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Abstract. This work deals with the energy-efficient, high-speed and high-security implemen-
tation of elliptic curve scalar multiplication, elliptic curve Diffie-Hellman (ECDH) key exchange
and elliptic curve digital signatures on embedded devices using FourQ and incorporating strong
countermeasures to thwart a wide variety of side-channel attacks. First, we set new speed records
for constant-time curve-based scalar multiplication, DH key exchange and digital signatures at
the 128-bit security level with implementations targeting 8, 16 and 32-bit microcontrollers. For
example, our software computes a static ECDH shared secret in ∼7.0 million cycles (or 0.9
seconds @8MHz) on a low-power 8-bit AVR microcontroller which, compared to the fastest
Curve25519 and genus-2 Kummer implementations on the same platform, offers 2x and 1.4x
speedups, respectively. Similarly, it computes the same operation in ∼559 thousand cycles on a
32-bit ARM Cortex-M4 microcontroller, achieving a factor-2.5 speedup when compared to the
fastest Curve25519 implementation targeting the same platform. A similar speed performance
is observed in the case of digital signatures. Second, we engineer a set of side-channel counter-
measures taking advantage of FourQ’s rich arithmetic and propose a secure implementation that
offers protection against a wide range of sophisticated side-channel attacks, including differential
power analysis (DPA). Despite the use of strong countermeasures, the experimental results show
that our FourQ software is still efficient enough to outperform implementations of Curve25519
that only protect against timing attacks. Finally, we perform a differential power analysis evalu-
ation of our software running on an ARM Cortex-M4, and report that no leakage was detected
with up to 10 million traces. These results demonstrate the potential of deploying FourQ on
low-power applications such as protocols for the Internet of Things.

Keywords. Elliptic curves, FourQ, ECDH, digital signatures, embedded devices, IoT, efficient
implementation, energy efficiency, constant-time, side-channel attacks, strong countermeasures.

1 Introduction

By 2020, it is estimated that about 50 billion devices or “things” will be connected to the
Internet [22]. While this explosive growth of the so-called “Internet of Things” (IoT) promises
to revolutionize the way in which the world interacts and works, many experts agree that
the unprecedented level of connectivity is going to bring not only enormous benefits and
innovative applications but also highly challenging problems, especially regarding security
and privacy [41, 58].

Elliptic curve cryptography (ECC) is a popular public-key system that has become an
attractive candidate to enable strong cryptography on constrained devices. Its reduced key
sizes and great performance are nicely matched by its solid security foundation based on the
elliptic curve discrete logarithm problem (ECDLP). Hence, it is foremost relevant to research



ECC-based mechanisms that could ameliorate efficiency and power limitations with the goal
of making ECC suitable for constrained applications.

Costello and Longa’s FourQ curve [18], a special instance of the endomorphism-based
constructions studied by Smith [64] and Guillevic and Ionica [31], is a high-performance
elliptic curve that provides about 128 bits of security and enables efficient and secure scalar
multiplications. Implementations based on this curve have been shown to achieve the fastest
computations of variable-base, fixed-base and double scalar multiplications to date on a large
variety of x64 and ARMv7–A processors [18, 45]. In addition, Järvinen et al. recently reported
the first FourQ-based hardware implementation and set a speed record for curves over large
prime characteristic fields on FPGAs [36]. Overall, results obtained from different software
and hardware platforms consistently show that FourQ is more than 5 times faster than the
standardized NIST curve P-256 and more than 2 times faster than Curve25519.

This performance trait is especially attractive for IoT, when devices need to keep clock
frequencies to a minimum (in order to fulfill limited power budgets) and yet need to minimize
the impact on the device’s response time. Moreover, FourQ’s high speed is expected to have
a direct positive impact in energy savings, since reduced computing time typically translates
to lower energy consumption. Even though IoT devices often possess a few KB of RAM and
may provide even less than 100KB of flash memory, for many battery-powered devices energy
is by far the most precious resource. In some applications such as wireless sensor networks,
devices must last for long periods of time on a single battery charge. For these cases, FourQ
appears to be a promising candidate to enable strong public-key cryptography.

Side-channel attacks. Protection against side-channel attacks [40, 39] represents another
important aspect of the security in embedded devices. These attacks, which have been the
focus of intense research since Kocher’ seminal paper [40], can be classified as: passive attacks
(a.k.a. side-channel analysis (SCA)), such as differential side-channel analysis (DSCA) [39],
timing [40], correlation [6], collision [27] and template [8] attacks, among many other variants;
and active attacks (a.k.a. fault attacks). Refer to [3, 24] for detailed taxonomies of attacks
and countermeasures. Certainly, most of these attacks can be rendered ineffective (or greatly
limited in impact) by restricting the lifespan of secrets, for instance, by using fully ephemeral
ECDH key exchange1. However, some protocols such as those based on static ECDH or
ephemeral ECDH with cached public keys can be subjected to these attacks and, thus, might
require additional defenses. In this work, we focus on passive attacks.

Our contributions. We present the first implementations of FourQ-based scalar multiplica-
tion, ECDH key exchange and Schnorr-type signatures on 8, 16, and 32-bit microcontrollers
(MCUs), and demonstrate that this curve can deliver the fastest curve-based computations
on embedded IoT devices, potentially helping to achieve stringent design goals in terms of
response time and energy (see §3 and §4). For example, a static ECDH shared key is com-
puted 2x, 1.8x, and 2.5x faster than the fastest Curve25519 implementations on 8-bit AVR,
16-bit MSP430X, and 32-bit ARM Cortex-M4 MCUs, respectively. Notably, the speedup ra-
tios increase to 2.8x, 2.5x and 3.4x, respectively, when considering the case of fully ephemeral
ECDH. Similarly, signing and verification using SchnorrQ—a Schnorr-type, FourQ-based sig-
nature scheme proposed by Costello and Longa [20]—are computed 2.3x and 1.9x faster

1 In some contexts, the term “ephemeral ECDH” is used even when public keys are cached and reused for a
certain period of time. We stress that using fresh private and public keys per each key exchange (which we
refer to as “fully ephemeral ECDH”) greatly increases resilience against side-channel attacks and limits the
attack surface to essentially one connection.
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(resp.) than the genus-2 Kummer signature scheme by Renes et al. [56] on an 8-bit AVR
microcontroller.

Further, we analyze how these efficiency improvements translate to significantly lower en-
ergy costs on a popular wireless sensor node called MICAz, which contains an 8-bit AVR
ATmega microcontroller. For example, we show that a static ECDH shared key computation
using FourQ with 64-byte public keys demands 28.41mJ (or 236,676 total computations for
the life of a double AA battery). This represents a factor-2 reduction in energy when com-
pared with the Curve25519 implementation from [23] (the cost is 56,68mJ per shared key
computation using Curve25519, or 119,089 computations when using a double AA battery;
see §4). Notably, we show that these energy savings are achieved while still keeping a com-
petitive memory footprint for suitably chosen parameters (see Table 6 in §4), which makes
FourQ especially attractive for embedded applications.

In addition, we present, to the best of our knowledge, the first publicly-available design
and implementation of an elliptic curve-based system that includes defenses against a wide
variety of passive attacks (see §5). Our protected scalar multiplication, ECDH and signature
algorithms, which include a set of efficient countermeasures that have been especially tailored
for FourQ, are designed to minimize the risk of timing attacks, simple and differential side-
channel analysis (SSCA/DSCA), correlation and collision attacks, and specialized attacks
such as the doubling attack [27], the refined power attack (RPA) [29], zero-value point attacks
(ZVP) [1], same value attacks (SVA) [48], exceptional procedure attacks [35], invalid point
attacks [5], and small subgroup attacks. To assess the soundness of our algorithms, we carry
out a differential power analysis evaluation on an STM32F4Discovery board containing a
popular ARM Cortex-M4 MCU. We perform leakage detection tests and correlation power
analysis attacks to verify that indeed the implemented countermeasures substantially increase
the required attacker effort for unprofiled vertical attacks (see §6).

Previous works in the literature presenting protected ECC implementations only include
basic countermeasures against a subset of the attacks we deal with in this paper [71, 50]. More-
over, reported implementations (other than implementations exclusively protected against
timing attacks [23]) have not been publicly released. Our software for ARM Cortex-M4 has
been made publicly available as part of the FourQlib library [19]:

https://github.com/Microsoft/FourQlib.

Likewise, the implementations for AVR and MSP are available at:

https://github.com/geovandro/microFourQ-AVR, and
https://github.com/geovandro/microFourQ-MSP.

Disclaimer. No software implementation is able to guarantee 100% side-channel security. In
some cases, certain powerful attacks such as template attacks [8] can be carried out using a
single target trace, making any randomization or masking technique useless [52]. Moreover,
the issue gets more complicated for embedded devices that lack access to a good source
of randomness. Since many SCA attacks closely depend on the underlying hardware, it is
recommended to include additional countermeasures at the software and hardware levels
depending on the targeted platform. Also, note that hardware countermeasures are usually
required to properly deal with most sophisticated invasive attacks.

Organization. The paper is organized as follows. In §2, we cover the basics about FourQ,
as well as the ECDH key exchange and digital signature schemes targeted in this work. Then,
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we describe implementation details for AVR, MSP430X and ARM Cortex-M4 MCUs in §3. In
§4, we present benchmarking results as well as the analysis of the energy cost on the MICAz
wireless sensor node. In §5, we describe the proposed countermeasures and our side-channel
protected algorithms for scalar multiplication, ECDH key exchange and SchnorrQ signatures.
Finally, the side-channel security analysis of our protected implementation for ARM Cortex-
M4 is presented in §6.

2 Preliminaries: FourQ

FourQ, introduced by Costello and Longa in 2015 [18], is defined by the complete twisted
Edwards [4] equation E/Fp2 : −x2 +y2 = 1+dx2y2, where the quadratic extension field Fp2 =
Fp(i) for i2 = −1 and p = 2127 − 1, and d = 125317048443780598345676279555970305165 ·
i + 4205857648805777768770. The prime order subgroup E(Fp2)[N ], where N is the 246-bit
prime corresponding to #E(Fp2) = 392 ·N , is used to carry out cryptographic computations.
In this subgroup, the neutral element is given by OE = (0, 1) and the inverse of a point (x, y)
is given by (−x, y).

