
Learning to Learn Programs from Examples: Going Beyond Program Structure

Content areas: program synthesis, machine learning, programming by examples

Abstract
Programming-by-example technologies let end
users construct and run new programs by providing
examples of the intended program behavior. But,
the few provided examples seldom uniquely deter-
mine the intended program. Previous approaches
to picking a program used a bias toward shorter or
more naturally structured programs. Our work here
gives a machine learning approach for learning to
learn programs that departs from previous work by
relying upon features that are independent of the
program structure, instead relying upon a learned
bias over program behaviors, and more gener-
ally over program execution traces. Our approach
leverages abundant unlabeled data for semisuper-
vised learning, and incorporates simple kinds of
world knowledge for common-sense reasoning dur-
ing program induction. These techniques are eval-
uated in two programming-by-example domains,
improving the accuracy of program learners.

1 Introduction
Billions of people own computers, yet vanishingly few know
how to program. Imagine an end user wishing to extract the
years from a table of data, like in Table 1. What would be a
trivial regular expression for a coder is impossible for the vast
majority of computer users. But anyone can show a com-
puter what to do by giving examples – an observation that
has motivated a long line of work on the problem of pro-
gramming by examples (PBE), a paradigm where end users
give examples of intended behavior and the system responds
by inducing and running a program [Lieberman, 2001]. A
core problem in PBE is determining which single program
the user intended within the vast space of all programs con-
sistent with the examples. Users would like to provide only
one or a few examples, leaving the intended behavior highly
ambiguous. Consider a user who provides just the first in-
put/output example in Table 1. Did they mean to extract the
first number of the input? The last number? The first number
after a comma? Or did they intend to just produce “1993”
for each input? In real-world scenarios we could encounter
on the order of 10100 distinct programs consistent with the
examples. Getting the right program from fewer examples

Input table Desired output table
Missing page numbers, 1993 1993
64-67, 1995 1995
1992 (1-27) 1992
· · · · · ·

Table 1: An everyday computer task trivial for programmers
but inaccessible for nonprogrammers: given the input table of
strings, automatically extract the year to produce the desired
output table on the right.

means less effort for users and more adoption of PBE tech-
nology. This concern is practical: Microsoft refused to ship
the recent PBE system Flash Fill [Gulwani, 2011] until com-
mon scenarios were learned from only one example.

We develop a new inductive bias for resolving the ambi-
guity that is inherent when learning programs from few ex-
amples. Prior inductive biases in PBE use features of the
program’s syntactic structure, picking either the smallest pro-
gram consistent with the examples, or the one that looks the
most natural according to some learned criterion [Liang et
al., 2010; Menon et al., 2013; Singh and Gulwani, 2015;
Lin et al., 2014]. In contrast, we look at the outputs and ex-
ecution traces of a program, which we will show can some-
times predict program correctness even better than if we could
examine the program itself. Intuitively, we ask, “what do typ-
ically intended programs compute?” rather than “what do
typically intended programs look like?” Returning to Table 1,
we prefer the program extracting years because its outputs
look like an intended behavior, even though extracting the
first number is a shorter program.

We apply our technique in two different PBE domains: a
string transformation domain, which enriches Flash Fill-style
problems (eg Table 1) with semantic transformations, like
the ability to parse and transform times and dates [Singh and
Gulwani, 2012a] and numbers [Singh and Gulwani, 2012b];
and a text extraction domain, where the goal is to learn a
program that extracts structured tables out of a log file [Le
and Gulwani, 2014]. Flash Fill, now a part of Microsoft
Excel, motivated a series of other PBE systems, which co-
alesced into a software library called PROSE [Polozov and
Gulwani, 2015]. In PROSE, one provides the hypothesis
space (programming language) and gets a PBE tool for free.
But PROSE does not solve the ambiguity problem, instead

using a hand-engineered inductive bias over programs. Our
work integrates into PROSE and provides a better inductive
bias. Although we worked with existing PROSE implemen-
tations of the string transformation and text extraction do-
mains, the broad approach is domain-agnostic. We take as
a goal to improve PROSE’s inductive bias, and use the phrase
“PROSE” to refer to the current PROSE implementations of
these domains, in contrast to our augmented system.

