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ABSTRACT
Existing work on knowledge discovery focuses on using natural

language techniques to extract entities and relationships from tex-

tual documents. However, today relational tables are abundant in

quantities, and are o�en well-structured with coherent data values.

So far these rich relational tables have been largely overlooked for

the purpose of knowledge discovery. In this work, we study the

problem of building concept hierarchies using a large corpus of en-

terprise spreadsheet tables. Our method �rst groups distinct values

from tables into a large hierarchical tree based on co-occurrence

statistics. We then “summarize” the large tree by selecting impor-

tant tree nodes that are likely good concepts based on how well

they “describe” the original corpus. �e result is a small concept

hierarchy that is easy for humans to understand and curate. Our

end-to-end algorithms are designed to run on Map-Reduce and to

scale to large corpus. Experiments using real enterprise spreadsheet

corpus show that proposed approach can generate concepts with

high quality.
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1 INTRODUCTION
Existing research on knowledge discovery [2, 4, 10, 21, 30, 43, 49]

heavily relies on text documents and natural language techniques.

�is has led to a long and fruitful line of research, and resulted

in in�uential systems and knowledge bases such as NELL [10],

KnowItAll [21], TextRunner [4], Probase [49], etc. However, our

observation is that so far the success has been limited to the public

web domain. In addition to this one single web domain that has

been heavily studied, there also exist numerous enterprise domains,
each of which has its own entities and concepts that share li�le

overlap with others (e.g., each enterprise will have its own prod-

uct categorizations, cost-center classi�cations, and organizational

hierarchies, etc.). Like knowledge bases from the web, such struc-

tured knowledge from enterprise domains has the potential to bring

signi�cant bene�ts to a large class of enterprise applications like

keyword search [23, 33, 44], data integration [3, 17], etc. However,
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Concept Example Entities

Pro�t Center P73126 US - DPE Central Mgmt,

P19059 US-HealthCare Provider, . . .

Service O�ce US-EDU-EAST, US-PubSec-HQ,

US-DOD-ARMY, US-CSUS, . . .

Data Center 34728-Canyon Park, 40112-San Antonio IDC5

40331-Amsterdam, 40590-Tukwila 2, . . .

Windows Protocol MS-WSUSOD, MS-NETOD, MS-AUTHSOD

MS-CAPR, MS-ISTD, MS-RDPEI, . . .

Table 1: Example concepts and entities from an enter-
prise spreadsheet corpus (some values are redacted for
anonymization).

knowledge discovery from enterprise data is a largely unexplored

topic to this date.

Despite the success of natural language based techniques in the

web domain, our experience suggests that they do not work well

when applied to enterprise domains for two main reasons. First,

text documents are scarce in enterprises when compared to the

general web. On the web, the abundance of documents ensures that

common sense knowledge are repeatedly embodied in text pa�erns

(e.g. the pa�ern “countries such as USA, Canada, ...” may

be mentioned thousands of times). In comparison, in enterprises

such text pa�erns are less frequent because the amount of text data

is o�en limited. Using Microso�’s intranet search engine, we only

found a few hits for the text pa�ern “Microsoft products such
as Microsoft Office 2016”. Replacing “Office 2016” with less

popular names such as “SQL Server 2016” would yield no hits.

We estimate text data in enterprises to be orders of magnitude

less in quantity than the general web, thus creating di�culty for

text-pa�ern based approaches that heavily rely on data redundancy.

�e second drawback of natural language based techniques is

that they tend to generate instances that are not entirely compat-

ible with each other [29]. For instance, in addition to extracting

“Microsoft Office 2016” from the sentence above, such tech-

niques would also extract “Office 2016 professional plus”
(from a sentence “Microsoft products such as Office 2016
professional plus”), as well as other mentions like “Office
2016”, “Office”, “Excel 2016”, etc., which are clearly at di�erent

conceptual levels. �ese entities are not entirely compatible with

each other to be lumped into the same concept, and can require

substantial post-processing e�orts to derive clean concept-entity

relationships. Unlike the web data where the cleaning e�orts on

one general-purpose knowledge base can be amortized, every en-

terprise has its own proprietary data and would require separate

cleaning e�orts, making it impractically expensive to scale to a

large number of enterprises.

Our observation is that tabular relational data are ubiquitous

in enterprises in the forms of spreadsheet �les (.xls �les and other

related formats). In Microso� intranet for example, we crawled



and extracted over 500K tables from enterprise spreadsheets [16],

each of which typically has hundreds of rows and tens of columns,

covering a wide variety of topics. Furthermore, we observe that

data values in these tables are o�en clean and well-structured, with

coherent sets of related entities in same columns (e.g., list of prod-

ucts, list of cost center names, etc.), where it is actually relatively

uncommon for incompatible entities like “Office”, “Office 2016”,
“Excel 2016” and “Office 2016 professional plus” to be all

mixed in the same columns. Table 1 gives a few more examples of

enterprise-speci�c concepts in spreadsheet corpus.

