≺ u are possible extensions
because then u 6<emb v and v 6<emb u. In particular, we can choose which variable is “smallest”,
depending on which one (if any) that occurs in t . An example of the latter case would be an
equation f (x) ≃ д(y). We now have that, for some such order ≺ and completions of Ei that respect
≺, there exists a sequence

t ′0 = t0 ⊢
∗
E≺
1
t ′1 ⊢

∗
E≺
2
t ′2 · · · ⊢

∗
E≺
n

t ′n = t
′
.

where Ei |= t ′i ≃ ti and t ′j � t ′i for j ≥ i by virtue of using the completed rule sets and by transitivity
of the simpli�cation order [21]. Moreover vars(t ′) ⊆ vars(t) for some ≺. This means that we can
replace the occurrence of t inψ by t ′ and the resulting formula will be equivalent toψ and remains
in MNF. Assume, w.l.o.g., that t ′i , t

′
i+1. It follows that t

′
i 6≤emb t

′
j for i < j and so t ′ ∈ Kφ . �

6 MICRO BENCHMARK

We present here a micro benchmark by revisiting the sample predicate Rk from Example 4.4 and
by letting k range from 2 to 16; k also happens to be the monadic width of Rk .
The worst case scenario of the size of a monadic decomposition of Rk , according to Theo-

rem 4.6(c), is O(k2k ) because |A∼ | = 2k and |B∽ | = k (including the classes [0]∼ and [0]∽). We
compare three algorithms, implemented as Z3 python scripts, that are indicated in Figure 4 by
thm1, mondec, and mondec1. The output is in all cases in MNF represented by an if-then-else for-
mula, its size is the number of πa

b
nodes in it, e.g., the size of the expression in Figure 3 is 5.8

Algorithm thm1 is based on Theorem 4.6. Algorithm mondec1 is a variant of mondec as discussed
above; the python script of mondec1 is shown in the Appendix.
The most interesting aspect about the experiment is that it shows that di�erent (very simple)

heuristics can in�uence the performance characteristics of monadic decomposition by an expo-
nential factor. The heuristic in mondec1 reduces the size of the decomposition exponentially in
this experiment, while constructing nodes in mondec based solely on ν , provides worse perfor-
mance than exhaustive search ofWA andWB , as in thm1. For example, the time to decompose R9

7Recall that variables are treated as uninterpreted constants here, so we are dealing with ground rewriting.
8The experiments were carried out on a laptop with a 2GHz CPU.
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with mondec gave an output of size 2281 and took around 11 minutes, while with mondec1 the
output size was 23 and the decomposition took 1.4 seconds. The reason why the naive selection of
(a,b) |= ν in Figure 2 performs so poorly compared to (a,b) |= ν ∧ π ∧ φ, is that in the �rst case a
lot of irrelevant nodes are created in the if-then-else formula, while in the second case the search
is directed by the current path π and the formula φ.
The formulas arising in Section 2 are too small for comparison among the algorithms, but thm1

is in general impractical because it always requires a DNF and requires all the witnesses inWA as
well asWB , while mondec (and mondec1) takes advantage of subexpression sharing in the Shannon
expansion that the constructed if-then-else formula corresponds to. Moreover, mondec works for
any number of variables, not just two.

7 SAMPLE APPLICATIONS

We describe two di�erent applications of monadic decomposition. Both are related to string pro-
cessing applications. The �rst application illustrates safety analysis of Bek programs that describe
string sanitizers [39]. The second application illustrates composition of symbolic automata with
lookahead. The concrete scenario that is illustrated considers equivalence checking of ESFTs [17]
where ESFTs need to be Cartesian and transformation to Cartesian form requires monadic decom-
position. Monadic decomposition is also used during exploration of symbolic �nite transducers
that use registers [74] where a register may be eliminated or made implicit by grouping two or
more consecutive characters together. Later, the grouped characters may need to be monadically
decomposed to expose parallelism.
The scenarios illustrate cases where monadic decomposition is done using an implementation

ofmondec. Although the scenarios are developed here by hand, they mimic fully automated steps
in larger tool chains. The additional time overhead caused by monadic decomposition, when it
works, is typically in the order of tens of milliseconds and is negligible for these examples. Our
practical experience withmondec is still quite limited at this stage. The main limiting factors have
been, di�culty of integration into other tools, use of complex theories like nonlinear arithmetic,
and need for quanti�er elimination before monadic decomposition can be applied, as illustrated in
the next section.