1.1 Our contribution: picking the correct program
We develop two new contributions to PBE technology:

Predictive features
Predicting program correctness based on its syntactic struc-
ture is perhaps the oldest and most successful idea in pro-
gram induction [Solomonoff, 1964]. This general family of
approaches use what we call program features to bias the
learner. But the correctness of a program goes beyond its ap-
pearance. We develop two new classes of features that are
invariant to program structure:
Output features. Some sets of outputs are apriori more likely
to be produced from valid programs. In PBE scenarios the
user typically labels few inputs by providing outputs but has
many unlabeled inputs; the candidate outputs on the unla-
beled inputs give a semisupervised learning signal that lever-
ages the typically larger set of unlabeled data. See Table 2
and 3. In Table 2, the system considers programs that either
append a bracket (a simple program) or ensure correct brack-
eting (a complex program). PROSE opts for the simple pro-
gram, but our system notices that program predicts an output
too dissimilar from the labeled example. Instead we prefer
the program without this “outlier” in its outputs.
Execution trace features. Going beyond the final outputs
of a candidate program, we show how to consider the entire
execution trace. Our model learns a bias over sequences of
computations, which allows us to disprefer seemingly natural
programs with pathological behavior on the provided inputs.

Input Output (PROSE) Output (ours)
[CPT-00350 [CPT-00350] [CPT-00350]
[CPT-00340 [CPT-00340] [CPT-00340]
[CPT-115] [CPT-115]] [CPT-115]

Table 2: Learning a program from one example (top row) and
applying it to other inputs (bottom rows, outputs italicized).
Our semisupervised approach let us get the last row correct.

Machine learning framework
We develop a framework for learning to learn programs from
a corpus of problems that improves on prior work as follows:
Weak supervision. We require no explicitly provided
ground-truth programs, in contrast with eg [Menon et al.,
2013; Liang et al., 2010]. This helps automate the engineer-
ing of PBE systems because the engineer need not manually
annotate solutions to potentially hundreds of problems.
The modeling paradigm. We introduce a discriminative
probabilistic model, in contrast with [Liang et al., 2010;
Menon et al., 2013; Singh and Gulwani, 2015]. A discrim-
inative approach leads to higher predictive accuracy, while a

Input Output Output
(PROSE) (ours)

Brenda Everroad Brenda Brenda
Dr. Catherine Ramsey Catherine Catherine
Judith K. Smith Judith K. Judith
Cheryl J. Adams and Cheryl J. Adams Cheryl

Binnie Phillips and Binnie

Table 3: Learning a program from one example (top row)
and applying it to other inputs (bottom rows, outputs itali-
cized). Our semisupervised approach uses simple common
sense reasoning, knowing about names, places, words, dates,
etc, letting us get the last two rows correct.

probabilistic framing lets us learn with simple and tractable
gradient-guided search.

1.2 Notation
We consider PBE problems where the program, written p, is
drawn from a domain specific language (DSL), written L. We
have one DSL for string transformation and a different DSL
for text extraction. DSLs are described using a grammar that
constrains the ways in which program components may be
combined. We learn a p ∈ L consistent with L labeled in-
put/output examples, with inputs {xi}Li=1 (collectively XL)
and user labeled outputs {yi}Li=1 (collectively YL). We write
p(x) for the output of p on input x, so consistency with the
labeled examples means that yi = p(xi) for 1 ≤ i ≤ L.
We write N for the total number of inputs on which the user
intends to run the program, so that means N ≥ L. All of
these inputs are written {xi}Ni=1 (collectively X). When a
program p ∈ L is clear from context, we write {yi}Ni=1 (col-
lectively Y) for the outputs p predicts on the inputs X . We
write {yi}Ni=L+1 for the predictions of p on the unlabeled in-
puts (collectively YU).

For each DSL L, we assume a simple hand-crafted scoring
function that assigns higher scores to shorter or simpler pro-
grams. PROSE can enumerate the top K programs under this
scoring function, where K is large but manageable (for K up
to 104). We call these top K programs the frontier, and we
write FK(X,YL) to mean the frontier of size K for inputs X
and labeled outputs YL (so this means that if p ∈ FK(X,YL)
then p(xi≤L) = yi≤L). The existing PROSE approach is to
predict the single program in F1(X,YL). We write φ(·) to
mean some kind of feature extractor, and use the variable θ to
mean weights placed on those features.

For ease of exposition we will draw our examples from
string transformation, where the goal is to learn a program
that takes as input a vector of strings (so xi is a vector of
strings) and produces as output a string (so yi is a string).