�e abundance of relational tables and their structured nature

make them suitable for knowledge discovery in enterprises. But

existing techniques mostly rely on natural language texts [2, 10,

30, 42, 43, 49] and are not directly applicable. Relational web tables

are used in the limited context of enriching preexisting knowledge

bases in the web domain [6, 19, 35, 50], by essentially leveraging

entities already in knowledge bases as seeds. Such techniques are

unfortunately inapplicable to enterprise se�ings, since no knowl-

edge bases exist in enterprises that these techniques can bootstrap

from.

In this work, we take the �rst steps toward using relational

tables for concept discovery in enterprise domains. Speci�cally,

we hope to discover coherent sets of entities that collectively form

concepts. It is worth noting that while HTML web tables have been

used for set expansion [1, 27, 38, 46], these techniques work in an

online query fashion, in which a concept name and/or seed entities

are provided as input, in order to discover additional entities. In

comparison, we in this work a�empt to discover many concepts

simultaneously o�ine from a large table corpus, without the need

of seed entities and concept names as input.

�e challenge of using tables for concept discovery is that while

table columns are relatively structured, they can be arbitrary subsets
and supersets of ground truth concepts. For example, entities in a

column may be incomplete with only a subset of entities for that

concept. Similarly, some columns may contain irrelevant values,
either by mixing related concepts (e.g., cities and countries in an

“address” column), or mixing meta-data with data (e.g., column

headers, section headers, and tally entries like “sum” and “total”).

Our main approach is to leverage co-occurrence statistics of

values from a large spreadsheet table corpus. While individual

table columns may have irrelevant values mixed in, these outlier

values can be identi�ed as having low statistical correlation with

true members of that concept (e.g. cities vs. countries, or cities

vs. “total”), because the true members should occur repeatedly and

more o�en than others. Using that observation, we �rst construct

an exhaustive clustering tree for all values, and then select nodes

that are likely to correspond to important concept. �e resulting

concept hierarchies can be manually inspected and curated by

domain experts to ensure high accuracy, which can then be used to

bene�t an array of enterprise applications.

Contribution Our work makes the following contributions.

• We studied the novel problem of automatic concept discovery

from spreadsheet tables, without using concept names or seed

instances as input.

• We proposed a scalable and data-driven approach to discover

concept hierarchies on Map-Reduce. Our results are easy for

humans to understand and amenable to curation.

• Our evaluation using real enterprise spreadsheet corpus, and

human labeled benchmarks suggests that the proposed approach

can discover concepts with high quality.

2 SOLUTION OVERVIEW
At a high level, our end to end problem can be stated as follows:

given an input table corpus represented as a set of table columns,
denoted as C. Let V be the universe of all values present in the

corpus, each column c ∈ C consists of a set of cell values, or c ⊆ V.
Our goal of concept discovery is to produce a hierarchical tree,

denoted as (O,E), where O = {o |o ⊆ V} are nodes in the tree, each

of which consists of a set of values in V and ideally corresponds

to a real-world concept. �e edges of the tree in E ⊂ O × O rep-

resent parent-child relationships between nodes in O , which are

determined based on containment of values. Note that in this work

we only produce clusters of values that should belong to the same

concept, and do not a�empt to generate textual “concept names”

for them. Producing concept names from entities is an interesting

but generally orthogonal topic [16].

At a high level, our approach has two main steps. In the �rst

step, we compute statistical co-occurrence scores for all pairs of

values v1,v2 ∈ V, to determine their strength of semantic relation-

ship
1
. We then iteratively merge related values in a bo�om-up,

hierarchical manner. �is is natural because concepts o�en follow

a hierarchical tree structure [32], which starts as �ne-grained con-

cepts at leaf levels, and gradually generalizes into broader concepts

as one moves up in the tree. In this step we perform exhaustive

merging based on co-occurrence, resulting in a deep tree of clusters.

Note that many intermediate nodes in the deep tree may not corre-

spond to useful concepts, and the large amount of results makes it

di�cult for humans to consume directly. �is is by design for the

�rst step – we want to preserve as many candidates as possible here,

and leave the important decisions of selecting useful concepts to

the next stage. We call the resulting candidate tree a deep clustering
tree, denoted as (Oc ,Ec ), where Oc = {o |o ⊆ V}, and Ec ⊂ O ×O ,
which becomes input for the next step.

�is �rst step is conceptually straightforward as it performs

bo�om-up clustering, but the challenge we face is to scale to a

large graph with over 10M entities (the size of |V|). For this we
propose to use batch clustering and adapt the random-mate algo-

rithm [36] to this se�ing. We mostly use known techniques for this

pre-processing stage.

In the second step, which is the focus of this work, we take the

deep clustering tree (Oc ,Ec ) as input, and judiciously select a subset
of nodesO ⊆ Oc that likely correspond to good concepts as output.

�e selected O induces a new reduced tree (O,E) from (Oc ,Ec ),
where the high-level goal is to preserve as many useful concepts

as possible, while making the reduced tree amenable to human

understanding and curation. We formulate this tree-reduction step

as an optimization problem, where the objective is to �nd an optimal

set O , whose quality is measured by how well O can “describe”

1
Note that using techniques from the all-pair-similarity literature (e.g. [5]), we do

not need to compute the full Cartesian product since most pairs of values have zero

co-occurrence and can be ignored.
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(a) Step-1: A deep tree by bottom-up clustering. Nodes
in the tree are candidates for reduction in the next step.
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(b) Step-2: Tree reduction with height=2, by selecting all nodes
marked with * from the previous step.