FourQ is equipped with two efficiently computable endomorphisms, ψ and φ, which give
rise to four-dimensional decompositions. The computation of a constant-time, exception-free
variable-base scalar multiplication with the form [m]P , where m is an integer in [1, 2256) and
P is a point from E(Fp2)[N ], then proceeds as follows (see Algorithm 1). First, one needs to
prepare a precomputed table with the eight points T [u] = P+u0φ(P )+u1ψ(P )+u2φ(ψ(P )) for
0 ≤ u ≤ 7, where u = (u2, u1, u0)2, at Steps 1 and 2, to then execute the scalar decomposition
and multiscalar recoding algorithms at Steps 3 and 4. As defined before, let a scalar m be any
integer in the range [1, 2256). FourQ’s decomposition procedure [18, Proposition 5] maps m to
a set of multiscalars (a1, a2, a3, a4) ∈ Z4 such that 0 ≤ ai < 264 for i = 1, ..., 4 and such that
a1 is odd. These multiscalars are then recoded using [18, Algorithm 1] to a representation
consisting of exactly 65 “signed digit-columns” dj and “sign masks” mj for j = 0, ..., 64
(pseudocodes for FourQ’s decomposition and multiscalar recoding algorithms can be found in
Appendix A). Finally, the evaluation stage (Steps 5–7) consists of an initial point loading and
a single loop of 64 iterations, where each iteration computes one doubling and one addition
with the point from T [ ] corresponding to the current digit-column.

Efficient implementations of the curve arithmetic in Algorithm 1 are based on variants of
the extended twisted Edwards coordinates (X : Y : Z : T ) from [33], where T = XY/Z and
Z 6= 0. In particular, our constant-time implementations for AVR, MSP430X and Cortex-M4
use the coordinate strategy described in [18, §5.2], which consists of four point representations:
R1 : (X,Y, Z, Ta, Tb), such that T = Ta · Tb, R2 : (X + Y, Y −X, 2Z, 2dT ), R3 : (X + Y, Y −
X,Z, T ) and R4 : (X,Y, Z). In the scalar multiplication’s main loop, point doublings are
computed as R1 ← R4 and point additions as R1 ← R1 × R2 (precomputed points are
stored using R2). Note that converting point addition results from R1 to R4 (as required by
inputs to point doublings) is for free: one simply ignores coordinates Ta and Tb.

2.1 Encoding and parsing integers and points

Next, we describe the encoding and parsing of integers and elliptic curve points closely fol-
lowing [20]. These definitions will be used later in the ECDH and SchnorrQ routines.
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Algorithm 1 FourQ’s scalar multiplication on E(Fp2)[N ] (from [18]).

Input: Point P ∈ E(Fp2)[N ] and integer scalar m ∈ [0, 2256).
Output: [m]P.

Compute endomorphisms and precompute lookup table:
1: Compute φ(P ), ψ(P ) and ψ(φ(P )).
2: Compute T [u] = P + [u0]φ(P ) + [u1]ψ(P ) + [u2]ψ(φ(P )) for u = (u2, u1, u0)2 in 0 ≤ u ≤ 7. Write T [u]
in coordinates (X + Y, Y −X, 2Z, 2dT ).
Scalar decomposition and recoding:
3: Decompose m into the multiscalar (a1, a2, a3, a4) as in [18, Prop. 5]. See Listing 1.1, App A.
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . ,m0) using [18, Alg. 1]. See Listing 1.2, App A.

Write si = 1 if mi = −1 and si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q+ si · T [di]
8: return Q

Encoding and parsing integers. An integer S ∈ {0, 1, . . . , N − 1} is encoded in little-
endian form as the 256-bit string S = (S0, S1, . . . , S255). This bit string is parsed to the
integer S = S0 + 2S1 + · · ·+ 2255S255. Note that the most significant bits S246, S247, . . . , S255

are 0 since N is a 246-bit prime.

Encoding elements in Fp2. An element y = a+ b · i ∈ Fp2 is encoded in little-endian form
as y = (a0, . . . , a126, 0, b0, . . . , b126), which is defined as “negative” if and only if a126 = 1, or
if b126 = 1 and a = 0.

We now define the following functions for compression and decompression of points.

– Compress(P ): given an input point P = (x, y) ∈ E , this function encodes P as the 256-bit
string P = (x, y), which is the 255-bit encoding of y followed by a sign bit; this sign bit is
1 if and only if x is negative.

– Expand(S): given a 256-bit input string S, this function recovers P = (x, y) as follows:
parse the first 255 bits as y, compute u/v = (y2−1)/(dy2 + 1), and compute ±x =

√
u/v,

where the ± is chosen so that the sign of x matches the 256-th bit of the string S.

Refer to [20, Appendix A] and [42, Appendix B] for low-level details about the point
decompression procedure for the Expand() function.

2.2 Cofactor elliptic curve Diffie-Hellman key exchange

In this section, we describe the ECDH key exchange using FourQ in two variants: (i) using 64-
byte public keys, and (ii) using compressed 32-byte public keys. Let’s first define the following
function denoted by “DH” [42]:

function DH(m,P )
if P /∈ E then return failed
Q = [392]P
T = [m]Q
if T = (0, 1) then return failed
return T in affine coordinates
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end function

Note that the function DH validates the input point P against the curve equation in
order to thwart invalid point attacks. The multiplication by 392, which is not required to be
computed in constant-time, clears the cofactor and guarantees that the point Q belongs to
E(Fp2)[N ], as required by Alg. 1 for the computation of [m]Q. This measure protects against
small subgroup attacks.

For the remainder, assume that the generator G = (Gx, Gy) is given by [20]:

Gx = 34832242333165934151976439273177494442 +

40039530084877881816286215037915002870 · i
Gy = 18941146186793715734774048165794132615 +

146361984425930646555497992424795179868 · i

An ECDH key exchange with 64-byte public keys can then be carried out as follows.
Two users, Alice and Bob, pick random integers mA and mB (resp.) in the range [0, 2256),
and then compute the public keys A = [mA]G and B = [mB]G (resp.), where G is the
generator. After exchanging public keys, Alice computes KA =DH(mA, B) and Bob computes
KB =DH(mB, A). The y-coordinate of the value K = KA = KB can then be used as the
shared secret.

Let a public key be represented by the coordinates (x, y) for which x = a + bi and
y = c+ di ∈ Fp2 . Before computing the shared secret, each user should verify that the values
a, b, c, d of the received public key are < 2127.

ECDH key exchange with 32-byte public keys. It is possible to reduce the size of the
public keys to only 32 bytes using point compression and the Compress/Expand functions
defined in §2.1. In this case, the ECDH key exchange mechanism proceeds as follows [42].
Alice and Bob pick random integers mA and mB (resp.) in the range [0, 2256), and then
compute the public keys A = Compress([mA]G) and B = Compress([mB]G) (resp.). After
exchanging public keys, Alice computes KA = DH(mA,Expand(B)) and Bob computes KB =
DH(mB,Expand(A)). As before, the y-coordinate of the value K = KA = KB is the shared
secret.

Before decompressing a sender’s public key S using the Expand() function, the user should
verify that S127 (i.e., the 128-th bit of the received public key) is 0.

Cost. The cost of static ECDH is dominated by the scalar multiplication required by the
computation DH([m]P ) for a given public key P . This scalar multiplication is computed using
Algorithm 1 in our software. In the case of ephemeral ECDH, the cost of calculating the public
key (via a scalar multiplication of the form [m]G) should also be taken into account. Since the
generator G is known in advance, calculating a public key can be sped up using a fixed-base
scalar multiplication. In our implementations we use the modified LSB-set comb method [25,
Alg. 5] for this computation.

2.3 SchnorrQ signature scheme

SchnorrQ [20] is a deterministic digital signature scheme that is based on the well-known
Schnorr signature scheme [60]. It was designed closely following the EdDSA signature speci-
fications [44] and using the elliptic curve FourQ.
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Let H be a hash function with 512-bit output and G be the generator defined above. Let
k be a 256-bit secret key. The pseudocode of the SchnorrQ public key generation function is
as follows.

function SchnorrQ generate(k)
h = H(k)
s = (h0, h1, . . . , h255) (mod N)
A = [s]G
return A = Compress(A)

end function

The function above outputs the public key A (which is the encoding of the point A)
corresponding to the secret key k.

Let M be the message to be signed. The pseudocodes of the signing and verification
functions are detailed below.

function SchnorrQ sign(k,A,M)
h = H(k)
s = (h256, h257, . . . , h511)
r = H(s,M) (mod N)
R = [r]G
R = Compress(R)
S = r − s ·H(R,A,M) (mod N)
return (R,S)

end function

The output of the function above is the signature (R,S), a 64-byte string in which R is
the encoding of point R and S is the encoding of the integer S ∈ {0, 1, . . . , N − 1}.

function SchnorrQ verify(R,S), A,M)
A = Expand(A)
if (A127 6= 0 or R127 6= 0 or A /∈ E or S ≥ 2246) then return reject
h = H(R,A,M) (mod N)
R′ = Compress([S]G+ [h]A)
if (R = R′) then return accept
return reject

end function

If the verification function above is successful the signature is accepted. Otherwise, it is
rejected. The function includes a few checks to make sure that the inputs are valid and are
in the permitted range: the non-imaginary values of the encoded y-coordinate of A and R
must be in the range [0, 2127) and S must be an integer in the range [0, 2246). As can be
seen, these values are not expected to be fully reduced, i.e., they are not required to be in
the proper ranges [0, 2127 − 1) and [0, N), respectively. This is done in order to simplify the
checks. Checking that the point A = (x, y) lies on E can be carried out by verifying that the
equation −x2 + y2 = 1 + dx2y2 holds.