2 Extracting predictive features
2.1 Features of program structure
A common intuition in the program induction literature
is that one should prefer short, simple programs over
long, complicated programs. Many old and modern ap-
proaches [Solomonoff, 1964; Liang et al., 2010; Polozov and

Gulwani, 2015; Lau, 2001] realize this intuition by first mod-
eling the set of all programs consistent with the examples,
and then picking the program in that set maximizing a mea-
sure of program simplicity. The only way in which the exam-
ples participate in these program induction approaches is by
excluding impossible programs.

We model these program feature-style approaches by
defining a feature extractor for programs, φprogram(p). The
learner predicts the program p∗ (consistent with examples)
maximizing a linear combination of these features:

p∗ = argmax
p consistent with examples

θ · φprogram(p) (1)

This framework models several lines of work: (1) if the
scoring function is likelihood under a probabilistic gram-
mar, then φprogram(p) are counts of the grammar productions
used in p and θ are log production probabilities (eg, [Menon
et al., 2013]); (2) if the grammar’s structure is unknown
then φprogram(p) are counts of all program fragments used
(eg, [Liang et al., 2010]); or (3) if the scoring function is the
size of the program then φprogram(p) is the one-dimensional
count of the size of the syntax tree (eg, [Lin et al., 2014]).

Our φprogram counted occurrences of different program
primitives, so our model could mimic the inductive bias of
a probabilistic grammar. It also detected the presence of
domain-specific code templates, for example counting the
number of times that a prefix of the input is extracted, or the
number of times that an input is parsed as a date. These do-
main specific choices are motivated by past models that learn
a bias towards useful code fragments [Liang et al., 2010], an
idea which has been usefully deployed in string transforma-
tion domains [Singh and Gulwani, 2015]. But, our contri-
bution is not a more sophisticated preference over programs.
Instead, we go beyond this approach by turning to features of
program behaviors, as the next two sections describe.

2.2 Features of program trace
Imagine a spreadsheet of professor names: Rebecca, Oliver,
etc. One thing you might want a PBE system to do is put
the title “Dr.” in front of each of these names. So, you give
the system an example of “Dr.” being prepended to the string
“Rebecca.” This should be a trivial learning problem, and the
system should induce a program that just puts the constant
“Dr.” in front of the input. However, PROSE failed on this
simple case; see Table 4. Although the system can represent
the intended program, it instead prefers a program that ex-
tracts the first character from “Rebecca” to produce the r in
“Dr.”, with unintended consequences for “Oliver.”

Why does PROSE prefer a program that extracts the first
character? In general, programs with more constants are less
plausible; this is related to the intuition that we should pre-
fer programs with shorter description lengths. Furthermore,
the first character of the input is very commonly extracted,
so PROSE was tuned to prefer programs that extract prefixes.
These two inductive biases conspired to steer the system to-
ward the wrong program.

This failure is not an artifact of the fact that PROSE’s in-
ductive bias was written by hand rather than being learned
from data. With a learned prior over program structures,

Input Output
Rebecca Dr. Rebecca
Oliver Do. Oliver

Table 4: A string transfor-
mation problem; the user
provided the first output
and an incorrect program
produced the italicized sec-
ond output.

Rebecca −→ Dr. Rebecca

Figure 1: Execution trace
for erroneous program with
the behavior shown in Ta-
ble 4. Notice the overlap-
ping substring extractions.

the model made the exact same error. The program struc-
ture alone simply does not provide a strong signal that Oliver
should be Dr. Oliver, rather than Do. Oliver.

By looking at the execution trace of the program we dis-
covered a new kind of signal for program correctness. Re-
turning to our motivating example, the erroneous program
first extracts a region of the input and then extracts an over-
lapping region (see Figure 1). Accessing overlapping regions
of data is seldom intended: usually programs pull out the data
they want and then do something with it, rather than extract-
ing some parts of the data multiple times. Simply introducing
an inductive bias against accessing overlapping regions of the
input is enough to disprefer the erroneous program in Table 4.

More generally one can learn an inductive bias for exe-
cution traces by fitting a probabilistic model to traces from
intended programs. This scheme could work for any DSL,
with the system using the model to steer the learner towards
intended programs.