Figure 1: Illustration of the two steps in our approach using an enterprise concept called ATU (account team unit) speci�c to
this spreadsheet corpus. Some values are slightly redacted for anonymization.

the original corpus (to be de�ned formally), with the constraint

that the height of reduced-tree (O,E) to be no more than some

small constant h (e.g., 2 or 3). One way to look at this is that we

are e�ectively compressing the deep clustering tree into a smaller

tree, using rationales consistent with well-known principles such

as minimum description length [37] and Occam’s razor [24]. We

develop dynamic programming algorithms on Map-Reduce to solve

this problem optimally, which can also scale to large corpus.

We illustrate these two steps of our approach using a simpli�ed

example in Figure 1.

Example 1 (Solution Overview). Figure 1 shows a set of codes
names from enterprise spreadsheets that denote a concept called ATU
(account team unit), which is an enterprise-speci�c concept in this
corpus that divides teams of customer relationship specialists into
subgroups, based on their geographical locations as well as functions.
As we can see from the �gure, instances in this concept are encoded
with a geographical component, followed by a subdivision number,
and �nally some abbreviated names.

In the �rst stage of our algorithm as shown in Figure 1a, we it-
eratively group values in �ne-grained steps. Entities with high co-
occurrence will merge �rst to form lower-level tree nodes. �ey are
iteratively merged with other co-occurring values in a bo�om up
fashion, forming broader concepts. �is terminates when reaching the
root level, producing a deep clustering tree which is the result of our
�rst step.

We can see from this particular tree that individual ATUs generally
group according to geographical-a�nity, re�ecting their strength of
occurrence in the large spreadsheet corpus. For example, ATUs from
the same countries and continents tend to group together �rst, because

many of the columns in the corpus contain exclusively ATUs in the
same country, or ATUs with the same continent.

Note that the result of Figure 1a is a deep clustering tree with a large
number of intermediate nodes (denoted by di�erent le�ers), many of
which may not correspond to useful concepts, and the tree is likely too
big for users to consume. �e second stage of our approach produces
the result shown in Figure 1b, which in this case is a shallow tree of
height 2. �e constraint on height h is a parameter that users can
provide, which controls the complexity of the �nal result (a tree of
smaller height is generally easier for humans to understand, at the
risk of losing certain concepts). �is step is mainly based on how well
a selected subset of nodes can “summarize” the original corpus, and
will result in a shallow tree of concepts, which is easy for humans to
understand/curate.

By �rst exhaustively generating a deep tree with �ne-grained

value groupings as candidates, and then summarizing the tree, we

capture high quality concepts while limiting the size of the output.

3 CANDIDATE TREE GENERATION
In this section, we describe the �rst step of our approach, which

produces a deep clustering tree by exhaustive grouping of values

in a spreadsheet corpus, based on their strength of co-occurrence.

For this step, while scaling the bo�om-up clustering to a large cor-

pus is non-trivial, the conceptual task is relatively straightforward

and not the focus of this work, so we brie�y discuss this step for

completeness.

Given a large table corpus, we use statistical value co-occurrence

between any pair of values to capture their semantic relatedness

in a data-driven manner. For example, in Figure 1, if a value (e.g.,

“France.02.SVCS-RLCT”) co-occurs frequently with another (e.g.,



“Germany.06.MNF-EU”) in the same columns, then intuitively they

will have a high relatedness score. We de�ne relatedness score

s(v1,v2) ∈ [0, 1] using Jaccard similarity as follows.

Definition 1 (Value Similarity by Jaccard). �e relatedness
score between two table value v1, v2 using Jaccard similarity can be
de�ned as s(v1,v2) =

| {c |v1∈c,c ∈C}∩{c |v2∈c,c ∈C} |
| {c |v1∈c,c ∈C}∪{c |v2∈c,c ∈C} |

.

In principle, any set-based, vector-based and distribution-based

similarity metric such as Point-wise Mutual Information, Dice co-

e�cient, Jaccard containment are all reasonable choices here. We

found the Jaccard similarity performs the best in our experiments.

Note that for a large |V| with millions of values, computing

similarity for all pairs of values exhaustively is quadratic and not

practical. But in reality most pairs of values do not share any

overlap, or {c |v1 ∈ c, c ∈ C} ∩ {c |v2 ∈ c, c ∈ C} = ∅. We use

techniques similar to [31, 40] from the all-pair-similarity literature,

to e�ciently compute only non-zero scores on Map-Reduce.

With relatedness scores between pairs of values, we are ready to

produce initial candidate cluster trees, to be used for pruning in the

next step. We experimented with various well-known clustering

approaches, including single-link, average-link, complete-link, cor-

relation clustering, density-based clustering, etc. We found average-

link produces initial clusters of the best quality, likely because it

is more robust to anomalous co-occurrence scores, and is used in

the �rst step. Clusters generated by techniques like single-link and

correlation clustering are of low quality even as candidate trees.