7.1 String sanitizer analysis

Bek is a programming language that is designed for implementing sanitizers [39]. Sanitizers are
special purpose string encoders that escape or remove potentially dangerous strings in order to
prevent unauthorized script execution. Analysis of Bek programs builds on the theory and algo-
rithms of Symbolic Finite Transducers or SFTs [73]. One challenging property of SFTs is that the
range, i.e., the set of all possible output sequences, of an SFT is not necessarily regular even though
its domain is always regular. Regularity in the symbolic setting is de�ned as acceptance by a sym-

bolic �nite automaton or SFA. While monadic decomposition is necessary to decide range regularity
of SFTs it is insu�cient because in general we also need to apply quanti�er elimination prior to
attempting monadic decomposition.
Regularity is important because it enables the application of a whole range of SFA algorithms,

such as intersection and complementation, and breaks the boundary between decidable and unde-
cidable cases. In contrast, a range automaton of an SFT is in general an Extended SFA or ESFAs,
an SFAs with lookahead where a single transition may read more than one character in a single
atomic step when transitioning from one state to the next state. Intersection emptiness of ESFAs is
undecidable [17]. This is in sharp contrast with the classical theory of �nite transductions where
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it is known, as a consequence of Nivat’s Representation Theorem of �nite transductions, that both
the domain as well as the range of a �nite transduction are regular [58, 75].
As a trivial example of an SFT whose range is not regular, take one that has an in�nite alphabet,

a single state q, and a single transition q true/[x, x ]
−−−−−−−−→ q. For example, if the input is [a,b, c] then the

ouput is [a,a,b,b, c, c]. Its range is not regular because it contains a sequence [x ,y] if and only if
x = y and it would require in�nitely many states to remember x for comparison with y.

Figure 5 illustrates an SFT that UTF8 encodes Unicode characters, where x 〈h,l 〉 extracts bits
from h to l from a 32-bit bit-vector x , e.g., 8〈3,2〉 = 102. Surrogates are not valid Unicode characters,

Surrogate(x)
def
= D80016 ≤ x ≤ DFFF16. Bit-append is denoted by x ·y, e.g., 1102 ·x 〈10,6〉 = C016+x 〈10,6〉 .

⊥, 0 q

(0 ≤ x ≤ 7F16)/[x ]

(7F16 < x ≤ 7FF16)/[6 · x〈10,6〉, 2 · x〈5,0〉]

(7FF16 < x ≤ FFFF16 ∧ ¬Surrogate(x ))/[11102 · x〈15,12〉, 2 · x〈11,6〉, 2 · x〈5,0〉]

(FFFF16 < x ≤ 10FFFF16)/[111102 · x〈20,18〉, 2 · x〈17,12〉, 2 · x〈11,6〉, 2 · x〈5,0〉]

Fig. 5. SFT EncUTF8 is a UTF8 encoder for valid Unicode code points.

In some analysis scenarios with SFTs it is useful to decide if the range of an SFT is regular
and, if so, to construct the corresponding SFA. We take UTF8 encoding as an example because it
is ubiquitous (even some sanitizers use UTF8 encoding as the �rst encoding step). Here we know
that the range must be regular because the Unicode alphabet is �nite (in theory at least). The input
to the encoder is a sequence of Unicode code points, that are integers from 0 to 10FFFF16, and the
output is a sequence of bytes. The complete SFT of a UTF8 encoder can be described with one state
and four transitions, see Figure 5, each transition corresponds to the length of the encoding of the
code point.9

A naive extraction of a range automaton of EncUTF8 gives rise to an ESFA. For example, the
second rule of EncUTF8 becomes the following transition of the ESFA and has lookahead 2, i.e., it
reads 2 bytes at a time

q0

λ(y, z).∃x(7F16 < x ≤ 7FF16 ∧ y = (6 · x 〈10,6〉) ∧ z = (2 · x 〈5,0〉))