Cost. The most costly operation during signing is the computation R = [r]G. Since G is
known in advance, calculating R can be sped up using a fixed-base scalar multiplication. As
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for the case of ECDH, our implementations use the modified LSB-set comb method [25, Alg.
5] for this operation. In the case of verification, the cost is dominated by the computation
[S]G+[h]A. Typically, this operation is efficiently computed via a simultaneous double scalar
multiplication algorithm using interleaving with width-w NAFs. Since G is known in advance,
the number of operations that are needed for computing the [S]G part can be reduced by in-
creasing the corresponding window size w. In our implementations we induce four-dimensional
decompositions on both S and h to then carry out a fast eight-way multiscalar multiplication.

3 Implementation details on AVR, MSP and ARM

In this section, we summarize the most relevant implementation aspects for three popular
microcontrollers: 8-bit AVR ATmega, 16-bit MSP430X, and 32-bit ARM Cortex-M4.

First, we give some details about the underlying arithmetic over F(2127−1)2 .

3.1 Implementation of arithmetic over F(2127−1)2

In contrast to traditional ECC curves, which are defined over a prime field Fp, FourQ is defined
over the quadratic extension field Fp2 for p = 2127− 1. Let a = a0 + a1 · i, b = b0 + b1 · i ∈ Fp2 .
Operations in Fp2 are computed as follows

a+ b = (a0 + b0) + (a1 + b1) · i,
a− b = (a0 − b0) + (a1 − b1) · i,
a× b = (a0 · b0 − a1 · b1) + ((a0 + a1) · (b0 + b1)− a0 · b0 − a1 · b1) · i,
a2 = (a0 + a1) · (a0 − a1) + (2a0 · a1) · i,
a−1 = a0 · (a2

0 + a2
1)−1 − a1 · (a2

0 + a2
1)−1 · i,

where operations on the right are carried out in Fp. Näıvely, multiplication requires three
integer multiplications, three modular reductions, two field additions and three field subtrac-
tions, whereas squaring requires only two integer multiplications, two modular reductions,
two field additions and one field subtraction.

We improve the performance of multiplication and squaring in Fp2 by transforming field
additions into simple integer additions. This is possible because our integer multiplication
accepts inputs in the extended range [0, 2128). For the case of Cortex-M4, we speed up mul-
tiplication in Fp2 by exploiting lazy reduction, which allows the elimination of one modular
reduction by delaying the reductions of the products until the very end of the computation.

Field inversions a−1 (mod p) are computed via Fermat’s Little Theorem as ap−2 (mod p),
using a fixed multiplication-and-squaring chain with 126 field squarings and 10 field multipli-
cations in order to have a constant-time execution.

Modular reduction is particularly efficient on FourQ. Let r = a + b be the result of
adding two operands in Fp. To reduce this result, one only needs to reset the 128-th bit of
r and then perform an addition between that top bit and the updated value of r, i.e., given
0 ≤ r < 2 · (2127 − 1), compute a + b (mod p) as r (mod 2127) + (r � 127). For example,
assume that the intermediate result r of the addition is stored in the 16 AVR registers r0:r15.
Then, modular reduction can be efficiently implemented using AVR assembly as follows

MOV r16, r15→ ANDI r15, 0x7F→ ADD r16, r16→ ADC r0, 0→ · · · → ADC r15, 0
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A similar procedure applies to reductions after multiplications and squarings, with the
difference that reduction is, in these cases, applied to an intermediate result with double
precision (i.e., 32 bytes). Specifically, given an input 0 ≤ r < (2127 − 1)2, the fast reduction
algorithm requires two consecutive rounds computing r ← r (mod 2127) + (r � 127).

We remark that our implementations of the field and extension field arithmetic run in
constant-time, i.e., do not use secret-dependent branches.

3.2 Implementation on 8-bit AVR ATmega

Many widely-used low-cost smartcards and wireless sensor nodes are equipped with 8-bit AVR
microcontrollers; e.g., the MICAz mote. AVR microcontrollers, such as the Atmel ATmega128
or ATxmega256A3, have an 8-bit RISC instruction set and a modified Harvard architecture
that features 32 8-bit general-purpose registers denoted by r0:r31. From this pool of registers,
the last three pairs, called X (r27:r26), Y (r29:r28), and Z (r31:r30), are used as 16-bit
address pointers to load and store data from memory. The AVR instruction set supports a
total of 133 instructions, and each instruction has a fixed latency; for example, ordinary arith-
metic/logical instructions such as addition (ADD) and addition with carry (ADC) are executed
in a single clock cycle, while unsigned multiplication (MUL) as well as load/store instructions
take two clock cycles.

For our benchmarks, we used the IAR Embedded Workbench – AVR 6.80.7, which features
an assembler and a cycle-accurate graphical simulator, and targeted the ATxmega256A3
model. This specific microcontroller has 256KB of programmable flash memory, 16KB of
SRAM and 4KB of EEPROM, and operates at a maximum frequency of 32MHz.

Since our algorithms are designed to be constant-time, every execution of scalar multipli-
cation is expected to take the same number of cycles independently of the input values. We
confirmed this by monitoring many executions of a single operation of our implementation.

Finite field operations. For the 128-bit integer multiplication, we use 2-level Karatsuba in
a recursive way, as described in [34]. At the higher level, 128-bit multiplication uses one-level
Karatsuba based on 3 64-bit multiplications. At the lower level, each 64-bit multiplication
consists of 3 32-bit multiplications in one-level Karatsuba, and each of these 32-bit multipli-
cations employs product-scanning multiplication. Thanks to the short size of operands and
intermediate results, almost all of them fit in general purpose registers (only one byte needs
to be stored in the stack). For the 128-bit squaring, we employ the Sliding Block Doubling
(SBD) method [61] rather than Karatsuba [34], since SBD has been shown to achieve better
performance in the case of short 128-bit operands. To achieve an efficient modular reduction,
we integrated both integer multiplication/squaring and modular reduction at the assembly
level. This reduces the number of load and store instructions by the length of intermediate
results. Modular reduction over the prime p = 2127 − 1, as well as the arithmetic over Fp2 ,
was implemented as described in §3.1.

The benchmarking results of our implementation of the Fp and Fp2 functions are compiled
in Table 1.

3.3 Implementation on 16-bit MSP430X

The ultra-low power MSP430X is a representative 16-bit microcontroller [21] that includes
support for 27 core instructions and 16 registers (r0:r15). It also includes an external 16-
bit or 32-bit hardware multiplier that operates in parallel to the CPU. The multiplier offers
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Table 1. Cycle counts for field and quadratic extension field operations on 8-bit AVR (including function-call
overheads).

fp add fp sub fp mul fp sqr fp inv

155 159 1,598 1,026 150,535

fp2 add fp2 sub fp2 mul fp2 sqr fp2 inv

384 385 5,758 3,622 156,171

three different modes: MPY (unsigned multiplication), MPYS (signed multiplication) and
MAC (unsigned multiply-and-accumulate). In general, other instructions take one cycle when
working with general-purpose registers. This cost may increase depending on the instruction
format and addressing mode.

In our benchmarks, we targeted the MSP430FR5969 model, which is suitable for use in
wireless sensor nodes. This MCU features 2KB of SRAM and 64KB of FRAM (code) memory,
and operates at up to 16MHz. We followed the same methodology for cycle count acquisition
that was employed for AVR using the IAR Embedded Workbench (MSP430 6.50.1).

Finite field operations. We make extensive use of the 16-bit MAC operation available in
the targeted MSP430X microcontroller. This operation, which computes 16 × 16 + 32 →
33-bit, was used as basic block to realize a 128-bit integer multiplication in a column-wise
way [30]. Squaring was implemented using the SBD method, as in the case of AVR. Modular
reduction, as well as the arithmetic over Fp2 , was implemented as described in §3.1. In our
implementation, we reduced the number of memory accesses by performing operand caching
using the multiplier mapped memory, which enables multiple MAC computations without the
need of accessing memory [43].

The benchmarking results of our implementation of the Fp and Fp2 functions are compiled
in Table 2. It is worth pointing out that we include function calls and returns in our cycle
counts, which are usually disregarded in the literature.

Table 2. Cycle counts for field and quadratic extension field operations on 16-bit MSP430X using 16-bit
multiplier (including function-call overheads).

fp add fp sub fp mul fp sqr fp inv

102 101 1,027 927 131,819

fp2 add fp2 sub fp2 mul fp2 sqr fp2 inv

233 231 3,624 2,391 135,315

3.4 Implementation on 32-bit ARM Cortex–M4

Cortex-M4 [2] is part of the increasingly popular ARM Cortex-M family, which includes a
wide range of 32-bit RISC ARM microcontrollers that are successfully penetrating the em-
bedded and mobile markets. It supports the ARMv7E-M instruction set, which comprises
Thumb-2 instructions and additional saturating/SIMD instructions called the “DSP exten-
sion”. The Cortex-M4 architecture has a 3-stage pipeline with branch speculation, includes
16 32-bit registers (r0:r15), and supports a mix of 16 and 32-bit operations corresponding
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to Thumb-2. Instructions that are relevant for our implementation include 32-bit arithmetic
and logical instructions such as addition (ADD), addition with carry (ADC), as well as memory
instructions that perform a single-data loading/storing (LDR/STR) or multiple-data loading/s-
toring (LDM/STM). Field arithmetic can take advantage of the powerful single-cycle multiply
and multiply-and-accumulate instructions from the DSP extension: UMUL, UMLAL, and UMAAL.
These instructions compute the product 32 × 32-bit → 64-bit (UMUL), plus a 64-bit accumu-
lation with a single 64-bit value (UMLAL) or plus a 64-bit accumulation with two 32-bit values
(UMAAL).

To evaluate the performance of our implementation, we use an STM32F4Discovery board [67]
that contains a 32-bit ARM Cortex-M4F STM32F407VGT6 microcontroller [66]. This MCU
has 1MB of flash memory, 192KB of SRAM and 64KB of CCM (core coupled memory) data
RAM, and can be clocked at a frequency of up to 168MHz. Compilation was performed with
the GNU ARM Embedded toolchain and GNU GCC v4.9.2.