With these intuitions in hand, we now want an inductive
bias over execution traces that strongly penalizes these patho-
logical behaviors. An inductive bias based only on three
features sufficed: Feature 1: did substring extractions over-
lap? Correct programs usually pull out the intended data only
once, so this feature strongly predicted program incorrect-
ness. Feature 2: were substring extractions repeated? This
is a weaker signal of incorrectness. Feature 3: were sub-
string extractions adjacent? Intended programs often split ad-
jacent inputs, so this weakly signals correctness. We packed
these features up into an execution trace feature extractor,
φtrace(p,XL), which maps a program and its inputs to the
vector of these binary features. Although φtrace is tailored
to string transformation domains, we stress that the idea of
learning an inductive bias over execution traces is more gen-
eral. Our φtrace is just a special case of one such bias.

2.3 Features of program outputs
Users typically expect programs to produce similarly format-
ted outputs, such as all being dates, natural numbers, or ad-
dresses. This is similar to the idea that programs should be
well-typed, and so should predictably output data of a cer-
tain type. This is also an analogy to regularizers that prefer
smooth functions: here, we might prefer “smooth” programs
whose outputs are not too dissimilar.

Concretely, we calculate the “smoothness” of a program’s
outputs by first finding a good description of the outputs,

called a descriptor. We then score a descriptor using a
scheme described below. Table 5 gives examples of program
outputs paired with their descriptor.

“[CPT-” · Digits · “]” Name ∨ Name · Digits
[CPT-00350] Mary
[CPT-00340] John
[CPT-115] Sue0481

Table 5: We prefer programs whose outputs (bottom rows)
have good descriptions (top row), called descriptors. The left
descriptor is more likely to correspond to the outputs of a
valid program than the right descriptor.

We formalize a preference for “smooth programs” in terms
of a regularization-like penalty on programs whose outputs
are too dissimilar. For now we assume only that (1) the
descriptor is a probabilistic generative model over strings,
so we can write P(y|D) for the probability of descriptor D
generating string y; and (2) we can model prior probabili-
ties of descriptors for (in)correct program’s outputs, writing
P(D|correct) for the probability of D describing intended
outputs, and writing P(D|incorrect) for unintended outputs.

We consider the log odds ratio of two hypotheses: (1)
the candidate program is correct, and so all Y ’s are the re-
sult of the intended program; and (2) the candidate pro-
gram is incorrect, and so YL are the result of a correct pro-
gram and YU are the result of unintended program. This
log odds ratio will be our regularizer-like preference for
smooth programs. This log ratio is logP(Y |correct) −
log (P(YL|correct)P(YU |incorrect)). As P(YL|correct) con-
tributes a term independent of the program, we drop it, giving
logP(Y |correct)− logP(YU |incorrect).

We now make some simplifying approximations:
if D is the descriptor for Y , then we approximate
P(Y |correct) by a lower bound P(D|correct)

∏
y∈Y P(y|D).

We similarly approximate P(YU |incorrect) by
P(D|incorrect)

∏
y∈YU

P(y|D). Assume a log linear
prior over D, so P(D|k) ∝ exp(φ(D) · θk) where φ(·) is a
feature extractor for descriptors, θk is a weight vector, and
k ∈ {correct, incorrect}. These approximations give the final
expression for our inductive bias over program outputs:

θ · φ(D) +
∑
y∈YL

logP(y|D) (2)

The first term in Eq. 2 says to prefer outputs whose descriptor
D has certain features - for example, not containing outliers
or not containing empty strings or containing common sense
categories like names or cities. The second term says to prefer
outputs whose descriptorD puts high probability mass on the
outputs the user actually provided. In summary, smooth pro-
grams have “smooth” descriptors and the labeled outputs are
typical instances of something sampled from the descriptor.

2.4 Representing and Scoring Descriptors
Representing descriptors. We want descriptors to encode
typical patterns within program outputs. To achieve this goal,
we model descriptors as mixtures (disjunctions) of regular ex-
pressions. We restrict the allowed regular expressions to be

Token Regular expression Likelihood Py|T (·|·)
Ampersand & 1
Lowercase [a-z] 1

26
EnglishWord (a|the|by|...) ∝(word frequency)

Table 6: Descriptors are mixtures of regular expressions.
Each regex is a sequence of “tokens”, some of which are
shown above. We built in about 30 tokens.

sequences of expressions chosen from a predefined set of el-
ements called tokens. For example, Table 5 shows the de-
scriptor Name ∨ Name · Digits, which is a mixture of Name
and Name · Digits regular expressions, the latter of which is
the concatenation of the Name and Digits tokens. We built
in about 30 tokens. Because descriptors also serve as proba-
bilistic generative models over strings, we equip each token
T with a likelihood model Py|T over strings y. See Table 6.
Inferring descriptors. We treat the problem of computing
the descriptor as one of probabilistic inference: given some
program outputs, what is the most likely descriptor? This is
an unsupervised clustering problem. Conditioned on strings
Y = {yi}Ni=1, we find the most likely a posteriori regular
expressions (written {rj}) and cluster assignments (written
{zi}Ni=1, where zi indexes the cluster for yi).