While this step is conceptually simple, the main challenge is

e�ciency, because the average-link algorithm is of complexity

O(n3), which is known to be di�cult to scale to large data sets (in

our graph n > 10M). We change the vanilla average-link in two

ways to make this feasible. First, instead of �nding the closest

pair of nodes to merge in each clustering step, we perform batch

clustering – at each iteration, we merge all nodes whose scores

are over a dynamically determined threshold. �e threshold for

each iteration can be determined based on �xed step-size (e.g.,

{0.95, 0.9, 0.85, ...}), or based on a �xed target that certain fraction

of nodes should collapse in the iteration (e.g., a score to ensure that

5% nodes will merge). Although the result of the batch clustering

will not be the same as the traditional, one-pair-at-a-time clustering,

it should be a close approximation. In the very extreme when we

set the step-size to very small values so that only one pair is merged

in each iteration, this will indeed reduce to the vanilla average-link

clustering.

But the batch version of clustering is still non-trivial, because

since the large graph would not �t in memory, merging all nodes

whose edge scores are above the threshold in each iteration can in

the worst case require O(m)Map-Reduce rounds, wherem is the

number of nodes to merge in that iteration (e.g., for chain graphs).

We overcome this challenge by relaxing the semantics, namely we

collapse all edges whose scores are over the threshold in one con-

ceptual step, not considering the order of merge which may a�ect

the �nal result. �is merging step is similar to �nding connected

components (we conceptually drop edges whose scores are lower

than the threshold). We thus adapt the random mate algorithm [36]

developed for connected components on large graphs for this pur-

pose. In the worst case the required number of Map-Reduce rounds

is O(logm) as opposed to O(m).

Algorithm 1 Exhaustive bo�om-up clustering

1: O0

c ← V
2: θ0 ← TopK(Ei+1,k), i ← 0

3: while θ i > 0 do
4: EMerдe ← {v1,v2 |v1,v2, s(v1,v2) > θ

i }

5: Oi+1
c ← ConnectedComponents(Oi

c ,EMerдe )

6: θ i+1 ← TopK(Ei+1,k)
7: i ← i + 1
8: end while
9: return

⋃
Oi
c

Algorithm 1 describes our implementation of these high-level

ideas. At each iteration i , the algorithm will maintain a graph

of super-nodes Oi
c that is the outcome of the merging from the

previous step. We select all edges above the threshold θi in that

iteration, where the threshold θi is computed as the top k-th score

among all edge in the current graph (line 2 and 6). �e parameter

k is essentially the batch size and a larger k (e.g., 1% or 5% of

nodes) limits the number of batches required and produces results

e�ciently. We then perform the merging step using random mate
algorithm [36] (line 5), resulting in a new graph of super-nodes

Oi+1
c .

We can upper-bound the complexity of this algorithm in terms

of the number of Map-Reduce rounds required.

Theorem 1. For a chosen a batch size of k , the number of dis-
tributed rounds for our algorithm will be O( |V | logkk ).

Proof. First, the merging step (line 4) uses parallel connected

component �nding, which requires O(logd) rounds in the worst

case, whered is the graph diameter. Becaused is no greater than the

number of edges to merge, k , this requires no greater thanO(logk)
rounds. For selecting the k-th highest edge score in order to pick

the threshold (line 6), we will utilize the quick select algorithm [28],

which is also O(logk) rounds. Since we need |V|/k such merging

step before all nodes are merged, the total number of rounds is no

more than O(
|V | logk

k ). �

4 CONCEPT SELECTION BY TREE
REDUCTION

We are now ready to describe the next step of tree reduction, which

is the focus of this work. We will analyze the problem in Section

4.1, and solve it optimally on Map-Reduce in Section 4.2.

4.1 Problem Formulation
We formulate the tree reduction problem as constrained optimiza-

tion. Speci�cally, given the deep clustering tree (Oc ,Ec ) produced
from the previous stage, we want to select a set of nodes O ⊆ Oc
that are most likely to be good concepts, subject to certain size

constraints.

�e �rst question here is how to determine what nodes inOc are

likely to be good concepts. Our observation is the following: given

a large spreadsheet corpus, while some table columns in the corpus

are random sub-sets/super-sets of natural concepts, a non-trivial

fraction of columns should actually correspond to ideal concepts,



with every entity instance in the concepts and nothing more. �e

hope is that the corpus will guide us in �nding them, because clean

columns of important concepts should hopefully occur more o�en

than random sub-sets/super-sets of concepts (which should not be

repeatedly occurring if they are random and not good concepts).

More speci�cally, we use the existence of table column c that is
almost identical to a candidate cluster node o ∈ Oc as an evidence

that o may be a good concept. Furthermore, the more such columns

we �nd, the more likely o is a desirable concept. For example, the

concept of “all ATUs in the world” repeatedly occur as a column in

many spreadsheets, which is likely a be�er concept than its random

subsets. �e same is true for ATUs in related geographical locations

(same countries or same continents), which also occur frequently

and may be good concepts. �erefore, we de�ne the “quality” of a

node in the clustering tree o ∈ Oc , as all table columns C ⊂ C that

closely match the content in node o. We can say that these columns

C are “covered” or can be “described” by o. Since we need to select

a set of nodesO ⊆ Oc , we can also de�ne the collective “quality” of

these nodes as the union of the table columns covered byO . �is is

formalized in the following de�nition.

