
CHARACTER-LEVEL DEEP CONFLATION FOR BUSINESS DATA ANALYTICS

Zhe Gan†, P. D. Singh∗, Ameet Joshi?, Xiaodong He∗, Jianshu Chen∗, Jianfeng Gao∗, and Li Deng∗

†Department of Electrical and Computer Engineering, Duke University, Durham, NC
∗Microsoft Research, Redmond, WA

?Microsoft Corporation, Redmond, WA

ABSTRACT

Connecting different text attributes associated with the same en-
tity (conflation) is important in business data analytics since it could
help merge two different tables in a database to provide a more com-
prehensive profile of an entity. However, the conflation task is chal-
lenging because two text strings that describe the same entity could
be quite different from each other for reasons such as misspelling. It
is therefore critical to develop a conflation model that is able to truly
understand the semantic meaning of the strings and match them at
the semantic level. To this end, we develop a character-level deep
conflation model that encodes the input text strings from character
level into finite dimension feature vectors, which are then used to
compute the cosine similarity between the text strings. The model is
trained in an end-to-end manner using back propagation and stochas-
tic gradient descent to maximize the likelihood of the correct asso-
ciation. Specifically, we propose two variants of the deep conflation
model, based on long-short-term memory (LSTM) recurrent neural
network (RNN) and convolutional neural network (CNN), respec-
tively. Both models perform well on a real-world business analytics
dataset and significantly outperform the baseline bag-of-character
(BoC) model.

Index Terms— Deep conflation, character-level model, convo-
lutional neural network, long-short-term memory

1. INTRODUCTION

In business data analytics, different fields and attributes related to
the same entities (e.g., same person) are stored in different tables in
a database or across different databases. It is important to connect
these attributes so that we can get a more comprehensive and richer
profile of the entity. This is important because exploiting a more
comprehensive profile could lead to better prediction in business data
analytics.

Specifically, the conflation of data aims to connect two rows
from the same or different datasets that contain one or more com-
mon fields, when the values of the common fields match within a
predefined threshold. For example, in the business data considered
in this paper, we aim to detect whether two names refer to the same
person or not — see the example in Table 1. Row A and row B rep-
resent two name fields from different tables in a database, which is a
text string consisting of characters. The strings in the same column
of Table 1 represent the names of a same person. There are sev-
eral reasons for the strings in A and B being different: (i) possible
mis-spelling typos; (ii) the lack of suffix; (iii) the reverse of family
names and given names. Due to these variations and imperfection in

Emails: zhe.gan@duke.edu, {prabhs, ameetj, xiaohe, jianshuc, jfgao,
deng}@microsoft.com

Table 1: Example text string pairs in the dataset.

A emilio yentsch enrique hafner javier creswell

B ydntsch emilip Mr. halner exrique Prof. crrxwell javzfr

data entries, plain keyword matching does not work well [1, 2], and
we need a data conflation model in the semantic level; that is, the
model should be able to identify two different character strings to be
associated with a same entity.

To address the aforementioned challenges, we propose character-
level deep conflation models that take the raw text strings as the input
and predict whether two data entries refer to the same entity. The
proposed model consists of two parts: (i) a deep feature extractor,
and (ii) a ranker. The feature extractor takes the raw text string at
the character level and produce a finite dimension representation
of the text. In particular, we constructed two different deep archi-
tectures of feature extractors: (i) long-short-term-memory (LSTM)
recurrent neural network (RNN) [3, 4] and (ii) deep convolutional
neural network (CNN) [5, 6]. Both deep architectures are able to
retain the order information in the input text and extract high-level
features from raw data, as shown their great success in different
machine learning tasks, including text classification [5, 7], machine
translation [8, 9, 10, 11] and information retrieval [12, 13, 14]. Fur-
thermore, extracting the features from the character-level is critical
in many of the recent success in applying deep learning to natural
language processing [15, 16, 17, 18, 19]. As we will show later,
our proposed deep conflation model achieves high prediction accu-
racy in the conflation task for business data, and greatly outperform
strong baselines.