The existential quanti�er over x can be eliminated automatically by using any known quanti�er
elimination technique for integer linear arithmetic [57]. For ease of presentation we use the fact
that x = y 〈4,0〉 · z 〈5,0〉 . This gives us the equivalent transition

q0

λ(y, z).7F16 < (y 〈4,0〉 · z 〈5,0〉) ≤ 7FF16 ∧ y = (6 · y 〈4,0〉) ∧ z = (2 · z 〈5,0〉)

9The corresponding encoder in [15, Figure 3] uses 5 states and 11 transitions because there the input is assumed to be
UTF16 encoded.
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As it happens, the guard of the transition is Cartesian, and monadic decomposition and some
simpli�cation of the resulting formula gives rise to the following equivalent transition,

q0

λ(y, z).C216 ≤ y ≤ DF16 ∧ 8016 ≤ z ≤ BF16

that is equivalent after removing the lookahead to

q0 q3

λy.C216 ≤ y ≤ DF16

λz.8016 ≤ z ≤ BF16

where q3 is a new state.
The third rule of EncUTF8 is a bit more challenging. As above, we start with a transition where

the existential quanti�er has been eliminated. We get the following ESFA transition. The transition
has lookahead 3, i.e., it reads a block of 3 characters at once

q0

λ(x ,y, z).7F16<x 〈3,0〉 · y 〈5,0〉 · z 〈5,0〉≤7FF16 ∧ x=E16·x 〈3,0〉 ∧ y=2·y 〈5,0〉 ∧ z=2·z 〈5,0〉

Monadic decomposition of the guard is applied here to ternary relations and one possible outcome
is the following MNF (the monadic width is 3):

λ(x ,y, z). ((x = E016 ∧ A016 ≤ y ≤ BF16) ∨ (x = ED16 ∧ 8016 ≤ y ≤ 9F16)∨

(E116 ≤ x ≤ EF16 ∧ x , ED16 ∧ 8016 ≤ y ≤ BF16)) ∧ 8016 ≤ z ≤ BF16

that is used to replace the loop by the following equivalent set of transitions that do not use
lookahead and where all the pi are new states

q0 p1 p2

p3

p4

λx .x = E016 λy.A016 ≤ y ≤ BF16

λx .x = ED16 λy.8016 ≤ y ≤ 9F16

λx .E116 ≤ x ≤ EF16 ∧ x , ED16 λy.8016 ≤ y ≤ BF16

λz.8016 ≤ z ≤ BF16

The same procedure is repeated for the fourth rule. After combining all the transitions together
and minimizing [16] the resulting SFA we obtain the SFA in Figure 6 that accepts the range of
EncUTF8.
One can now show that the SFA rejects any over-encoded sequences such as [C016, AE16] (that

decodes to ‘.’) or [C016, AF16] (that decodes to ‘/’) and consequently that EncUTF8 does not over-
encode inputs. The SFA can also be translated into a regular expression. Such analysis can be useful
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Fig. 6. Minimal SFA that recognizes valid UTF8 encoded strings.

for showing absence of security holes in encoders that could otherwise be vulnerable to exploits
such as directory traversal attacks [60, 65].

7.2 ESFA parallel composition

In general, ESFAs are not closed under parallel composition, but in some situations it may neverthe-
less be useful to attempt to compose two ESFAs, e.g., during equivalence checking of single-valued
ESFTs [17]. This problem also illustrates a use case when we dynamically select a variable parti-
tioning andmay not have to monadically decompose all the variables. Themain step of composing
two automata is a product construction of their transitions that is usually computed with a depth
�rst search procedure. The problem with ESFAs is that they may not make progress in lock step.
For example, consider two ESFAs A and B. Suppose that A has a transition p

φ
−−→ p ′ with

lookahead 2 and B has a transition q
ψ
−−→ q′ with lookahead 3 and we want to compose the

two transitions in parallel. Lookahead 2 means that [[φ]] ⊆ U × U and lookahead 3 means that
[[ψ ]] ⊆ U ×U ×U.
By composing the transitions in parallel we mean that we start from the pair state (p,q) and si-

multaneously transition inA and in B. To do sowe need to decompose λ(x ,y).ψ (π1(x), π2(x),y) into
MNF where we partitioned the free variables (x1, x2,y) of ψ (x1, x2,y) into blocks {{x1, x2}, {y}}.
We can then introduce intermediate states (based on the resulting MNF) and continue the parallel
composition of A and B in a depth �rst manner. Note that the order of variables in (x1, x2,y) is
important. Automata theoretically, you read the subsection (a,b, c) such that ψ (a,b, c) holds and
then move past that subsection.
For example suppose that λ(x ,y).ψ (π1(x), π2(x),y) is Cartesian. Then it has the equivalent form