Unlike some mixture models, we don’t know ahead of time
the number of mixture components (i.e. regular expressions).
So we borrow a key model from Bayesiana nonparametrics
called the Chinese Restaurant Process (CRP) [Gershman and
Blei, 2012], a generative model over cluster assignments that
does not assume a fixed number of clusters.

Our strategy for inference is to first marginalize over the
regular expressions and (approximately) maximize the joint
likelihood of the outputs and the cluster assignments:

logCRP({zi}Ni=1) +
∑
z

log
∑
r

P(r)
∏
i:zi=z

P(yi|r) (3)

The marginal probability
∑
r P(r)

∏
y∈Y P(y|r) can be cal-

culated using a dynamic program that recurses on suffixes of
r and Y . This dynamic program lets us efficiently integrate
out the regular expressions and evaluate the likelihood of a
clustering assignment. Unfortunately there is no similar trick
for finding the most likely cluster assignments, so we per-
formed a greedy agglomerative search to locally maximize
Equation 3. In practice, this inference strategy allows us to
compute most descriptors in a handful of milliseconds - a pre-
requisite for our system’s use in real-world PBE applications.
Extracting features from a descriptor. We can now com-
pute the descriptor for a program’s outputs and use Eq. 2 to
pick a program with “smooth” outputs. Here, we bring these
ideas together to define a feature extractor, φoutput(p,X).

We extract features of D that distinguish the descriptors
of correct and incorrect outputs. Returning to the derivations
in Section 2.3, these correspond to the ways in which priors
over (in)correct descriptors differ. About a dozen features of
D were useful; see Table 7.

The logP(yi|D) term of Eq. 2 is logP(yi|rzi) +
logP(zi|{z6=i}). Exploiting the exchangability of the CRP,
P(zi|{z6=i}) ∝ |{j : zj = zi, j 6= i}|. In other words, the

Feature Intuition
clusters Fewer clusters =⇒ fewer outliers
empty regexes Failure to produce output =⇒ incorrect
constant strings Correct programs have variable outputs

Table 7: Some features of the descriptor that predict program
(in)correctness. About a dozen features used.

log likelihood in Eq. 2 breaks down into two terms: one is the
probability of a user-labeled output given its regex in D, and
another is proportional to the size of the cluster containing
the user labeled outputs. This allows us to prefer descriptors
that put labeled outputs in larger clusters, which captures the
intuition that the labeled outputs should not be “outliers”. In
practice we found it useful to break these two terms up as
separate features. The form of φoutput(p,X) is[
φ(D);

L∑
i=1

logP(yi|rzi);
L∑
i=1

log(ClusterSize(zi)− 1)

]

3 Learning to pick a program
3.1 Probabilistic model
Given our feature extractors, we want to learn a model that
predicts which program outputs the user intended. We placed
a log-linear probabilistic model over programs parameter-
ized by a real-valued vector θ. So we define P(p|X; θ) ∝
exp (θ · φ(p,X)) However, our main task is predicting the
correct program outputs, and this is also where the actual su-
pervision signal comes from. We model the probability of
predicting outputs Y as the marginal probability of predict-
ing any of the programs that produce those outputs:

P(Y |X,YL; θ) ∝
∑
p:

p(xi)=yi

exp (θ · φ(p,X)) (4)

At test time we predict the most likely outputs Y ∗ in the fron-
tier FK(X,YL):

Y ∗ = argmax
Y

∑
p∈FK(X,YL)
p(xi)=yi

exp (θ · φ(p,X))

3.2 Inferring the model parameters
Our goal now is to find model parameters θ so that the model
usually predicts the intended program outputs. We assume a
data set of PBE problems, each of which is a triple of inputs,
labeled outputs, and all outputs: (X,YL, Y).