2. CHARACTER-LEVEL DEEP CONFLATION MODELS

We formulate the deep conflation problem as a ranking problem.
That is, given a query string from field A, we rank all the target
strings in field B, with the hope that the most similar string in B is
ranked on the top of the list. The proposed deep conflation model
consists of two parts: (i) a deep feature extractor; (ii) a ranker. Fig.
1 shows the architecture of the deep conflation model. The deep fea-
ture extractors transform the input text strings from character-level
into finite dimension feature vectors. Then, the cosine similarity is
computed between the query string from field A and all the target
strings from field B. The cosine similarity value for each pair of
text strings measures the semantic relevance between each pair of
the text strings, according to which the target strings are ranked. The
entire model will be trained in an end-to-end manner so that the deep
feature extractors are encouraged to learn the proper feature vectors

ar
X

iv
:1

70
2.

02
64

0v
1

 [
cs

.C
L

]
 8

 F
eb

 2
01

7

Deep	Feature	
Extractor	

Deep	Feature	
Extractor	

Deep	Feature	
Extractor	

……	

Query	string	 Target	string	1	 Target	string	J+1	Strings	

Deep		
features	

……	Cosine		
similarity	

Fig. 1: Character-level deep conflation model.

LSTM LSTM LSTM

We

…

We We…

e m … hString:

Fig. 2: LSTM based deep feature extractor.

that are measurable by cosine similarity. In the rest of this section,
we will explain these two components of the deep conflation model
with detail.

2.1. Deep Feature Extractors

The inputs into the system are text strings, which are sequences of
characters. Note that the order of the input characters and words is
critical to understand the text correctly. For this reason, we propose
to use two deep learning models that are able to retain the order in-
formation to extract features from the raw input character sequences.
The two deep models we use are: (i) Recurrent Neural Networks
(RNNs); (ii) Convolutional Neural Networks (CNNs).

RNN is a nonlinear dynamic system that can be used for se-
quence modeling. However, during the training of a regular RNN,
the components of the gradient vector can grow or decay exponen-
tially over long sequences. This problem with exploding or vanish-
ing gradients makes it difficult for the regular RNN model to learn
long-range dependencies in a sequence [20]. A useful architecture
of RNN that overcomes this problem is the Long Short-Term Mem-
ory (LSTM) structure. On the other hand, CNN is a deep feedfor-
ward neural network that first uses convolutional and max-pooling
layers to capture the local and global contextual information of the
input sequence, and then uses a fully-connected layer to produce a
fixed-length encoding of the sequence. In sequel, we first introduce
LSTM, and then CNN.

2.1.1. LSTM feature extractor

The LSTM architecture [3] addresses the problem of learning long-
term dependencies by introducing a memory cell, that is able to pre-
serve the state over long periods of time. Specifically, each LSTM
unit has a cell containing a state ct at time t. This cell can be viewed
as a memory unit. Reading or writing the memory unit is controlled
through sigmoid gates: input gate it, forget gate f t, and output gate

bigram trigram 4-gram

embedding

convolution

max pooling
over time

e m i l i o … h String:

Fig. 3: CNN based deep feature extractor.

ot. The hidden units ht are updated as follows:

it = σ(Wixt +Uiht−1 + bi) , (1)
f t = σ(Wfxt +Ufht−1 + bf) , (2)
ot = σ(Woxt +Uoht−1 + bo) , (3)
c̃t = tanh(Wcxt +Ucht−1 + bc) , (4)
ct = f t � ct−1 + it � c̃t , (5)
ht = ot � tanh(ct) , (6)

where σ(·) denotes the logistic sigmoid function, and � represents
the element-wise multiply operator. Wi Wf , Wo, Wc, Ui, Uf ,
Uo, Uc, bi, bf , bo and bc are the free model parameters to be
learned from training data.