Finite Field Operations. We leveraged the power of MAC instructions to realize an efficient
and compact multiplication using the schoolbook method. Let A and B be two field elements
represented with 32-bit limbs A[0], ..., A[3] and B[0], ..., B[3], respectively, and assume that
B is pre-loaded in registers r3:r6. The computations A[0] × B, . . . , A[3] × B are performed
word-wise as follows

LDR r7, [r1]
UMULL r9, r8, r7, r3→ UMLAL r8, r10, r7, r4→ · · · → UMLAL r11, r12, r7, r6
LDR r7, [r1,#4] → STR r9, [r13],#4

UMLAL r8, r9, r7, r3→ UMAAL r9, r10, r7, r4→ · · · → UMAAL r11, r12, r7, r6
LDR r7, [r1,#8] → STR r8, [r13],#4

UMLAL r9, r8, r7, r3→ UMAAL r8, r10, r7, r4→ · · · → UMAAL r11, r12, r7, r6
LDR r7, [r1,#12] → STR r9, [r13],#4

UMLAL r8, r9, r7, r3→ UMAAL r9, r10, r7, r4→ · · · → UMAAL r11, r12, r7, r6

The result of the integer multiplication consists of the lowest 32-bit terms produced after
each of the first three MAC sequences (which are stored in the stack) plus the final values
in registers r8:r12. In order to complete a field multiplication one can execute the modular
reduction described in §3.1. However, in the case of multiplication in Fp2 we do much better
by applying lazy reduction on a basic schoolbook multiplication that computes a × b as
(a0 · b0 − a1 · b1) + (a0 · b1 + a1 · b0) · i for elements a = a0 + a1 · i, b = b0 + b1 · i ∈ Fp2 .
For 32-bit platforms, this is expected to be more efficient than Karatsuba, because it avoids
the overhead introduced by the extra operations. Our implementation of squaring over Fp2
also takes advantage of the fast multiplication described above. The computation follows the
approach described in §3.1, i.e., we compute a2 as (a0 + a1) · (a0 − a1) + (2a0 · a1) · i. In
this case, performance can be improved further by noting that the two field additions do not
need modular corrections since our multiplication algorithm works for any input in [0, 2128).
Thus, in total squaring in Fp2 requires two integer multiplications, two reductions, two integer
additions and one field subtraction.

Tables 3 compiles the experimental results for extension field operations, which were ob-
tained on the STM32F4Discovery board using the maximum core frequency of 168MHz. For
each case, we averaged the timings of 107 iterations running the same function (or 105 itera-
tions in the case of inversion).

11



Table 3. Cycle counts for quadratic extension field operations on 32-bit ARM Cortex-M4 (including function-
call overheads).

fp2 add fp2 sub fp2 mul fp2 sqr fp2 inv

84 86 358 215 21,056

4 Results and analysis of constant-time implementations

In this section, we summarize implementation results for 8-bit AVR, 16-bit MSP430X, and 32-
bit ARM Cortex-M4 microcontrollers. For our experiments, we targeted an ATxmega256A3
MCU for the case of AVR, and an MSP430FR5969 MCU for the case of MSP. In both cases,
implementations were compiled and evaluated using the IAR Embedded Workbench. For the
remainder of this section, these microcontrollers are assumed to be clocked at 8MHz. For the
case of ARM Cortex-M4, we targeted the STM32F407VGT6 MCU using an STM32F4Discove-
ry board. The microcontroller was clocked at 168MHz, and compilation was performed with
the GNU ARM Embedded toolchain and GNU GCC v4.9.2.

Our FourQ implementations are based on Algorithm 1 for the case of variable-base scalar
multiplication. For the case of fixed-base scalar multiplication, we use the modified LSB-set
comb method from [25, Alg. 5], which requires a table with v · 2w−1 points (the parameters v
and w denote the number of internal tables and their window size, respectively). For the case
of double scalar multiplication (required during SchnorrQ verifications), we first decompose
the two scalars in two sets of multiscalars, recode them using width-w NAF and then apply an
eight-way multiscalar multiplication. This computation requires the selection of the window
size parameters wP and wQ corresponding to the precomputation tables required by the fixed
and variable bases, respectively. In particular, the parameter wP fixes the size of the offline
table to 4× 2wP−2 points. The computation of double scalar multiplication is not required to
be carried out in constant time in the context of signature verification.

The implemented algorithms guarantee regular, exception-free execution (see §2) and run
in constant-time. Hence, they are protected against timing and exceptional procedure attacks.
Note that cache attacks do not apply to the targeted AVR ATxmega MCU, since its architec-
ture does not support the use of cache memory. On the other hand, MSP430FRxxxx MCUs
present some form of integrated caching which is activated when the MCU operates at a
higher frequency than the access frequency of the FRAM [69]. Specifically, in the MSP430FR
family, the FRAM can be operated at up to 8 MHz without use of this cache. Since we fix
the frequency at 8MHz, our software runs in constant-time with no risk of timing leakage.
We note that our implementation includes an option (selected at build time) to use code
that is secure in the presence of cache memory (when higher operating frequencies are used).
Finally, in the targeted STM32F4 MCU we disable the data cache memory by clearing the
DCEN bit in the flash access control register FLASH ACR [68] during executions of variable-base
and fixed-base scalar multiplications.

Even though the risk of cache attacks is avoided, we still need to guarantee that compu-
tations over points from the precomputed table have a constant flow. In particular, points
extracted at Step 7 of Alg. 1 are always negated and the correct values are masked out using
logical operations.

At the high-level, we implemented the ECDH schemes described in §2.2, which are pro-
tected against invalid point and small subgroup attacks. Likewise, the SchnorrQ verification
routine (see §2.3) includes the necessary checks to avoid invalid inputs.
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In summary, our basic implementations reported in this section are protected against
timing and cache attacks, simple side-channel analysis, exceptional procedure attacks, invalid
point and small subgroup attacks.

Results for scalar multiplication and ECDH. The results for the three targeted micro-
controllers are summarized in Table 4. For comparison, we include two efficient alternatives
that have been deployed on various microcontrollers: the “µKummer” key exchange imple-
mentation by Renes et al. [56] using the genus-2 Kummer surface by Gaudry and Schost [28],
and the “Curve25519” implementations by Düll et al. [23] and De Santis et al. [59]. The Kum-
mer surface enables fast static DH key exchange with a small footprint. However, it does not
support efficient, exception-free fixed-base algorithms which inject a significant speedup in set-
tings such as ephemeral DH key exchange, signature key generation and signing. µKummer’s
DH public keys are also 50% larger (compared to options that use 32-byte public keys). In
the case of Curve25519, although this curve supports efficient fixed-base computations via its
isomorphic Edwards form, Curve25519 implementations typically target static ECDH and,
thus, do not offer this optimization option (as is the case of [23] and [59]).

Table 4 includes results for variable-base and fixed-base scalar multiplication, static ECDH
and fully ephemeral ECDH key exchange. For ECDH on FourQ, we evaluate the use of both
32 and 64-byte public keys. As we previously argued, the use of fully ephemeral ECDH (i.e.,
using a fresh public key per key exchange) increases the security of the protocol and provides
superior protection against side-channel attacks. For applications in which this is not possible,
we comment that a “relaxed” ephemeral ECDH computation would have roughly the same
cost of a static ECDH.

As can be seen, our FourQ-based implementations set new speed records for scalar mul-
tiplication and ECDH by a large margin on all of the targeted platforms. In particular, for
variable-base computations, FourQ is 2.1x, 1.9x, and 2.7x faster than Curve25519 on AVR,
MSP430X, and Cortex-M4, respectively. These results are roughly the same when considering
static ECDH. Similarly, for the case of ephemeral ECDH our implementations are between
2.4x and 3.4x faster than Curve25519 implementations without fixed-base support. When
compared against µKummer on AVR, FourQ achieves roughly factor-1.4 speedup for comput-
ing variable-base scalar multiplication and static ECDH. This gap has a significant increase
to factor-2 speedup when considering the case of ephemeral ECDH. Note that the Kummer
surface has not been implemented on MSP430X and Cortex-M4 MCUs.

Table 4 also show that the performance cost of reducing the size of public keys from 64
to 32 bytes is between 3% and 8%. This poses a trade-off between computing/energy costs
(which are lower for 64 bytes) and memory consumption/network delay (which are lower for
32 bytes).

Results for signatures. The performance of SchnorrQ on the three targeted microcon-
trollers, including the cost of hashing for the case of short messages of 64 bytes, is summarized
in Table 5. For comparison, we include the “µKummer” signature scheme by Renes et al. [56],
which is based on the scheme by Chung et al. [9], and the “Ed25519” implementation by
Nascimento et al. [50].

Table 5 shows that FourQ supports extremely fast signatures: signature generation and
verification are 2.3x and 1.9x faster (resp.) than µKummer on AVR. As can be seen, the per-
formance gap is especially large for signing, since genus-2 Kummer lacks support for efficient,
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Table 4. Performance (in cycles) of scalar multiplication and ECDH operations on 8-bit AVR ATmega, 16-bit
MSP430X, and 32-bit ARM Cortex-M4 microcontrollers for different state-of-the-art implementations. In our
implementations, we set v = w = 5 , which fixes the size of the offline table used for ephemeral ECDH to 80
points or 7.5KB of memory. Cycle counts are rounded to the nearest 102 cycles.