λ(x ,y).ψ1(π1(x), π2(x)) ∧ψ2(y) for some ψ1 and ψ2. Now introduce a new state q1 and replace the
transition q ψ

−−→ q′ by the transitions q ψ1−−→ q1
ψ2−−→ q′. The transitions q ψ1−−→ q1 and p

φ
−−→ p ′

can now be composed in parallel to (p,q)
ψ1∧φ−−→ (p ′,q1) and, provided that ψ1 ∧ φ is satis�able, the

parallel composition continues in depth �rst style from the pair state (p ′,q1). The point with this
scenario is that the variables x1 and x2 need not be independent inψ (x1, x2,y).

8 RELATED WORK

Study of monadic fragments of logic was started by Löwenheim in 1915 and spans a full century
of literature by now. Work related to automata theory and its relation to monadic fragments of
logic is, likewise, a very thoroughly studied topic [67]. Despite this, there is renewed interest in
this topic, but with a new angle. From our perspective, this is due to many advances in automated

logical inference engines. The angle is, how to make use of such advances in a modular way in the
context of automata theoretic problems. This makes questions like the one posed in this paper
relevant in many di�erent potential application areas. Monadic decomposition can also be used to
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study new decidable fragments of logics; revisiting techniques in [6, 26, 36] could be relevant in
this context.

Variable independence. Systematic study of variable independence was initiated by Libkin [48],
with motivation coming from database applications such as spatio-temporal analysis and query
optimization in constraint databases [13, 34]. In our conference paper on monadic decomposi-
tion [72] we were unaware of Libkin’s work. In particular, we learned that the general problem of
monadic decomposition is undecidable as a consequence of [48, Proposition 2(b)]. Some of our re-
sults directly bene�t from the work in [48] and we also complement that work by providing a new
algorithm to solving variable independence problems with o�-the-shelf SMT technology that may
also be bene�cial for database applications. The main di�erence is that we focus on the quanti�er
free fragment of theory combinations. In the general case we do not assume that the full theory is
decidable. Extension of SMT with quanti�ers is in itself an active research area [31]. One approach
to eliminate quanti�ers in theory based reasoning is to apply monadic decomposition [44]. Part of
the motivation in [48] also comes from quanti�er elimination in speci�c theories. For o-minimal

structures [68], there exists a uniform polynomial time decision procedure [48, Proposition 9] for
variable independence. For example, considering integers and the standard order <, the ability to
de�ne that an integer is even violates o-minimality. In the context of SMT, o-minimality seems
too restrictive. Theorem 4.6 is related [48, Theorem 3] where the latter looks at a general class of
structures whose theory is decidable and where deciding �niteness and Skolemization is de�nable
in the language. The resulting formulas use quanti�er alternations. The only allowed quanti�ers
in our case are positive occurrences of existential quanti�ers, that essentially correspond to “don’t
care” free variables.
The problem appears also in disguise in studies involving relationships between di�erent classes

of formal languages and relations [12, 25]. A recognizable relation is a �nite union of products of
regular languages, i.e., it has a form of monadic decomposition. A regular relation is a relation
de�nable in the canonical automatic structure Slen [5]. Decidability of checking whether a regular
relation is recognizable follows from [48, Theorem 3] because the preconditions of the theorem
are easily met: Slen is decidable, has an e�ective test for �niteness, and Skolemization is de�nable
through lexicographic ordering. Another interesting fact about variable independence of a formula
φ(x̄) is that there is a unique most re�ned partition of x̄ that de�nes its variable independence [14,
Corollary 1].
Variable independence is also known to be decidable for monadic second-order logic queries

over trees and a corresponding monadic decomposition is computable [27]. A restricted form of
variable independence is also equivalent to non-ambiguity of tree automata [55].