Given the text string q = [q1, . . . , qT], where qt is the one-hot
vector representation of character at position t and T is the number
of characters, we first embed the characters into a vector space via a
linear transform xt = Weqt, where We is the embedding matrix.
Then for every time step, we feed the embedding vector of characters
in the text string to LSTM:

xt = Weqt, t ∈ {1, . . . , T} , (7)
ht = LSTM(xt), t ∈ {1, . . . , T} , (8)

where the operator LSTM(·) denotes the operations defined in (1)-
(6). For example, in Fig. 2, the string emilio yentsch is fed into the
LSTM. The final hidden vector is taken as the feature vector for the
string, i.e., y = hT . We repeat this process for the query text and all
the target texts so that we will have yQ and yDj

(j = 1, . . . J + 1),
which will be fed into the ranker to compute cosine similarity (see
Sec. 2.2).

In the experiments, we use a bidirectional LSTM to extract se-
quence features, which consists of two LSTMs that are run in par-
allel: one on the input sequence and the other on the reverse of the
input sequence. At each time step, the hidden state of the bidirec-
tional LSTM is the concatenation of the forward and backward hid-
den states.

2.1.2. CNN feature extractor

Next, we consider the CNN for string feature extraction. Similar to
the LSTM-based model, we first embed characters to vectors xt =
Weqt and then concatenating these vectors:

x1:T = [x1, . . . ,xT] . (9)

Then we apply convolution operation on the character embedding
vectors. We use three different convolution filters, which have the
size of two (bigram), three (trigram) and four (4-gram), respectively.
These different convolution filters capture the context information of
different lengths. The t-th convolution output using window size c
is given by

hc,t = tanh(Wcxt:t+c−1 + bc) , (10)

where the notation xt:t+c−1 denotes the vector that is constructed
by concatenating xt to xt+c−1. That is, the filter is applied only to
window t : t + c − 1 of size c. Wc is the convolution weight and
bc is the bias. The feature map of the filter with convolution size c is
defined as

hc = [hc,1,hc,2, . . . ,hc,T−c+1] . (11)

We apply max-pooling over the feature maps of the convolution size
c and denote it as

ĥc = max{hc,1,hc,2, . . . ,hc,T−c+1} , (12)

where the max is a coordinate-wise max operation. For convolu-
tion feature maps of different sizes c = 2, 3, 4, we concatenate them
to form the feature representation vector of the whole character se-
quence: h = [ĥ2, ĥ3, ĥ4] . Observe that the convolution opera-
tions explicitly capture the local (short-term) context information in
the character strings, while the max-pooling operation aggregates
the information from different local filters into a global representa-
tion of the input sequence. These local and global operations enable
the model to encode different levels of dependency in the input se-
quence.

The above vector h is the final feature vector extracted by CNN
and will be fed into the ranker, i.e., y = h. We repeat this process
for the query text and all the target texts so that we will have yQ and
yDj

(j = 1, . . . J + 1). The above feature extraction process using
CNN is illustrated in Fig. 3.

There exist other CNN architectures in the literature [6, 21, 22].
We adopt the CNN model in [5, 23] due to its simplicity and excel-
lent performance on classification. Empirically, we found that it can
extract high-quality text string representations for ranking.

2.1.3. Comparison between the two deep feature extractors

Compared with the LSTM feature extractor, a CNN feature extrac-
tor may have the following advantages [24]. First, the sparse con-
nectivity of a CNN, which indicates fewer parameters are required,
typically improves its statistical efficiency as well as reduces mem-
ory requirements. Second, a CNN is able to encode regional (n-
gram) information containing rich linguistic patterns. Furthermore,
an LSTM encoder might be disproportionately influenced by char-
acters appearing later in the sequence, while the CNN gives largely
uniform importance to the signal coming from each of the charac-
ters in the sequence. This makes the LSTM excellent at language
modeling, but potentially suboptimal at encoding n-gram informa-
tion placed further back into the sequence.