Definition 2 (corpus coverage). A node o ∈ Oc in the clus-
tering tree can cover a table column c ∈ C, if the Jaccard similarity
between o and c is higher than a prede�ned threshold τ (e.g., 0.95).
We use D(o) = {c |c ∈ C, Jaccard(o, c) ≥ τ } to denote the columns
that node o can cover, which we also refer to as the ”corpus coverage”
of o.

For a set of nodes O ⊆ Oc , the collective coverage of O , denoted by
D(O), is de�ned as the union of the coverage of individual nodes, or
D(O) =

⋃
o∈O D(o).

When a concept o and a column c have high similarity, we refer

to this as o can cover c , or interchangeably the concept o can describe
c in the spirit of minimum description length.

Intuitively, we want to make sure that the nodes we select can

approximate the original corpus as closely as possible, so that they

are likely good concepts. So the coverage D(O) is e�ectively the

objective function of our tree reduction problem we study.

A trivial way to maximize D(O) is to select all nodes in Oc ,

which however is not interesting as the resulting tree is too big

for humans to use (i.e., if we run the previous clustering step for

100 iterations, the tree will have 100 levels of hierarchy which is

clearly too big). In this deep and big candidate clustering tree,

many nodes are are actually not good concepts, and nodes may be

highly redundant to each other (they may only di�er slightly due

to exhaustive clustering).

So we impose a constraint on the height the resulting tree, to

ensure that humans can more easily understand and curate the

reduced tree, and at the same time the most important nodes are

preserved, which should hopefully correspond to good concepts.

We choose to constrain the height of the tree instead of the number

of nodes, because height is independent of the fan-out of the tree,

and directly corresponds to the number of hierarchies in the result-

ing tree. For the ATU concept, with height set to 3, we may obtain

concepts corresponding to ATUs in the same countries, ATUs in

the same continents, and all ATUs in the world.

From the input candidate cluster tree (Oc ,Ec ), it is easy to see

that by selecting a subset of nodes O ⊆ Oc , it always induces

a reduced tree, because ancestor-descendant relationships from

(Oc ,Ec ) are guaranteed to be preserved. �is allows us to focus on

selecting nodes in Oc without worrying about the structure of the

resulting graph.

We therefore formulate our concept selection problem follows.

Given an input clustering tree (Oc ,Ec ) generated from previous

step, the table corpus C, a coverage function D, and a height con-

straint h, select a subset of nodes O ⊆ Oc , so that the collective

coverage |D(O)| is maximized, while the reduced-tree induced by

O has height no more than h. We cast this as a general problem as

described below.

Problem 1. Maximum-Coverage Tree Selection (MCTS). Given
an input tree (O,E), a set of targets T against which nodes in O can
cover, as de�ned by a monotonic coverage function D : 2

O → 2
T ,

and a height constraint h, select a set of tree nodes, U ⊆ O , so that
the reduced tree induced byU has height of as most h, and the target
coverage |D(U )| is maximized.

We note that the general idea of the formulation is consistent

with well-known principles such asminimum description length [37]
and Occam’s razor [24]. It can be shown that this problem is APX-

hard using reduction from Set Cover.
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Figure 2: Continuation of the example in Figure 1. Re-
formatted to illustrate the tree reduction problem of MCTS.

We illustrate the problem using our running example.

Example 2 (MCTS problem). We continue with Example 1 and
redraw the deep clustering tree of Figure 1 in Figure 2. We use a solid
dot to represent a node. �e root a here again represents all ATUs in
the world.

If a node o in the tree can “cover” a table column in our spreadsheet
as de�ned by the coverage function D(o), we draw a square around
that node. �e number of squares for each node visually indicates the
corpus coverage of that node.

It can be veri�ed that the optimal solution of MCTS on this tree
with a height constraint 2 is to select {a,b1,b2,b3, e, i, j}, which has
a total coverage of 15 (each branch may in this case correspond to
ATUs in di�erent continents).

4.2 Solve MCTS using Dynamic Programming
In this section we present a dynamic-programming-style algorithm

to solve the MCTS problem optimally on Map-Reduce. �e chal-

lenge is that MCTS is intractable in general, and we need to work

with large data sets on Map-Reduce. We e�ciently compute and



store partial solutions to subproblems of MCTS that are needed to

compute the global optimal solutions.

�e subproblem structure can be described as follows.

Problem 2. Subproblem to MCTS (S-MCTS). Given an instance
of the MCTS problem on a tree of nodes V and a height constraint
h, denoted as MCTS(V ,h), a subproblem is de�ned with respect to a
sub-tree VS rooted at node vS ∈ V and a height constraint h′ ≤ h,
wri�en as S-MCTS(VS ,h′).

If MCTS were to have optimal substructure [15], it would be nat-

ural to solve smaller problems at leaf levels of a tree, and iteratively

solve larger problems utilizing solutions at lower levels. However,

there is no optimal substructure in MCTS and larger problems can-

not be solved optimally that way. Instead, we need to e�ciently

memorize the set of promising partial solutions to subproblems that

may be needed to form the global optimal.