One could pick a θ maximizing the likelihood of the data
set (ie E[logP(Y |X,YL; θ)]). However, since our true objec-
tive is to maximize the fraction of PBE problems we get cor-
rect, directly minimizing a loss function more closely match-
ing this gave higher predictive accuracy. Specifically we max-
imize the expected number of problems the model gets cor-
rect, where the expectation is taken both over the problem
(X,YL, Y) and the model prediction in Eq. 4. Intuitively this
is a “softened” measurement of the model’s accuracy that gets

partial credit for almost getting problems correct. So we want
the best model parameters θ∗ according to:

θ∗ = argmax
θ

E [P(Y |X,YL; θ)] (5)

Eq. 5 has no closed form solution and is nonconvex, but is
differentiable. We locally maximize it using RMSProp.

4 Experimental results
We used a dataset of 447 string transformation and 488 text
extraction problems. The number of examples given to each
problem was increased until a correct program was in a size
1000 frontier. This strategy resulted in all of the text extrac-
tion problems having one example, while 91%, 8%, or 1% of
the string transformation problems had 1, 2, or 3 examples.

4.1 Accuracy of the learned program
How often does our system predict a correct program? We
considered four variants of our system; see Figure 2. (1)
Trace, which predicts program correctness based only on its
execution trace (applicable only to string transformation); (2)
Output, which predicts based only on its outputs; (3) Pro-
gram, which predicts based on its syntactic structure; and (4)
All, which combines these features. Although our approach
consistently improves upon PROSE, it is also helped out by
PROSE, which provides the frontier. So we compare with a
baseline which picks an output uniformly at random from the
frontier (Random baseline in Figure 2). This baseline’s poor
performance shows that the structure of the frontier alone is
not a strong signal from which to judge program correctness.

Model Training Test
Random baseline 13.7% 13.7%

PROSE 76.4% −
Trace (ours) 56.6% 46.1± 2%

Output (ours) 68.2% 66.5± 2 %
Program (ours) 77.9% 57.9± 4 %

All (ours) 88.4% 83.5 ± 3%
(a) String transformation

Model Training Test
Random baseline 14.7% 14.7%

PROSE 65.8% −
Output (ours) 70.5% 68.2 ± 1%

Program (ours) 63.9% 49.9± 1%
All (ours) 79.3% 69.2 ± 2%

(b) Text extraction

Figure 2: Accuracy (% test cases where all predicted outputs
are correct) of different models. Test accuracies determined
by 10-fold cross validation.

Program outputs provide a surprisingly strong signal. Out-
put features are lower dimensional than program features be-
cause descriptors have simpler structures than programs; ac-
cordingly, predicting based on outputs is less prone to over
fitting. Even on the test data, the program outputs can give a
better signal than the program’s structure (see Figure 2b).

Our learned model beats PROSE, even though PROSE was
hand tuned to these particular data sets. Yet our learned
model has higher accuracy even on test cases it did not see
than the old system does on the test cases that it did see (all
of them). However, note that success of our system relies on
our new classes of features, as our learned model for program
structure approximately matches PROSE’s accuracy.

4.2 Overhead of the approach
Our approach confers greater accuracy at the expense of in-
creased computation. PROSE need only find the top program
in the frontier, but our approach needs to enumerate many
programs, run them, and then get the descriptors of their out-
puts. This introduces a trade-off between performance and
accuracy: enumerating larger frontiers increases the chance
of discovering a correct program, but we have to wait longer.

How long do we spend computing descriptors? Figure 3
plots the relationship between time spent computing descrip-
tors and fraction of problems solved, both of which increase
with frontier size. To get most of the benefit of our approach,
we need only spend about 1 second computing descriptors.
The inference algorithm for descriptors is highly optimized
so that this technique can be used in the real-world.

Figure 3: Enumerating more programs increases accuracy,
because we get more chances at enumerating a correct pro-
gram, but incurs additional overhead because we compute a
descriptor for each distinct prediction. K = frontier size.

K = 1 K = 10 K = 100 K = 1000
449 ms 516 ms 2042 ms 2943 ms

Table 8: Overhead of enumerating top K string transforma-
tion programs. Compare with Figure 3.

How long do we spend enumerating frontiers? In practice,
this was slowest for string transformation programs, which
can involve relatively difficult to synthesize operations like
number or date transformations. Table 8 shows that we need
to spend a couple seconds on average enumerating frontiers
to get the most of our approach.