2.2. Ranker

Now that we have extracted deep feature vectors yQ, yD1
,..., yDJ+1

from the query and candidate strings, we can proceed to compute
their semantic relevance scores by computing their corresponding

cosine similarity between query Q and each j-th target string Dj .
More formally, it is defined as

R(Q,Dj) =
y>QyDj

||yQ|| · ||yDj
|| , (13)

where Dj denotes the j-th target string. At test time, given a query,
the candidates are ranked by this relevance scores.

2.3. Training of the deep conflation model

We now explain how the deep conflation model could be trained
in an end-to-end manner. Given that we have the relevance scores
between the query string and each of the target stringDj : R(Q,Dj),
we define the posterior probability of the correct candidate given the
query by the following softmax function

P (D+|Q) =
exp(γR(Q,D+))∑

D′∈D exp(γR(Q,D′))
, (14)

whereD+ denotes the correct target string (the positive sign denotes
that it is a positive sample), γ is a tuning hyper-parameter in the soft-
max function (to be tuned empirically on a validation set). D denotes
the set of candidate strings to be ranked, which includes the positive
sample D+ and J randomly selected incorrect (negative) candidates
{D−j ; j = 1, . . . , J}. The model parameters are learned to maxi-
mize the likelihood of the correct candidates given the queries across
the training set. That is, we minimize the following loss function

L(θ) = − log
∏

(Q,D+)

P (D+|Q) , (15)

where the product is over all training samples, and θ denotes the
parameters (to be learned), including all the model parameters in the
deep feature extractors. The above cost function is minimized by
back propagation and (mini-batch) stochastic gradient descent.

3. EXPERIMENTAL RESULTS

3.1. Dataset

We evaluate the performance of our proposed deep conflation model
on a corporate proprietary business dataset. Since each string can be
considered as a sequence of characters, the vocabulary size is 32 (in-
cluding one period symbol and one space symbol), which includes
the following elements:

DMPSabcdefghijklmnopqrstuvwxyz.

Specifically, the dataset contains 10, 000 pairs of query and the asso-
ciated correct target string (manually annotated). The average length
of the string is 14.47 with standard deviation 2.89. The maximum
length of the strings is 26 and the minimum length is 6.

3.2. Setup

We provide the deep conflation results using LSTM and CNN for
feature extraction, respectively. Furthermore, we also implement a
baseline using Bag-of-Characters (BoC) representation of input text
string. This BoC vector is then sent into a two-hidden-layer (fully-
connected) feed-forward neural networks. In our experiment, we
implement 10-fold cross validation, and in each fold, we randomly
select 80% of the samples as training, 10% as validation, and the

Table 2: 10-fold cross validation results using BoC, LSTM and CNN model, respectively. R@K denotes Recall@K (higher is better). Med
r, Mean r and Harmonic Mean r is the median rank, mean rank and harmonic mean rank, respectively (lower is better).

Model R@1 R@3 R@10 Med r Mean r Harmonic Mean r

Using correct names to query mis-spelled names

BoC 82.09± 1.59 92.30± 0.76 96.83± 0.36 1.0± 0.0 2.380± 0.218 1.138± 0.009
LSTM 86.66± 0.90 95.38± 0.53 98.54± 0.20 1.0± 0.0 1.609± 0.092 1.095± 0.007
CNN 98.90± 0.18 99.97± 0.05 100.00± 0.00 1.0± 0.0 1.012± 0.003 1.006± 0.001

Using mis-spelled names to query correct names

BoC 83.56± 1.42 93.06± 0.80 97.35± 0.27 1.0± 0.0 2.158± 0.128 1.131± 0.011
LSTM 87.63± 0.92 95.50± 0.45 98.67± 0.21 1.0± 0.0 1.584± 0.055 1.088± 0.007
CNN 99.25± 0.43 99.98± 0.06 100.00± 0.00 1.0± 0.0 1.008± 0.005 1.004± 0.002

Table 3: Average scores for each of the top four retrieved items.

top 1 top 2 top 3 top 4

0.792± 0.086 0.448± 0.072 0.397±0.050 0.371±0.042

rest 10% as testing dataset. No specific hyper-parameter tuning is
implemented, other than early stopping on the validation set.