Source
scalar multiplication ECDH

fixed-base var-base static ephemeral

8-bit AVR ATmega

Curve25519 [23] 13,900,4001 13,900,400 13,900,4003 27,800,8002,3

µKummer [56] 9,513,5001 9,513,500 9,739,1004 19,945,2002,4

FourQ (this work) 3,007,300 6,600,700
6,980,7005 9,988,1005

7,315,2003 10,322,6003

16-bit MSP430X (16-bit multiplier) @8MHz

Curve25519 [23] 7,933,3001 7,933,300 7,933,3003 15,866,6002,3

FourQ (this work) 1,851,300 4,280,400
4,527,9005 6,379,2005

4,826,1003 6,677,4003

32-bit ARM Cortex-M4

Curve25519 [59] 1,423,7001 1,423,700 1,423,7003 2,847,4002,3

FourQ (this work) 279,800 530,300
559,2005 838,4005

606,5003 885,8003

1 Montgomery ladder is used for fixed-base and variable-base scalar multiplication.
2 Estimated, since authors only provided counts for static ECDH.
3,4,5 Public key sizes are 32, 48 and 64 bytes, resp.

exception-free fixed-base algorithms, as previously mentioned (on the other hand, µKummer
signatures are very compact with 48 bytes in size). Likewise, in comparison with the Ed25519
implementation from [50], our implementation carries out signature generation and verifi-
cation 4.2x and 3.5x faster (resp.) on AVR. We are not aware of µKummer and Ed22519
implementations for MSP430X and Cortex-M4 MCUs.

Memory usage. Table 6 summarizes the memory consumption of our implementations and
compares it with other works. It presents results individually for static ECDH, ephemeral
ECDH (with both 32 and 64-byte public keys), signature generation and signature verification.
For each case, we report memory and speed figures for different table sizes (i.e., for different
values of w, v and wP ).

As can be seen, there is plenty of flexibility to choose from in between the fastest and the
most memory-efficient alternatives. Notably, options that are competitive with other works in
terms of memory do not exhibit a significant lose in performance. For example, our signature
generation code on AVR demands less memory than µKummer when switching from a table
with w = v = 5 to w = v = 4, and still keeps a significant speedup ratio: only suffers a
relatively modest decrease from 2.3x to 2.0x.

Our implementations, with exception of Cortex-M4, also occupy less memory than state-
of-the-art Curve25519 implementations [23] in the case of static ECDH. While ephemeral
ECDH requires more memory, its use is optional and can be opted out if the memory space
is constrained. In this regard, our FourQ-based software offers great flexibility by allowing to
choose between parameters that are memory-friendly and parameters that minimize comput-
ing time and energy costs.
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Table 5. Performance (in cycles) of signature operations on 8-bit AVR ATmega, 16-bit MSP430X, and 32-bit
ARM Cortex-M4 microcontrollers for different state-of-the-art implementations. In our implementations, we
set v = w = 5, which fixes the size of the offline table used for key and signature generation to 80 points or
7.5KB of memory, and set wP = 8 and wQ = 4, which fixes the size of the offline table used for signature
verification to 256 points or 24KB of memory. The cost of hashing is included (messages are assumed to be 64
bytes long). Cycle counts are rounded to the nearest 102 cycles.

Source key gen. signature gen. signature ver.

8-bit AVR ATmega

Ed25519 [50]1,4 - 19,047,700 30,776,900

µKummer [56]2,5 10,206,200 10,404,000 16,240,500

SchnorrQ (this work)3,4 3,416,500 4,515,700 8,671,200

16-bit MSP430X (16-bit multiplier) @8MHz

SchnorrQ (this work)3,4 1,906,500 2,136,100 5,443,000

32-bit ARM Cortex-M4

SchnorrQ (this work)1,4 317,900 478,900 732,900
1,2,3 SHA-512, SHAKE-128 and Blake2b are used for hashing, resp.
4,5 Signature sizes are 64 and 48 bytes, resp.

4.1 Analysis of energy cost: case study with AVR

In general, the total energy cost of a protocol consists of two parts, namely, the cost of
computing a cryptographic operation and the wireless network communication. The energy
cost of a cryptographic protocol can be estimated by using the energy per cycle and the total
number of cycles of the computation; on the other hand, the communication cost comprises
the cost of transmission and reception. For our analysis below, we consider the case of a
MICAz wireless sensor node containing an 8-bit AVR ATmega128L MCU.

According to [54], the energy cost per cycle of a computation on the MICAz sensor node
is roughly 4.07nJ. Recalling that our FourQ implementation of the ephemeral ECDH using
32-byte public keys has an execution time of approximately 10.332 · 106 clock cycles on AVR,
then the energy cost amounts to We = 4.07nJ · 10.332 · 106 ' 42.05mJ. From the estimate in
[54] the per-bit energy cost for transmission and reception (via ZigBee transceiver) requires
0.209µJ and 0.226µJ on the MICAz running at 7.37MHz. In this case, the overhead for
transmitting the 32-byte public key of one node would be Wt = 256 ·0.209µJ ' 0.053mJ, and
the energy cost for reception is roughly Wr = 256 · 0.226µJ ' 0.057mJ. Therefore, the total
energy consumption of performing an ECDH key exchange is W = We+Wt+Wr ' 42.16mJ.
As stated in [54], the MICAz family sensor nodes are usually powered by double AA battery
cells, and require a supply voltage higher than 2.7V. Thus, the node could only use 31.25% of
the total capacity. In this case, the energy capacity available for supplying a MICAz family
is only 6, 750W. Therefore, we can perform 6, 750/0.04216 ' 160, 104 ECDH key exchanges
before the batteries die.

After doing a similar analysis for Curve25519, the energy consumption for this curve is es-
timated at W = We(113.14mJ)+Wt(0.053mJ)+Wr(0.058mJ) ' 113.25mJ, which means that
one can compute up to 6, 750/0.11325 ' 59, 602 ECDH key exchanges with the same battery
budget. For µKummer, the total energy consumption is W = We(77.43mJ) + Wt(0.080mJ) +
Wr(0.086mJ) ' 77.59mJ, or 6, 750/0.07759 ' 86, 995 ECDH key exchanges. This means that
our FourQ implementation on AVR is able to run roughly 2.7x and 1.8x more ephemeral
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Table 6. Memory consumption (in bytes) and performance (in cycles) of ECDH and signature operations on 8-bit AVR
ATmega, 16-bit MSP430X, and 32-bit ARM Cortex-M4 microcontrollers for different state-of-the-art implementations.
In the case of Cortex-M4, our implementation was compiled with the option -finline-limit=10 to reduce the memory
consumption. Cycle counts are rounded to the nearest 102 cycles.

Source Function Parameters
Memory

Performance
code + data stack

8-bit AVR ATmega

Curve25519 [23]
static ECDH

- 17,710 494
13,900,4002

ephem. ECDH 27,800,8001,2

µKummer [56]6

static ECDH -
> 9,490

429 9,739,1003

ephem. ECDH - 812 19,945,2001,3

signature gen. -
> 16,516

926 10,404,000

signature ver. - 992 16,240,500

static ECDH
- 15,088 + 888 2,714 6,980,7004

- 16,538 + 928 2,715 7,315,2002

ephem. ECDH

w = 4, v = 4
22,412 + 984 2,714 10,785,500 4

23,552 + 1,024 2,715 11,120,000 2

FourQ/SchnorrQ 5 w = 5, v = 5
27,052 + 984 2,714 9,988,100 4

(this work)
28,192 + 1,024 2,715 10,322,600 2

signature gen.
w = 4, v = 4 11,602 + 204 1,590 5,175,400

w = 5, v = 5 16,242 + 204 1,593 4,515,700

signature ver.

wP = 2 24,638 + 928 5,050 11,467,900

wP = 6 30,458 + 928 5,050 9,155,100

wP = 8 48,802 + 928 5,050 8,671,200

16-bit MSP430X (16-bit multiplier) @8MHz

Curve25519 [23]
static ECDH

- 13,112 384
7,933,3002

ephem. ECDH 15,866,6001,2

static ECDH
- 10,714 + 784 2,754 4,527,900 4

- 11,764 + 792 2,754 4,826,100 2

ephem. ECDH

w = 4, v = 4
17,516 + 784 2,754 6,904,000 4

18,344 + 792 2,754 7,202,100 2

FourQ/SchnorrQ 5 w = 5, v = 5
22,188 + 784 2,754 6,379,200 4

(this work)
23,016 + 792 2,754 6,677,400 2

signature gen.
w = 4, v = 4 9,780 + 4 1,590 2,660,900

w = 5, v = 5 14,452 + 4 1,608 2,136,100

signature ver.

wP = 2 18,294 + 792 5,026 7,060,500

wP = 6 24,070 + 792 5,026 5,612,800

wP = 8 42,558 + 792 5,026 5,443,000

32-bit ARM Cortex-M4: medium code optimization

Curve25519 [59]
static ECDH

- 3,750 740
1,423,7002

ephem. ECDH 2,847,4001,2

static ECDH
- 6,736 + 640 - 579,7004

- 7,644 + 640 - 629,8002

ephem. ECDH

w = 4, v = 4
12,740 + 640 - 929,2004

13,368 + 640 - 977,6002

FourQ/SchnorrQ 5 w = 5, v = 5
17,340 + 640 - 863,4004

(this work)
17,968 + 640 - 913,6002

signature gen.
w = 4, v = 4 8,616 - 541,400

w = 5, v = 5 13,220 - 475,600

signature ver.

wP = 2 9,448 + 640 - 950,200

wP = 6 15,240 + 640 - 771,600

wP = 8 33,664 + 640 - 747,900

1 Estimated, since authors only provided counts for static ECDH.
2,3,4 Public key sizes are 32, 48 and 64 bytes, resp.
5,6 Signature sizes are 64 and 48 bytes, resp.
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ECDH key exchanges with the same battery budget. We remark that this relative energy
efficiency increases if we consider our ECDH option with 64-byte public keys.

Let’s now consider the case of static ECDH using our uncompressed option with 64-byte
public keys. In this case, FourQ demands 28.41mJ (or 236,676 total executions when using
a double AA battery). This is 2x lower energy than the case of Curve25519 (56,68mJ per
shared key computation, or 119,089 computations for the life of a double AA battery) and
1.4x lower energy than the case of µKummer (39,81mJ per shared key computation, or 169,555
computations).

5 Side-channel countermeasures

This section begins with a description of countermeasures especially tailored for FourQ. Then,
we present our protected scalar multiplication algorithm, cover implementation aspects of
table lookups and describe protected ECDH key exchange and digital signature schemes.
Finally, we discuss the rationale behind our protected algorithms.