We envision our system working in two regimes. One is
where a data scientist is wrangling large data sets, and ab-
solutely must get the program right. Here it is worth wait-
ing an extra few seconds to get our best guess for the correct
program. Alternatively, if an ordinary user is manipulating a

smaller spreadsheet, text file, or webpage, we prefer respon-
siveness over accuracy, and so suggest a program based on a
small frontier. In the background we could calculate our best
predictions, so that if the user indicates that the program got it
wrong, we can immediately respond with a better suggestion.

5 Discussion
5.1 Related work
Picking the right program is a key problem in PBE which
has received attention from scientists in several research ar-
eas. Work in Human Computer Interaction has designed in-
terfaces for letting users navigate the space of consistent pro-
grams and choose the intended behavior [Mayer et al., 2015].
This complements our work: in practice users cannot ex-
plore the entire space, so it is important to propose only the
most plausible candidates. Researchers in Inductive Logic
Programming have used a bias towards more compressive
logic programs [Muggleton et al., 2015; Lin et al., 2014].
Machine learning researchers explored similar inductive bi-
ases by learning priors over programs [Menon et al., 2013;
Liang et al., 2010]. The programming languages commu-
nity has put forth similar models [Le and Gulwani, 2014;
Gulwani, 2011; Gulwani et al., 2015], some of which learns
from a corpus of problems [Singh and Gulwani, 2015].

The implementation details of our feature extractors would
not generalize to learning, for example, graphics programs or
dynamic programming algorithms, but the idea of moving be-
yond program appearance could be applied to these and other
domains. Looking at what was computed has precedence in
other fields: linguistics calls it optimality theory [Prince and
Smolensky, 2008]; cognitive scientists used related ideas to
model analogy [Hofstadter et al., 1994]. Examining how the
program computes has analogues in theoretical models of in-
duction, like the speed prior [Schmidhuber, 2002].

We see semisupervised learning as the default regime to
consider in future PBE systems. Although users label few
examples, there is usually lots of unlabeled data. The new
system BlinkFill [Singh, 2016] also leverages unlabeled data.
We see their approach as complementary to ours: while we
analyze the program outputs and traces, they analyze the in-
puts. Quantitative comparison is difficult as their tool is not
yet public. We note that while our semisupervised signal is
invariant to the program representation, BlinkFill’s is closely
tied to it, which limited its application to a restricted subset
of Flash Fill, whereas we deployed our approach on both a
superset of Flash Fill and a different domain (text extraction).

5.2 Future work
The applications of program induction are much wider than
presented here: synthesis of smartphone scripts [Le et al.,
2013]; creating XML/tree transformers [Feng et al., 2016];
systems that learn from natural language [Liang et al., 2011;
Raza et al., 2015]; intelligent tutoring systems [Gulwani,
2014]; and induction of graphics programs [Cheema et al.,
2012; Št’ava et al., 2010]. Our motivating intuitions – learn-
ing an inductive bias over program behaviors and predictions;
incorporating commonsense knowledge of the world – could
be exploited in domains like these.

References
[Cheema et al., 2012] Salman Cheema, Sumit Gulwani, and

Joseph LaViola. Quickdraw: improving drawing expe-
rience for geometric diagrams. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 1037–1064. ACM, 2012.

[Feng et al., 2016] Yu Feng, Ruben Martins, Jacob Van Gef-
fen, Isil Dillig, and Swarat Chaudhuri. Component-based
synthesis of table consolidation and transformation tasks
from examples. PLDI, 2016.

[Gershman and Blei, 2012] Samuel J Gershman and
David M Blei. A tutorial on bayesian nonparametric mod-
els. Journal of Mathematical Psychology, 56(1):1–12,
2012.

[Gulwani et al., 2015] Sumit Gulwani, Jose Hernandez-
Orallo, Emanuel Kitzelmann, Stephen Muggleton, Ute
Schmid, and Ben Zorn. Inductive programming meets the
real world. Commun. ACM, 2015.

[Gulwani, 2011] Sumit Gulwani. Automating string process-
ing in spreadsheets using input-output examples. In ACM
SIGPLAN Notices, volume 46, pages 317–330. ACM,
2011.

[Gulwani, 2014] Sumit Gulwani. Example-based learning in
computer-aided stem education. Communications of the
ACM, 57(8):70–80, 2014.

[Hofstadter et al., 1994] Douglas R Hofstadter, Melanie
Mitchell, et al. The copycat project: A model of mental
fluidity and analogy-making. 1994.