Represent targets covered by tree nodes. In order to represent

the solution to the subproblems, we �rst describe how we repre-

sent the set of targets (a general term we introduce in Problem 2

that refers to columns in this speci�c problem) for each tree node.

Representing targets naively for each node as a set of target-ids

is ine�cient and cannot scale to large problems. We e�ciently

encode the targets of nodes utilizing the tree structure, which is

crucial for both time and space e�ciency.

We de�ne tree coverage, which is the inverse of corpus coverage

in De�nition 2, by mapping targets (columns) back to tree nodes.

Definition 3 (tree coverage). For a given MCTS problem, the
tree coverage for a target t ∈ T is de�ned as D−1(t) = {v |v ∈ V , t ∈
D(v)}.

We further characterize the targets into three main categories.

Definition 4. (Path-target, partial path-target, non-path-target).
We say a set of nodes V ′ ⊆ V is a tree path, if they form one unin-
terrupted path in the tree. A target t ∈ T is a path target if its tree
coverage D−1(t) is a tree path. A target t ∈ T is a partial path target

if its tree coverage D−1(t) is not a tree path but is a subset of a tree
path. Finally, a target t ∈ T is non-path target if it is neither a path
target nor a partial path target.

Intuitively, the path target is a target that is covered by a con-

tinuous sequence of nodes in one path of the deep clustering tree.

In Figure 2, the targets (represented as rectangles) corresponding

to the right-most path c-f-j are path-targets; so are others targets

(rectangles) as they all form uninterrupted paths in the tree. �is is

the most common case – as cluster nodes grow larger moving up

the tree, nodes that are close enough to a desired target o�en form

an uninterrupted tree path.

In contrast, partial path targets represent targets that are covered

by nodes on an interrupted path in a tree. Finally, non-path targets

represent targets that are covered by nodes in a tree that is no longer

a subset of a tree path. Neither of these two cases are common but

can exist in theory. It is worth noting that with a τ value greater

than 0.5, the bad case of non-path targets will never occur, which

can be shown by contradiction.

We represent these three types of targets di�erently: for a path

target, we can e�ciently encode it by remembering the lowest

descendant in the its tree path, vstar t , and the highest ancestor in

the tree path, vend . For a partial path target, let P be the smallest

tree path that includes this partial path, we can encode the partial

path target using vstar t , vend of path P , plus Vmissinд which are

nodes that are absent from P . Finally for non-path targets, we

simply map each node to a set of these target-ids.

Physically, given an input tree in an MCTS problem, we use a dic-

tionary dictL , keyed byvstar t ,vend , to store the number of all path

targets; andwe use a dictionarydictPL , keyed byvstar t ,vend ,Vmissinд ,

to store the number for all partial path targets. For non path targets,

we directly store the set of targets for each node v ∈ V , denoted as

coveredNL(v). Note that for non-path targets it essentially degen-

erates to the naive approach of storing node coverage. But because

almost all targets are path-targets or partial-path-targets (i.e., with

τ > 0.5 non-path targets are guaranteed to be empty as discussed

before), we can encode targets very e�ciently.

Represent a solution to subprogram S-MCTS. For a given in-

stance of S-MCTS(VS ,h) problem, because the problem lacks op-
timal substructure, naively we will need to memorize all possible

solutions, each of which consists of a set of tree nodes S ∈ VS , and
the corresponding set of targets that S can cover, namely D(S).

But for reasons that will be clear soon, conceptually we only

need three pieces of information for each solution: (a) the set of

nodes selected S ∈ VS (whose induced tree has a height H (S) ≤ h);
(b) the total number of targets covered by S , |D(S)|, also denoted

as covered ; (c) the set of targets that may be covered in the future

that are not already covered by S , denoted as D(V \VS ) \D(S). �e

last part in (c) can be e�ciently encoded using the data structure

of dictL , dictPL , and coveredNL as described above.

Derive the set of Promising Solutions to subprogramS-MCTS.
For a given S-MCTS(VS ,h) problem, we now show how to use the

three pieces of information in a solution above to prune away un-

promising solutions that can never be part of a global optimal in

a larger problem, which is critical to the e�cient induction of the

global optimal.

Let the set of all solutions to S-MCTS(VS ,h) be PSTv,h , where
v is the root of VS . We can prune away unpromising solutions in

PSTv,h , by de�ning a partial order <S over solutions. Suppose we

have two solutions, S1 and S2, we say a solution S1 is inferior to
another solution S2, S1 <S S2, if S1 will never be a be�er choice
than S2 in any possible way. Speci�cally, in the best case for S1, on
top of all targets already covered by S1 (the number covered de�ned

above), if we include all path and partial-path targets not already

covered, whosevstar t ∈ VS butvend < VS , and if the resulting sum
is still less than the sum of the covered path and partial path targets

in S2 (can be computed from dictL , dictPL), then we can show that

S1 is always inferior to S2 as a part of solutions to larger problems

S-MCTS(V S ,h
′), with V S ⊃ VS and h′ ≥ h. We can thus discard S1

without a�ecting the optimality of our recursive induction.