5.1 Specialized side-channel countermeasures for FourQ

The use of randomization, if done properly, greatly increases the effort needed to perform
DSCA and other similar attacks, both in terms of data complexity (number of measurements
needed [7]) and computational effort (time to perform the attack [57]). While a randomized
implementation does not completely eliminate all the leakage information, it potentially makes
side-channel attacks significantly harder and more expensive by forcing attackers to take an
impractical number of measurements and use sophisticated techniques.

In an ECC scalar multiplication operation there is ample room for randomization of
internal computations, especially on curves such as FourQ because of its rich underlying
mathematical structure. Coron proposed three randomization techniques to protect ECC
against DPA attacks: scalar randomization, point blinding and projective coordinate ran-
domization [17]. Other popular methods include key splitting [11], and random curve and
field isomorphisms [37].

Next, we describe especially-tailored scalar randomization and point blinding techniques
optimized for use with FourQ.

Scalar randomization. The typical approach is to randomize the scalar m by adding a
multiple of the curve order #E using a random value r, i.e., computing m′ = m + r · #E.
It is well known that this randomization can be ineffective if the prime p has a special
structure [51, 10, 11, 63]. Indeed, when p is a pseudo-Mersenne prime with the form 2k − c
for small c, by Hasse’s theorem the binary representation of the top half of the curve order
#E consists of either only 1’s or a 1 followed by 0’s and, thus, the most significant bits of
m+ r#E are those of m. As consequence, the random value r must be greater than ≈ k/2 as
a minimum requirement, which means that the cost of protected implementations of curves
such as Curve25519 increase by at least 50% when using this countermeasure.

We avoid this significant performance degradation by specializing the GLV-based scalar
randomization by Ciet et al. [12] to FourQ. Our explicit countermeasure is described below.

Proposition 1 (Scalar Randomization). Let the multiscalars (a′1, a
′
2, a
′
3, a
′
4) = (a1, a2, a3,

a4) + c be the decomposition result of a given integer m, as defined in [18, Prop. 5], where
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c = 5b2−3b3 +2b4 is a vector in the lattice of zero decompositions L and B = (b1,b2,b3,b4)
is the Babai optimal basis in [18, Prop. 3]. Let V = (v1,v2,v3,v4) = (b2 − b3 + b4, 2b2 −
b3 + b4,b1 + b2 + b4,b1 + 2b2 − b3 + b4) be a matrix of four independent vectors in L such
that ||vi||∞ < 262 for i = 1, . . . , 4, and let r = (r1, r2, r3, r4) be a vector with random integer
elements in [0, 216). Then, the multiscalar set (a′1, a

′
2, a
′
3, a
′
4) + r · (v1,v2,v3,v4) is a valid

decomposition of m with all four randomly-generated coordinates less than 280.

Proof. From [18, Prop. 5], we have that the multiscalar (a1, a2, a3, a4) = (m, 0, 0, 0)−
∑4

i=1 α̃ibi,
where α̃i = bαie − εi with εi ∈ {0, 1} for i = 1, 2, 3, 4 and (α1, α2, α3, α4) ∈ Q4 is the unique
solution to (m, 0, 0, 0) =

∑4
i=1 αibi in [18, Prop. 4]. Since c ∈ L then (a′1, a

′
2, a
′
3, a
′
4) =

(a1, a2, a3, a4) + c is in (m, 0, 0, 0) + L, which shows that it is a valid decomposition of m.
Also, (a′1, a

′
2, a
′
3, a
′
4) =

∑4
i=1(αi − (bαie − εi))bi + c is in Pε(B) + c, for the parallelepiped

Pε(B) := {Bx |x ∈ [−1/2, 3/2)4} defined in [18, §4.2]. All four coordinates of Pε(B) + c are
positive and less than 264. In a similar fashion, since r ·V ∈ L, then (a′1, a

′
2, a
′
3, a
′
4) + r ·V

is also a valid decomposition of m. Let the 4-cube Hext = {280 · x |x ∈ [0, 1]4}. All sixteen
corners of Pε(B) + c + r ·V are inside the convex body of Hext, which means that they have
all four coordinates positive and less than 280. ut

Proposition 1 specifies the countermeasure procedure with 4× 16 = 64 bits of randomiza-
tion. This brings enough entropy to provide security against several attacks, especially when
combined with additional countermeasures (see §5.2), while requiring a relatively low overhead
in comparison with other curves (the cost of FourQ’s scalar multiplication is only increased
by 25% in this case). Other applications might try different trade-offs between security and
performance by selecting a different length for the random values ri.

Point blinding. The typical approach is to compute [m]P as [m](P +R)−S for a randomly-
generated secret point R and a precomputed point S = [m]R. To avoid the cost of an extra
scalar multiplication, Coron suggests that R and S are updated at each new execution using
R = [(−1)b2]R and S = [(−1)b2]S for a random bit b. Nevertheless, the method still requires
storage for two points and the computation of a full scalar multiplication if the value of m is
changed.

It is possible to do better using the extended-binary-based-method with RIP (called
“EBRIP”) due to Mamiya et al. [46]. In this case, [m]P is computed as ([m]P + R) − R
using a random point R. The value in parenthesis is computed by splitting m in t portions of
equal length and running a t-way simultaneous scalar multiplication in which R is represented
as [(11̄1̄ . . . 1̄)2]R.

Adapting EBRIP to FourQ is straightforward: it suffices to assume t = 4 and adjust the
precomputed values which, in the case of FourQ, use the endomorphisms. The details are
shown in Algorithm 2. The overhead of the method is small: the number of precomputations
increases from 8 to 16 points (adding 8 extra point additions to the cost), and a final correction
subtracting R is required at the end of scalar multiplication.

We note that typical update functions for blinding points offer poor randomization, making
them an easy target of collision-like attacks [51, 27]. We improve resilience against these
attacks with an inexpensive change to the new update function R = [(−1)b3]R for a random
bit b.
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Algorithm 2 SCA-protected FourQ’s scalar multiplication on E(Fp2)[N ].

Input: Point P = (xP , yP ), blinding point R = (xR, yR) ∈ E(Fp2)[N ], integer scalar m and random value
s ∈ [0, 2256), a random bit b, and random values [r81, r80, . . . , r0] ∈ F82

p .
Output: [m]P and updated point R.

Randomize input points and update blinding point R:
1: Set R = (r81 · xR, r81 · yR, r81).
2: Compute R = [(−1)b3]R.
3: Set P = (r80 · xP , r80 · yP , r80).
Compute endomorphisms and precompute lookup table:
4: Compute φ(P ), ψ(P ) and ψ(φ(P )).
5: Compute T [u] = −R+ [u0]P + [u1]φ(P ) + [u2]ψ(P ) + [u3]ψ(φ(P )) for u = (u3, u2, u1, u0)2 in 0 ≤ u ≤ 15.
Write T [u] in coordinates (X,Y, Z).
Scalar decomposition, randomization and recoding:
6: Decompose m into the multiscalar (a1, a2, a3, a4) as in [18, Prop. 5]. See Listing 1.1, App A.
7: Randomize (a1, a2, a3, a4) as in Proposition 1 and recode to digit-columns (d79, . . . , d0) s.t. di = a1[i] +
2a2[i] + 4a3[i] + 8a4[i] for i = 0, ..., 79.
Main loop:
8: Q = R
9: for i = 79 to 0 do
10: S = (ri ·XT [di], ri · YT [di], ri · ZT [di]).
11: Q = [2]Q+ S
12: return (Q−R) and R in affine coordinates.

5.2 Protected scalar multiplication

Algorithm 2 details our scalar multiplication routine with SCA countermeasures, including
the scalar randomization and point blinding techniques described above. Note that we also
make extensive use of projective coordinate randomization [17]. This technique is a form
of multiplicative masking: in our case, a non-zero element r ∈ F2127−1 is applied to points
(X,Y, Z) in homogeneous projective coordinates to obtain the equivalent randomized tuple
(r ·X, r · Y, r · Z).

Protected ECDH key exchange. In order to use Algorithm 2, the function DH described
in §2.2 only needs minor changes and the inclusion of a blinding point B. We assume that
a fresh blinding point is generated during key generation, and the value passed and updated
each time the protected ECDH function is invoked. The modified function is shown below.

function DH SCA(m,P,B)
if P,B /∈ E then return failed
Q = [392]P
T = [m]Q and update B using Algorithm 2
if T = (0, 1) then return failed
return T and B in affine coordinates

end function

The function DH SCA can be directly used in place of the function DH in the ECDH key
exchange schemes using 32 and 64-byte public keys that were described in §2.2. As explained
before, these functions are protected against invalid point and small subgroup attacks.

Protected SchnorrQ signature generation. Signature schemes typically have several
sensitive variables suitable to attack with DPA. In the case of SchnorrQ, we identify the
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following potentially vulnerable computations in the function SchnorrQ sign described in
§2.3:

– The scalar multiplication [r]G,
– The modular multiplication s ·H(R,A,M), and
– The hash computations H(k) and H(s,M).

Algorithm 2 supports the protected execution of [r]G. The blinding pointB that is required
can be generated during a first call to SchnorrQ’s public key generation, and then the value
reused and updated every time the signature generation function is invoked. To protect the
modular multiplication s ·H(R,A,M), one can apply a simple masking strategy by randomly
splitting s into two values s1 and s2.

The modified signature generation function is shown below.

function SchnorrQ sign SCA(k,A,M,B)
h = H(k)
s = (h256, h257, . . . , h511)
r = H(s,M) (mod N)
R = [r]G and update B using Algorithm 2
R = Compress(R)
Pick a random value s1 ∈ [0,modN)
s2 = s− s1 (mod N)
t1 = s1 ·H(R,A,M) (mod N)
t2 = s2 ·H(R,A,M) (mod N)
t1 = r − t1 (mod N)
S = t1 − t2 (mod N)
return (R,S), B

end function

Finally, a masked implementation of the hash function H is required in order to protect
the hash computations H(k) and H(s,M) in the function above (e.g., see [47, 62]).