[Lau, 2001] Tessa Lau. Programming by demonstration: a
machine learning approach. PhD thesis, University of
Washington, 2001.

[Le and Gulwani, 2014] Vu Le and Sumit Gulwani. Flashex-
tract: a framework for data extraction by examples. In
ACM SIGPLAN Notices, volume 49, pages 542–553.
ACM, 2014.

[Le et al., 2013] Vu Le, Sumit Gulwani, and Zhendong Su.
Smartsynth: Synthesizing smartphone automation scripts
from natural language. In Proceeding of the 11th annual
international conference on Mobile systems, applications,
and services, pages 193–206. ACM, 2013.

[Liang et al., 2010] Percy Liang, Michael I. Jordan, and Dan
Klein. Learning programs: A hierarchical bayesian ap-
proach. In Johannes Fürnkranz and Thorsten Joachims,
editors, ICML, pages 639–646. Omnipress, 2010.

[Liang et al., 2011] P. Liang, M. I. Jordan, and D. Klein.
Learning dependency-based compositional semantics. In
Association for Computational Linguistics (ACL), pages
590–599, 2011.

[Lieberman, 2001] Henry Lieberman. Your Wish is My Com-
mand: Programming by Example. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[Lin et al., 2014] Dianhuan Lin, Eyal Dechter, Kevin Ellis,
Joshua B. Tenenbaum, and Stephen Muggleton. Bias re-
formulation for one-shot function induction. In ECAI
2014, pages 525–530, 2014.

[Mayer et al., 2015] Mikaël Mayer, Gustavo Soares, Maxim
Grechkin, Vu Le, Mark Marron, Oleksandr Polozov,
Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. User
interaction models for disambiguation in programming by
example. In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology, UIST
’15, pages 291–301, New York, NY, USA, 2015. ACM.

[Menon et al., 2013] Aditya Menon, Omer Tamuz, Sumit
Gulwani, Butler Lampson, and Adam Kalai. A machine
learning framework for programming by example. In
ICML, pages 187–195, 2013.

[Muggleton et al., 2015] Stephen H Muggleton, Dianhuan
Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning of higher-order dyadic datalog: Predicate inven-
tion revisited. Machine Learning, 100(1):49–73, 2015.

[Polozov and Gulwani, 2015] Oleksandr Polozov and Sumit
Gulwani. Flashmeta: A framework for inductive program
synthesis. ACM SIGPLAN Notices, 50(10):107–126, 2015.

[Prince and Smolensky, 2008] Alan Prince and Paul Smolen-
sky. Optimality Theory: Constraint interaction in genera-
tive grammar. John Wiley & Sons, 2008.

[Raza et al., 2015] Mohammad Raza, Sumit Gulwani, and
Natasa Milic-Frayling. Compositional program synthesis
from natural language and examples. In Twenty-Fourth
International Joint Conference on Artificial Intelligence,
2015.

[Schmidhuber, 2002] Jürgen Schmidhuber. The speed prior:
a new simplicity measure yielding near-optimal com-
putable predictions. In International Conference on Com-
putational Learning Theory, pages 216–228. Springer,
2002.

[Singh and Gulwani, 2012a] Rishabh Singh and Sumit Gul-
wani. Learning semantic string transformations from ex-
amples. Proceedings of the VLDB Endowment, 5(8):740–
751, 2012.

[Singh and Gulwani, 2012b] Rishabh Singh and Sumit Gul-
wani. Synthesizing number transformations from input-
output examples. In International Conference on Com-
puter Aided Verification, pages 634–651. Springer, 2012.

[Singh and Gulwani, 2015] Rishabh Singh and Sumit Gul-
wani. Predicting a correct program in programming by
example. In International Conference on Computer Aided
Verification, pages 398–414. Springer, 2015.

[Singh, 2016] Rishabh Singh. Blinkfill: Semi-supervised
programming by example for syntactic string transforma-
tions. Proceedings of the VLDB Endowment, 2016.

[Solomonoff, 1964] Ray J Solomonoff. A formal theory of
inductive inference. Information and control, 7(1):1–22,
1964.

[Št’ava et al., 2010] O Št’ava, B Beneš, R Měch, Daniel G
Aliaga, and P Krištof. Inverse procedural modeling by au-
tomatic generation of l-systems. In Computer Graphics
Forum, volume 29, pages 665–674. Wiley Online Library,
2010.