For the feed-forward neural network encoder based on the BoC
representation, we use two hidden layers, each layer contains 300
hidden units, hence each string is embedded as a 300-dimensional
vector. For LSTM and CNN encoder, we first embed each character
into a 128-dimensional vector. Based on this, for the bidirectional
LSTM encoder, we further use one hidden layer of 128 units for
sequence embedding, hence each text string is represented as a 256-
dimensional vector. For the CNN encoder, we employ filter windows
of sizes {2,3,4} with 100 feature maps each, hence each text string
is represented as a 300-dimensional vector.

For training, all weights in the CNN and non-recurrent weights
in the LSTM are initialized from a uniform distribution in [-
0.01,0.01]. Orthogonal initialization is employed on the recurrent
matrices in the LSTM [25]. All bias terms are initialized to zero.
It is observed that setting a high initial forget gate bias for LSTMs
can give slightly better results [26]. Hence, the initial forget gate
bias is set to 3 throughout the experiments. Gradients are clipped if
the norm of the parameter vector exceeds 5 [10]. The Adam algo-
rithm [27] with learning rate 2 × 10−4 is utilized for optimization.
For both the LSTM and CNN models, we use mini-batches of size
100. The hyper-parameter γ is set to 10. The number of negative
candidates J is set to 50, which are randomly sampled from the rest
of the candidate strings excluding the correct one. All experiments
are implemented in Theano [28] on a NVIDIA Tesla K40 GPU. For
reference, the training of a CNN model takes around 45 minutes to
go through the dataset 20 times.

3.3. Results

Performance is evaluated using Recall@K, which measures the av-
erage times a correct item is found within the top-K retrieved re-
sults. Results are summarized in Table 2. As can be seen, both
of the proposed deep conflation models with LSTM and CNN fea-
ture extractors achieve superior performance compared to the BoC
baseline. This is not surprising, since sequential order information
is utilized in LSTM and CNN. Furthermore, we observe that CNN
significantly outperforms LSTM on this task. We hypothesize that

Table 4: An example of the mistakenly retrieved cases.

query string palmer mehaffey
ground truth Mr mehaffep paleer score

1st result paleer mehaffep 0.882
2nd result Mr mehaffep paleer 0.877
3rd result fendlasyn pdlmer 0.427
4th result zalwzar sharley 0.420

this observation is due to the fact that the local (regional) sequen-
tial order information (captured by CNN) is more important than the
gloabl sequential order information (captured by LSTM) in match-
ing two names. For example, if we reverse the family name and
given name of a given query name, LSTM might be more prone to
mistakenly classifying these two names to be different, while in fact
they refer to the same person.

For further analysis, we checked the CNN results on one prede-
fined train/validation/test splits of the dataset. When CNN is used,
for Recall@1, out of 1,000 test samples, only 5 samples are mis-
takenly retrieved. In Table 4, we show an example of the mistaken
case. We can see that the mistakenly retrieved case is quite reason-
able. Even humans will make mistakes on these cases. Other four
mistakenly retrieved cases are similar and are omitted due to space
limit. The average scores for each of the top four retrieved items are
given in Table 3. This suggests that, when judging whether two text
strings have the same meaning, we can empirically set the thresh-
old to be (0.792 + 0.448)/2 = 0.62. That is, when the similarity
score between two strings is higher than 0.62, we can safely con-
clude that they refer to the same entity, and we can then conflate the
corresponding two rows accordingly.

4. CONCLUSION

We have proposed a deep conflation model for matching two text
fields in business data analytics, with two different variants of fea-
ture extractors, namely, long-short-term memory (LSTM) and con-
volutional neural networks (CNN). The model encodes the input
text from raw character-level into finite dimensional feature vectors,
which are used for computing the corresponding relevance scores.
The model is learned in an end-to-end manner by back propagation
and stochastic gradient descent. Since both LSTM and CNN feature
extractors retain the order information in the text, the deep confla-
tion model achieve superior performance compared to the bag-of-
character (BoC) baseline.