Monadic fragments. Unary relations play a key role in many decision problems and decidable
logics.Monadic �rst-order logic, or the Löwenheim class [50], is the classical example of a decidable
fragment of �rst-order logic where all symbols are unary relation symbols. The Löb-Gurevich
class [49], is the extension of the Löwenheim class where also unary function symbols are allowed.
Both classes are decidable by having the �nite model property [8].Monadic second-order logic allows
quanti�cation over unary predicates. Among one of the most celebrated and applied decidability
results are those of the monadic second-order theory S1S with one successor relation by Büchi [11]
and decidability of the monadic second-order theory S2S of the binary tree with two successor
relations by Rabin [62]. The ability to apply Rabin’s theorem and automata based techniques to
establish decidability results of a logic is often described as the logic having the tree model property.
Modal logics do not have the �nite model property but they do have the tree model property. Vardi
attributes [69] their decidability to this. Grädel discusses this topic further in [33] and its relation
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to the guarded fragment [2]. Unlike in modal logics, simple extensions of the guarded fragment
cause undecidability [32], one exception is the monadic guarded fragment with two variables and
equivalence relations that does have the treemodel property [30]. The theorems of Büchi and Rabin
have also been revisited and extended by Gurevich through game based techniques [36]. Another
technique discussed in [36] is the use of the Feferman-Vaught generalized products [26] as a model-
theoretic method for establishing decidability results in the context of monadic second-order logic.
The Feferman-Vaught theorem reduces the theory of the given composition to the theories of the
parts and the monadic theory of the index structure. This is analogous to separating the label
theory from the �nite state graph structure of an SFA.

Symbolic automata. Remarkably, the Feferman-Vaught theorem is revisited in [6] where it is
shown that a special version of it is closely related to the theory of M-automata where M is a
�rst-order structure. Although M-automata are de�ned as multi-tape automata, by using tuples,
they correspond precisely to SFAs. Independently, a variant of SFAs was originally introduced
in the context of natural language processing, where they are called predicate-augmented �nite

state recognizers [59]. Symbolic �nite transducers were introduced in [73], a di�erent notion of
symbolic transducers is also studied in [59]. The extension from SFTs to ESFTs is introduced in [15].
Equivalence of ESFTs, properties of ESFAs, and the notion of Cartesian ESFTs are studied in [17].
The monadic decomposition problem �rst surfaced in the context of trying to lift algorithms for
symbolic automatawithout lookahead to symbolic automatawith lookahead. ESFTs are also similar
to k-SLTs [9] but have a di�erent step semantics.
In classical automata theory lookahead can be eliminated by introducing more states since the

alphabet is �nite. Most other SFA algorithms can, in theory, be lifted to �nite alphabets. For exam-
ple, closure under complement [6, Proposition 2.6] is shown by reduction to NFA determinization
through minterm construction by considering the Boolean combinations of all guards of the M-
automaton as the �nite alphabet of the NFA. Practically this approach does not scale, it su�ers from
an exponential blowup of the number of transitions, even before the actual NFA determinization
algorithm starts.

Applications. For many analysis tasks, some of which are discussed in Section 2, monadic de-
composition plays a key role in enabling the use of SFA and SFT algorithms in the context of sym-
bolic automata and transducers. Other SFA algorithms, such as di�erence and complement, are
discussed in [71] in the context of SMT solvers, and more algorithms are discussed in [40] in the
more specialized context of string analysis. A symbolic automata toolkit is described in [70]. SFT
algorithms, in particular equivalence checking, are studied in [73] and their use for web security
is discussed in [39]. A new minimization algorithm of SFAs was recently presented in [16], show-
ing that the new algorithm can enable some analysis scenarios involving monadic second-order
logic that did not scale with earlier techniques. Formulas in monadic second-order logic over �nite
sequences can be reduced to SFAs [18], the reduction algorithm extends the classical one [67] and
the logic extends the corresponding M2L-STR logic in Mona [38, 41].

9 CONCLUSION

We introduced the problem of monadic decomposition of predicates in decidable quanti�er-free
theories. Theorem 4.6 provided an e�ective means to computing a monadic decomposition and
we described an implementation with correctness proof, Theorem 4.12, that avoids expanding so-
lutions directly into DNF; it leverages a Shannon decomposition. We also provided a concrete
executable implementation of the main algorithm using the Z3 module in python. We used results
by Libkin to infer undecidability and decidability results of monadic decomposition, and showed
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decidability of monadic decomposition in EUF. We left the design of concrete algorithms for de-
ciding if a formula is monadic in speci�c theories as future work.
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A Z3 PYTHON CODE OF MONDEC

The following is a python script, using the Z3module. It implements a generalization of the abstract
mondec algorithm to any number of variables. By default it runs the variant mondec1 where the
search heuristic de�ned in Section 4.4 is turned on.