Reducing table lookup leakage. Table lookups are common to many ECC algorithms
(including the proposed routine) and, hence, their secure implementation is crucial. Most
works in the literature use constant-time table lookups, which simply perform a linear pass
over the whole table, masking out the correct result using logical instructions. This masking
typically employs masks that are all 0’s or 1’s, which may be relatively easy to distinguish
through SPA. One way to reduce the potential leakage is by using masks with the same
Hamming weight. For example, one could use the masking strategy shown below (to extract
T [d] from a 16-point table T , as required at Step 10 of Alg. 2).

v = 0xAA...A, S← T[0] // Table index (d) is between 0 and 15

for i = 1 to 15

d-- // While d >= 0 mask = 0x55...5, else mask = 0xAA...A
mask = ((top bit(d) - 1) & ∼ v)|(∼ (top bit(d) - 1) & v)

S← ((mask & (S^T[i]))^S)^(v & (S^T[i]))

return S = T[d]

In this case, the bulk of the extraction procedure is carried out with the new mask values
0x55...5 (used to update S with the current table entry) and 0xAA...A (used to keep the current
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value of S). Operations over these masks are expected to produce traces that are more difficult
to distinguish from each other. Note, however, that this does not eliminate all the potential
leakage. For example, a sophisticated attacker might try to reveal the secret digit by observing
the operation (top bit(d) - 1) inside the derivation of mask, which produces intermediate
all-0 or all-1 values. Nevertheless, this operation happens only once per iteration (in contrast
to the multiple, word-wise use of the other masks), so the strategy above does reduce the
attack surface significantly.

Horizontal DPA attacks could also target operations over the secret digits di during table
lookups (e.g., at Step 10 of Alg. 2). An attack of this class can observe leakage when manipu-
lating a given secret digit dj and compare it to dk under some distinguisher D(L(dj), L(dk))
to extract information on the relation between dj and dk. Our implementation lends itself to
mitigations for this: one could apply principles from the table recomputation method to Algo-
rithm 2 to protect the secrets di. The implementor can mask the secret digits di as d′i = di⊕ t
for a random integer t ∈ [0, 15), and then reorder the table such that T ′[d] = T [d ⊕ t] for
d = 0, . . . , 15. This is repeated for each iteration using as entries the updated table and digits
from the preceding iteration. Since the table indexes are changed each time an attacker cannot
directly infer what point is being extracted even if the updated digit value is revealed. This
reduces further the attack surface if the table reordering is correctly implemented [70].

Finally, another potential attack is to apply a horizontal attack on the table outputs. By
default, our routine applies projective coordinate randomization after each point extraction (at
Step 10). When horizontal collision-correlation attacks apply, one could reduce the potential
leakage by doing a full table randomization at each iteration and before point extraction. This
technique should also increase the effectiveness of the countermeasures described above.

Analysis of the protected algorithms. First, it is easy to see that the SCA-protected
scalar multiplication in Algorithm 2 inherits the properties of regularity and completeness
from Algorithm 1 when using complete twisted Edwards formulas [33]. This means that com-
putations work for any possible input point in E(Fp2) and any 32-byte scalar string, which
thwarts against exceptional procedure attacks [35]. Likewise, [18, Prop. 5] and Proposition 1
lend themselves to constant-time implementations of the scalar decomposition and random-
ization. This, together with field, extension field and table lookup operations implemented
with no secret-dependent branches and no secret-memory addresses, guarantees protection
against timing [40] and cache attacks [53]. E.g., refer to §3 for details about our constant-time
implementations of the Fp and Fp2 arithmetic for several MCUs. Additionally, note that the
use of regular, constant-time algorithms also protects against SSCA attacks such as SPA [39].
In some platforms, however, some computations might have distinctive operand-dependent
power/EM signatures even when the execution flow is constant. Our frequent coordinate ran-
domization and the techniques for minimizing table lookup leakage discussed before should
make SSCA attacks exploiting such leakage impractical.

The use of point blinding effectively protects against RPA [29], ZVP [1] and SVA [48]
attacks, since the attacker is not able to freely use the input point P to generate special values
or collisions during intermediate computations. Poorly-randomized update functions for the
blinding point has been the target of collision attacks [27]. We first note that intermediate
values in the EBRIP algorithm [46] have the form R + Q or [2]R + Q for some point Q and
blinding point R. Therefore, a näıve update function such as R = [(−1)b2]R for random bit
b allows an attacker to find collisions since an updated blinding value [2]R generates values
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that match those of the preceding scalar multiplication. The easy change to the function
R = [(−1)b3]R at Step 2 of Alg. 2 eliminates the possibility of such collisions, since values
calculated with [3]R and [6]R do not appear in a preceding computation.

Our combined use of different randomization techniques, namely randomization of pro-
jective coordinates at different stages (Steps 1, 3 and 10), randomization of the scalar and
blinding of the base point, injects a high level of randomization to intermediate compu-
tations. This is expected to reduce leakage that could be useful to carry out correlation,
collision-correlation and template attacks. Moreover, in some cases our especially-tailored
countermeasures for FourQ offer better protection in comparison with other elliptic curves.
For example, Feix et al. [26] presents vertical and horizontal collision-correlation attacks on
ECC implementations with scalar randomization and point blinding countermeasures. They
essentially exploit that randomizing with multiples of the order is ineffective on curves such
as the NIST curves and Curve25519, as we explain in §5.1. Our 64-bit scalar randomization
does not have this disadvantage and is more cost effective.

As previously discussed, some attacks could target collisions between the precomputed
values in Step 5 of Alg. 2 and their secret use at Step 11 after point extraction (for example,
using techniques from [32]). One way to increase resilience against this class of attacks is
by randomizing the full table before each point extraction using coordinate randomization,
and minimizing the attack surface through some clever masking via a linear pass over the
full table (this in order to thwart attacks targeting memory accesses [50]). However, other
more sophisticated countermeasures might be required to protect against recent one-trace
template attacks that inspect memory accesses [49]. We remark that some variants of these
attacks are only adequately mitigated at lower abstraction levels, i.e., the underlying hardware
architecture should be noisy enough such that these attacks become impractical.

Performance. To assess the performance impact of our countermeasures, we refactored our
implementation for ARM Cortex-M4 (§3.4) using the algorithms proposed in this section. In
summary, our software computes a static ECDH shared secret in about 1.19 and 1.14 million
cycles using 32 and 64-byte public keys, respectively. Therefore, the strong countermeasures
induce a roughly 2x slowdown in comparison with the constant-time-only implementation. No-
tably, these results are still up to 1.25x faster than the fastest constant-time-only Curve25519
results (see Table 4). We comment that, if greater protection is required, adding full table
randomization before point extraction at Step 10 of Alg. 2 increases the cost of static ECDH
to 2.61 and 2.56 million cycles, respectively.

In the case of SchnorrQ, the performance is only affected during signature generation since
verification runs over public data. With our protected algorithm, signature generation’s cost
increases to 1.36 million cycles, which is still faster than the cost of computing a Curve25519
Montgomery ladder operation that is only protected against timing attacks and does not
include other costs such as the hashing. The use of full table randomization before each point
extraction in the computation of Alg. 2 increases the cost to 2.78 million cycles. We note that
the evaluation of our SchnorrQ software was carried out with an implementation of SHA-512
that is not protected against side-channel attacks such as DPA.

6 Side-channel evaluation: case study with Cortex–M4

The main goal of the evaluation is to assess the DPA security of the implementation. Our
randomization techniques are meant to protect mainly against vertical DPA attacks (cf. [13]
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Fig. 1. Left: exemplary EM trace. Right: cross correlation of a single trace.

for this notation). In a vertical DPA attack, the adversary collects many traces corresponding
to the multiplication of a known varying input point with a secret scalar. This situation
matches, for example, ECDH key exchange protocols. Vertical DPA attacks are probably the
easiest to carry out.

Assumptions. We assume that the adversary cannot distinguish values from a single side-
channel measurement. In particular, the (small) table indices cannot be retrieved from a
single measurement. This assumption is common in practice (cf. [38, §4.1] or [55, §3.1]) and
is usually provided by the underlying hardware. Note that masking does not make sense if
this assumption is violated, since then it would be trivial to unmask all the required shares
to reconstruct the secrets. Masking needs a minimum level of noise to be meaningful [7, 65].

Platform. Our platform is a 32-bit ARM Cortex-M4 STM32F100RB processor with no dedi-
cated security features. We acquire EM traces from a decoupling capacitor in the power line
with a Langer RF-5U EM probe and 20 dB amplification. This platform is very low noise:
DPA on an unprotected byte-oriented AES implementation succeeds with 15 traces. We give
a comfortable setting to the evaluator: he has access to the source code to compute arbitrary
predictions and the code contains extra routines for triggering that allow precise alignment
of traces.

The EM traces comprise two inner iterations of the main loop (Step 9 in Algorithm 2) as
we show in Figure 1.

Methodology. We use two complementary techniques: leakage detection and key-recovery at-
tacks. Failing a leakage detection tests [15, 16, 14] is a necessary, yet not sufficient, condition for
key-extracting attacks to work. When an implementation passes a leakage detection test, no
data dependency is detected, and hence key-recovery attacks will not work. For key-recovery
attacks, we resort to standard CPA attacks [6]; the device behavior is modeled as Hamming
weight of register values. As an intermediate targeted sensitive variable we choose the point
Q after execution of Step 11 in Algorithm 2. We first test each randomizing countermeasure
described in §5.1 in isolation (all others switched off); later the full Algorithm 2 is evaluated.
To test the effectiveness of each countermeasure, we first perform the analysis when the coun-
termeasure is switched off. In this situation, a key-recovery attack is expected to work and
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a leakage detection test is expected to fail. This serves to confirm that the setup is indeed
sound. Then, we repeat the same evaluation when the countermeasure is switched on. The
analysis is expected not to show leakage and the CPA attacks are expected to fail. This means
that the countermeasure (and only it) is effective.