�e overall induction for node v and height constraint h can

be expressed as below. Let {j1, j2, . . . , jkv } be v’s children nodes,

PST × PST ′ be the cross-product of two sets of solutions (by union



solutions from each set). �e desired PSTv,h can be obtained as

S1 = {includeCurrent(l1, l2, . . . , lkv )|(l1, l2, . . . , lkv ) ∈

PSTj1,h−1 × PSTj2,h−1 × PSTjkv ,h−1} (1)

S2 = {notIncludeCurrent(l1, l2, . . . , lkv )|(l1, l2, . . . , lkv ) ∈

PSTj1,h × PSTj2,h × PSTjkv ,h } (2)

PSTv,h = prune(S1 ∪ S2) (3)

In case (1), the function includeCurrent corresponds to the scenario
of including v in solution, in addition to selecting best solutions

from each of v’s children independently using constraint h − 1.

In case (2), the function notIncludeCurrent corresponds to not in-

cluding v in the solution, but selecting best solutions from each

of v’s children with constraint h. �e function prune corresponds
to pruning away solutions dominated by others using the partial

order <S de�ned before.

A more detailed description of the algorithm is shown in Al-

gorithm 2. We �rst perform initialization to obtain PST for leaf

nodes, in which case the incoming results from children nodes are

empty (line 3-9). During the main body of dynamic programming

induction (line 10-27), we proceed from nodes of lower tree height

to higher. For each node we obtain PST for all height constraints,

using the induction procedure above. �ere are two possible cases

as discussed above: to include the current node into the solution

or to keep the solution as is. For the �rst case, the derivation pro-

cess would be: 1) A derive f rom children operation that sums up

the corresponding elements in dictL , dictPL , covered for all the

input solutions from children nodes. It also needs to merge the

set coveredNL in addition. 2) A maintain active tarдets opera-

tion to add entries in dictL , dictPL , that have the current node as
vstar t , and remove entries in dictL , dictPL that have the current

node as vend . 3) A cover tarдets operation to remove all entries

in dictL , dictPL except for those in dictPL having current node

among Vmissinд , and sum them up into covered . If we removed

entries from step 2, we also need to add them into covered here.

Furthermore, we will merge the newly covered non path targets

into coveredNL and update covered based on that. For the second

case, the derivation process will be just step 1 and step 2 as in the

�rst case.

Finally, we will obtain the PST for the root of tree with height

constraint h. We can then select the solution of height h that has

the highest target coverage as the �nal result R.
�e simple example below shows the induction hierarchy for

Figure 2.

Example 3 (MCTS algorithm). We revisit Example 2 in Figure 2,
where the optimal solutionwith height constraint 2 is {a,b1,b2,b3, e, i, j},
which has a total score of 15. �is is formed by combining one solution
each from PSTb3,1, PSTb2,1 PSTb1,1, and PSTc,1, respectively. For the
solution from PSTb3,1, it comes from a solution in PSTb2,0, which
traces back to a solution in PSTb1,0. Same is true for PSTb2,1 and
PSTb1,1. For the solution in PSTc,1, it comes from combining a solu-
tion in PSTe,1, which in turn traces back to PSTh,0; and PSTf ,1, which
traces back to PSTi,1 and PSTj,1. It can be veri�ed that these solu-
tions are not dominated by others in the induction process. From these
traces we can recover the optimal nodes selection for this problem.

Algorithm 2 Algorithm for MCTS

1: INPUT: tree (V ,E), target set T , target coverage function d :

V → 2
T
, height constraint h

2: OUTPUT: selected nodes VS ⊆ V
3: for node v with node height 0 do
4: T ← add newly active tarдets(v)
5: if the combination comes from height constraint h−1 then
6: T ← cover active tarдet(T ,v)
7: end if
8: ST ← discard inactive tarдets(T ,v)
9: end for
10: for staдe from 0 up to the height of the original tree do
11: for node v with node height staдe do
12: S = ∅
13: {j1, j2, . . . , jkv } ← children of v
14: for height constraint h = 0 . . .H do
15: for (ST1, ST2, . . . , STkv ) ∈ PSTj1,h−1 × PSTj2,h−1 ×

PSTjkv ,h−1 ∪ PSTj1,h × PSTj2,h × PSTjkv ,h do
16: ST = derive f rom children(ST1, ST2, . . . , STkv )
17: ST =maintain active tarдets(ST ,v)
18: if the combination comes from height constraint

h − 1 then
19: ST = cover tarдets(ST ,v)
20: end if
21: S ← S ∪ ST
22: end for
23: PSTv,h ← {ST |ST ∈ S,�ST

′ , ST , ST <S ST ′}
24: end for
25: end for
26: end for
27: STOPT ← {ST |ST ∈ PSTroot of tree(V ,E),H , |ST has the highest

covered value }

28: R ← backtrack(ST ,V ,E, {PST (v,h)})
29: return R

�e algorithm is parallelizable since the computation in each

for-loop is independent of others.

5 EXPERIMENT
In this section we present experimental evaluations of the proposed

method. Our goal is to (1) evaluate the quality of concepts pro-

duced by di�erent approaches; (2) understand the e�ectiveness of

tree reduction approach; and (3) measure sensitivity of results to

di�erent parameters.