1 from z3 import *

2 def nu_ab(R, x, y, a, b):

3 x_ = [ Const("x_%d" %i,x[i].sort()) for i in range(len(x))]

4 y_ = [ Const("y_%d" %i,y[i].sort()) for i in range(len(y))]

5 return Or(Exists(y_,R(x+y_)!=R(a+y_)),Exists(x_,R(x_+y)!=R(x_+b)))

6 def isUnsat(fml):

7 s = Solver(); s.add(fml); return unsat == s.check()

8 def lastSat(s, m, fmls):

9 if len(fmls) == 0: return m

10 s.push(); s.add(fmls[0])

11 if s.check() == sat: m = lastSat(s, s.model(), fmls[1:])

12 s.pop(); return m

13

14 def mondec(R, variables):

15 phi = R(variables);

16 if len(variables)==1: return phi

17 m = len(variables)/2

18 x,y = variables[0:m],variables[m:]

19 def dec(nu, pi):

20 if isUnsat(And(pi, phi)): return BoolVal(False)

21 if isUnsat(And(pi, Not(phi))): return BoolVal(True)

22 fmls = [BoolVal(True)]

23 if FLAG: fmls = [BoolVal(True), phi, pi] #use search heuristic

24 m = lastSat(nu, None, fmls) #try to extend nu

25 assert(m != None) #nu must be consistent

26 a = [ m.evaluate(z,True) for z in x ]

27 b = [ m.evaluate(z,True) for z in y ]

28 psi_ab = And(R(a+y), R(x+b))

29 phi_a = mondec(lambda z: R(a+z),y)

30 phi_b = mondec(lambda z: R(z+b),x)

31 nu.push()

32 nu.add(nu_ab(R, x, y, a, b)) #exclude: x~a and y~b

33 t, f = dec(nu, And(pi, psi_ab)), dec(nu, And(pi, Not(psi_ab)))

34 nu.pop()

35 return If(And(phi_a, phi_b), t, f)

36 return dec(Solver(),BoolVal(True)) #nu is initially true

37

38 def test_mondec(k):

39 R = lambda v:And(v[1]>0,(v[1]&(v[1]-1))==0,

40 (v[0]& (v[1]%((1<<k)-1)))!=0)

41 bvs = BitVecSort(2*k) #use 2k-bit bitvectors

42 x,y = Const("x",bvs),Const("y",bvs)

43 res = mondec(R,[x,y])

44 assert(isUnsat(res != R([x,y]))) #check correctness

45 print "mondec1(", R([x,y]), ") ="; print res

46 FLAG = True #run as mondec1

47 test_mondec(2)
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Recursive calls happen in lines 29 and 30 and terminate when the number of variables becomes
1 (line 16). The heuristic ofmondec1 from Section 4.4 is triggered by the �ag in line 46 and causes
the call in line 24 to the lastSat procedure with the additional formulas in the list fmls. The call
lastSat(nu,None,fmls) �nds a model m in the context nu that also tries to satisfy the maximal
pre�x of the formulas in fmls.
This python script is executable and running it calls test_mondec(2) that prints the output

mondec1( And(y > 0, y & y - 1 == 0, x & y%3 != 0) ) =

If(And(And(y > 0, y & y - 1 == 0, 2 & y%3 != 0),

And(2 > 0, 2 & 2 - 1 == 0, x & 2%3 != 0)),

True,

If(And(And(y > 0, y & y - 1 == 0, 5 & y%3 != 0),

And(1 > 0, 1 & 1 - 1 == 0, x & 1%3 != 0)),

True,

False))

corresponding to the MNF if(π 2
2,⊤, (if(π

5
1,⊤,⊥))) of the formula R2 where Rk is de�ned in Exam-

ple 4.4 and where πa
b
is the formula R2(a,y) ∧ R2(x ,b).
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