Fig. 2. Top row: fixed-vs-random leakage detection test on the input point. Bottom: CPA attacks. Left column:
no countermeasure enabled. Right column: point blinding on/coord. randomization off/scalar randomization
off.

No countermeasure. In the first scenario we switch off all countermeasures by fixing the PRNG
output to a constant value known to the evaluator. In Figure 2 top left, we plot the result of
a non-specific leakage detection test (fix-vs-random on input point) for 5, 000 traces. We can
see that the t-statistic clearly exceeds the threshold C = ±4.5, indicating severe leakage. In
Figure 2, bottom left, we plot the result of a key-recovery CPA attack (red for correct subkey
hypothesis, green for others). The attack works (sample correlation ρ for the correct subkey
hypothesis stands out at ρ ≈ 0.22).

Point blinding. Here we test the point blinding countermeasure in isolation. We take 5, 000
traces when the point blinding countermeasure is switched on. The evaluator does not know
the initial PRNG seed that feeds the masks. In Figure 2, top right, we plot the t-statistic value
of the non-specific fix-vs-random leakage detection test on the input point. The t-statistic does
not surpass the threshold C. Thus, no first-order leakage is detected.

The results of the CPA attack are in Figure 2, bottom right. The attack does not recover
the key, as expected. (In this CPA attack and subsequent ones, the evaluator computes pre-
dictions averaging over 210 independent random PRNG seeds, for each subkey hypothesis.
This is possible since the evaluator has access to the source code.)
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Fig. 3. Left: point blinding off/coord. randomization on/scalar randomization off. Right: point blinding off/-
coord. randomization off/scalar randomization on.

Projective coordinate randomization. We use the same test fixture (fix-vs-random on input
point) to test the projective coordinate randomization. In Figure 3, top left, we plot the
result of the leakage detection test. No first-order leakage is detected. The DPA attack is
unsatisfactory as Figure 3, bottom left, shows.

Scalar randomization. Here we perform a fix-vs-random test on the key when the input point
is kept fix. In this way, we hope to detect leakages coming from an incomplete randomization
of the key. In Figure 3, top right, we plot the result of this leakage detection test. No first-
order leakage is detected. For the CPA attack, we keep the key fixed (secret) and vary the
input basepoint. The CPA attack does not work, as Figure 3, bottom right, shows.

Fig. 4. Evolution of ρ as function of number of traces. Left to right (point blinding/coord. randomization/scalar
randomization): off/off/off, on/off/off, off/on/off, off/off/on.
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All countermeasures switched on. The implementation is meant to be executed with all the
countermeasures switched on. We took 10 million traces and performed a fix-vs-random leak-
age detection test. No first order leakage was detected.

7 Conclusions

We present the first implementations of the high-performance elliptic curve FourQ on micro-
controllers, and report the fastest timings for curve-based scalar multiplication, Diffie-Hellman
key exchange and digital signatures. In particular, our implementation is able to carry out
ECDH computations in less than one second for the first time at the 128-bit security level on
an AVR microcontroller clocked at 8MHz. Likewise, we report the first results for SchnorrQ
signatures and report signing computations that are more than 2 times faster than the previ-
ously fastest computations using µKummer, and about 4 times faster than the fastest Ed25519
implementation in the literature. These efficiency improvements translate not only to reduced
latencies but also to significant savings in energy, as we show in our analysis for the MICAz
mote. Finally, we propose secure algorithms that offer protection against a wide array of side-
channel attacks. To assess the soundness of our algorithms, we carry out a DPA evaluation
on an STM32F4Discovery board containing an ARM Cortex-M4 microcontroller. We perform
leakage detection tests and correlation power analysis attacks to verify that indeed the im-
plemented countermeasures substantially increase the required attacker effort for unprofiled
vertical attacks. The results of this work highlight the potential of using FourQ for low-power
applications such as IoT.
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A Appendix: scalar decomposition and recoding routines

The decomposition and multiscalar recoding routines, which are required by Algorithm 1 at
Steps 3 and 4 and Algorithm 2 at Step 6, are presented in Listings 1.1 and 1.2, respectively.
The decomposition pseudocode receives as input a 256-bit scalar written as an array with the
form k = (k[0],k[1],k[2],k[3]) consisting of four 64-bit unsigned digits in little-endian
form, and outputs the decomposed multiscalar array a = (a[0],a[1],a[2],a[3]) consisting
of four 64-bit unsigned digits. The function mul truncate(a,b,c) included in the decompo-
sition algorithm performs the computation c = (uint64 t)((a * b) >> 256), and the re-
quired constants are listed in Listing 1.3. Likewise, the recoding pseudocode receives as input
a, produced by the decomposition routine, and outputs the 65-digit array d = (d[0], ...,

d[64]) and the 65-mask array m = (m[0], ..., m[64]). Note that the datatype uint64 t

is written as u64 t in the pseudocodes.

void decompose ( const u64 t k [ ] , u64 t a [ ] ) {
u64 t a1 , a2 , a3 , a4 , t ,m;

mul truncate (k , e l l 1 ,&a1 ) ;
mul truncate (k , e l l 2 ,&a2 ) ;
mul truncate (k , e l l 3 ,&a3 ) ;
mul truncate (k , e l l 4 ,&a4 ) ;

t = k [ 0 ] − ( u64 t ) a1∗b11 − ( u64 t ) a2∗b21 − ( u64 t ) a3∗b31 − ( u64 t ) a4∗b41 + c1 ;
m = ˜(0 − ( t & 1 ) ) ; // I f t i s even then m = 0xFF . . . FF, e l s e m = 0

a [ 0 ] = t + (m & b41 ) ;
a [ 1 ] = ( u64 t ) a1∗b12 + ( u64 t ) a2 − ( u64 t ) a3∗b32 − ( u64 t ) a4∗b42 + c2 + (m & b42 ) ;
a [ 2 ] = ( u64 t ) a3∗b33 − ( u64 t ) a1∗b13 − ( u64 t ) a2 + ( u64 t ) a4∗b43 + c3 − (m & b43 ) ;
a [ 3 ] = ( u64 t ) a1∗b14 − ( u64 t ) a2∗b24 − ( u64 t ) a3∗b34 + ( u64 t ) a4∗b44 + c4 − (m & b44 ) ;
}

Listing 1.1. Scalar decomposition routine.

void recode ( const u64 t a [ ] , u int d [ ] , u int m[ ] ) {
uint i , b i t , b i t0 , car ry ;
m[ 6 4 ] = ( u int )−1;

for ( i = 0 ; i < 64 ; i++) {
a [ 0 ] >>= 1 ;
b i t 0 = ( u int ) a [ 0 ] & 1 ;
m[ i ] = 0 − b i t 0 ;

b i t = ( u int ) a [ 1 ] & 1 ;
car ry = ( b i t 0 | b i t ) ˆ b i t 0 ;
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a [ 1 ] = ( a [ 1 ] >> 1) + ( u64 t ) car ry ;
d [ i ] = b i t ;

b i t = ( u int ) a [ 2 ] & 1 ;
car ry = ( b i t 0 | b i t ) ˆ b i t 0 ;
a [ 2 ] = ( a [ 2 ] >> 1) + ( u64 t ) car ry ;
d [ i ] += ( b i t << 1 ) ;

b i t = ( u int ) a [ 3 ] & 1 ;
car ry = ( b i t 0 | b i t ) ˆ b i t 0 ;
a [ 3 ] = ( a [ 3 ] >> 1) + ( u64 t ) car ry ;
d [ i ] += ( b i t << 2 ) ;

}
d [ 6 4 ] = ( u int ) ( a [ 1 ] + ( a [ 2 ] << 1) + ( a [ 3 ] << 2 ) ) ;
}

Listing 1.2. Multiscalar recoding routine.

// Close ” o f f s e t ” vec to r :
u64 t c1 = {0x72482C5251A4559C } ;
u64 t c2 = {0x59F95B0ADD276F6C} ;
u64 t c3 = {0x7DD2D17C4625FA78 } ;
u64 t c4 = {0x6BC57DEF56CE8877 } ;

// Optimal b a s i s v e c t o r s :
u64 t b11 = {0x0906FF27E0A0A196 } ;
u64 t b12 = {0x1363E862C22A2DA0 } ;
u64 t b13 = {0x07426031ECC8030F } ;
u64 t b14 = {0x084F739986B9E651 } ;
u64 t b21 = {0x1D495BEA84FCC2D4} ;
u64 t b24 = {0x25DBC5BC8DD167D0} ;
u64 t b31 = {0x17ABAD1D231F0302 } ;
u64 t b32 = {0x02C4211AE388DA51 } ;
u64 t b33 = {0x2E4D21C98927C49F } ;
u64 t b34 = {0x0A9E6F44C02ECD97 } ;
u64 t b41 = {0x136E340A9108C83F } ;
u64 t b42 = {0x3122DF2DC3E0FF32 } ;
u64 t b43 = {0x068A49F02AA8A9B5 } ;
u64 t b44 = {0x18D5087896DE0AEA } ;

// Precomputed i n t e g e r s f o r f a s t−Babai rounding ( in l i t t l e −endian form ) :
u64 t e l l 1 [ 4 ] = {0x259686E09D1A7D4F , 0xF75682ACE6A6BD66 , 0xFC5BB5C5EA2BE5DF, 0x07 } ;
u64 t e l l 2 [ 4 ] = {0xD1BA1D84DD627AFB, 0x2BD235580F468D8D , 0x8FD4B04CAA6C0F8A, 0x03 } ;
u64 t e l l 3 [ 4 ] = {0x9B291A33678C203C , 0xC42BD6C965DCA902 , 0xD038BF8D0BFFBAF6, 0x00 } ;
u64 t e l l 4 [ 4 ] = {0x12E5666B77E7FDC0 , 0x81CBDC3714983D82 , 0x1B073877A22D8410 , 0x03 } ;

Listing 1.3. Constants for the decomposition routine.
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