5. REFERENCES

[1] Vetle I Torvik and Neil R Smalheiser, “Author name disam-
biguation in medline,” TKDD, 2009.

[2] Staša Milojević, “Accuracy of simple, initials-based meth-
ods for author name disambiguation,” Journal of Informetrics,
2013.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
in Neural computation, 1997.

[4] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khu-
danpur, “Recurrent neural network based language model,” in
INTERSPEECH, 2010.

[5] Y. Kim, “Convolutional neural networks for sentence classifi-
cation,” in EMNLP, 2014.

[6] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A con-
volutional neural network for modelling sentences,” in ACL,
2014.

[7] Andrew M Dai and Quoc V Le, “Semi-supervised sequence
learning,” in Advances in Neural Information Processing Sys-
tems, 2015.

[8] N. Kalchbrenner and P. Blunsom, “Recurrent continuous trans-
lation models.,” in EMNLP, 2013.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation,” in EMNLP, 2014.

[10] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence
learning with neural networks,” in NIPS, 2014.

[11] F. Meng, Z. Lu, M. Wang, H. Li, W. Jiang, and Q. Liu, “En-
coding source language with convolutional neural network for
machine translation,” in ACL, 2015.

[12] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex
Acero, and Larry Heck, “Learning deep structured semantic
models for web search using clickthrough data,” in CIKM,
2013.

[13] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and
Grégoire Mesnil, “A latent semantic model with convolutional-
pooling structure for information retrieval,” in CIKM, 2014.

[14] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xi-
aodong He, Jianshu Chen, Xinying Song, and Rabab Ward,
“Deep sentence embedding using long short-term memory
networks: Analysis and application to information retrieval,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2016.

[15] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M
Rush, “Character-aware neural language models,” AAAI, 2016.

[16] Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernandez As-
tudillo, Silvio Amir, Chris Dyer, Alan W Black, and Is-
abel Trancoso, “Finding function in form: Compositional
character models for open vocabulary word representation,”
arXiv:1508.02096, 2015.

[17] Xiang Zhang, Junbo Zhao, and Yann LeCun, “Character-level
convolutional networks for text classification,” in NIPS, 2015.

[18] David Golub and Xiaodong He, “Character-level question an-
swering with attention,” EMNLP, 2016.

[19] Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio, “A
character-level decoder without explicit segmentation for neu-
ral machine translation,” arXiv:1603.06147, 2016.

[20] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On
the difficulty of training recurrent neural networks.,” in ICML,
2013.

[21] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural net-
work architectures for matching natural language sentences,”
in NIPS, 2014.

[22] R. Johnson and T. Zhang, “Effective use of word order for text
categorization with convolutional neural networks,” in NAACL
HLT, 2015.

[23] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa, “Natural language pro-
cessing (almost) from scratch,” in JMLR, 2011.

[24] Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xi-
aodong He, and Lawrence Carin, “Unsupervised learning of
sentence representations using convolutional neural networks,”
arXiv:1611.07897, 2016.

[25] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions
to the nonlinear dynamics of learning in deep linear neural net-
works,” in ICLR, 2014.

[26] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way
to initialize recurrent networks of rectified linear units,”
arXiv:1504.00941, 2015.

[27] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2015.

[28] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Good-
fellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and
Y. Bengio, “Theano: new features and speed improvements,”
arXiv:1211.5590, 2012.

	1 Introduction
	2 Character-level Deep Conflation Models
	2.1 Deep Feature Extractors
	2.1.1 LSTM feature extractor
	2.1.2 CNN feature extractor
	2.1.3 Comparison between the two deep feature extractors

	2.2 Ranker
	2.3 Training of the deep conflation model

	3 Experimental Results
	3.1 Dataset
	3.2 Setup
	3.3 Results

	4 Conclusion
	5 References