5.1 Experimental Setup
5.1.1 Spreadsheet Corpus.

We perform the concept discovery on a corpus of spreadsheet tables

crawled from Microso� intranet. �ere are a total of over 500K

tables, 3.2M table columns, 13M distinct cell values, and over 2B

edges for pairs of values with non-zero co-occurrence. Many en-

tities and concepts are enterprise-speci�c, examples of which are

shown in Table 1.

5.1.2 Computing Environment.
We conduct our experiments onMicroso�’s productionMap-Reduce

clusters [12] alongside with other production jobs. �e �rst stage of



candidate cluster generation is more expensive but takes no more

than 24 hours in our experiments, and the second stage of concept

selection takes no more than 4 hours. We �nd these to be accept-

able since these jobs can run overnight in an o�ine se�ing, where

latency is not critical. We would like to note that the resulting hier-

archical concept trees are small enough to be explored/manipulated

by human users at interactive speed.

5.1.3 �ality Evaluation.
We constructed 100 ground truth concepts with the following proce-

dure: We randomly sample from the spreadsheets a set of columns

that is manually judged to be clean and relatively close to complete.

We then search in the spreadsheet corpus to identify additional table

columns that share signi�cant overlap with these initial columns,

and if these additional columns are judged to be part of the ground

truth we will merge them and prune away outliers, until we are

reasonably con�dent that the concepts are complete.

We measure quality of produced clusters against these ground

truth concepts using F-scores. For each ground truth concept, we

will �nd a cluster generated by an algorithm with the highest F1-

score, and we will select that cluster as the prediction by the algo-

rithm. Finally we report average F1-scores across all ground truth

concepts.

5.1.4 Methods Compared.
Correlation Clustering. We implement the Map-Reduced-

based correlation clustering algorithm [14] and evaluate the quality

of the resulting clusters. �is algorithm works by sampling pivot

nodes and growing clusters around them in iterations.

Density-based Clustering. Density-based clustering such as

DB-SCAN [20] is a popular method for clustering. We implement

the DB-SCAN on Map-Reduce: in each round, we perform a reduce
to compute the density and neighborhood size of each node to

determine whether that node is a core or edge. We then iteratively

�nd the reachable region of each core to merge. �e minimum size

of clusters is set to 5.

Connected Components. We additionally experiment with a

simple connectivity based method on the co-occurrence graph to

determine concept boundaries. In this method, we simply merge

all nodes whose edge scores is above a certain threshold, which

is also equivalent to Single-Link clustering. We use the algorithm

discussed in [36] on Map-Reduce.

Complete Linkage. We also test the complete linkage cluster-

ing, where a pair of nodes merge only when all constituent nodes

are similar enough to each other.

WebSets. We implement and compare with the WebSets ap-

proach proposed in [18], which is closely related to the problem we

study. �eWebSets method emits for each table a set of consecutive

triplets of entities (e.g., India, China, Canada), and then merge the

triplets together if they share signi�cant overlap in entities. We use

the same parameters as in [18].

C4
. �e method proposed in this work is denoted as C

4
, which

is short for Concept Construction from Coherent Clusters. In the

�rst stage of cluster generation, we run 20 iterations of hierarchical

clustering, resulting in a candidate tree with height 20. In the

second stage of tree reduction, we set the height constraint to 1

and 3. �e corresponding results are denoted as C
4
-H1, and C

4
-

H3, respectively. We also test quality on the initial cluster tree

generated from the �rst step, which is denoted as C
4
-All. Note that

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connected
Component

Correla�on
Clustering

Density-based
Clustering

Hierarchical
Complete
Linkage

WEBSETS C4-H1 C4-H3 C4-All

A
V

ER
A

G
E 

F
-S

C
O

R
E

Figure 3: Overall quality comparison (best parameters)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connected
Component

Correla�on
Clustering

Density-based
Clustering

C4-H1 C4-H3

A
ve

ra
ge

 F
-s

co
re 0.1

0.3

0.5

0.7

0.9

Figure 4: Sensitivity of quality to di�erent parameters

when using a height constraint of 1, the result in C
4
-H1 e�ectively

is a disjoint set of nodes (as opposed to a hierarchical tree), which is

directly comparable to standard clustering method. For trees with

height greater than 1 (e.g., C
4
-H3), we produce hierarchical trees

with overlapping concepts, which essentially allows them to make

more than 1 prediction for the same concept, and in turn makes

the results more favorable compared to standard clustering.

5.2 �ality Evaluation
�e overall quality comparison can be found in Figure 3. We tuned

parameters for all methods reported here (e.g., thresholds for clus-

tering), and only show the best results for each method in this

�gure.

We observe that C
4
-H1 outperforms all existing methods we

implemented by at least 10 percentage points. C
4
-H3 and C

4
-All

have even higher F-score, but as we discussed above, these results

are not directly comparable to standard clustering, because for

height constraints greater than 1 we produce hierarchical trees that

contain overlapping concepts. It is interesting to note, however,

that from C
4
-All (20 levels) to C

4
-H3 (3 levels), our tree reduction

produces a smaller tree with virtually no di�erence in quality. �is

is encouraging as it shows the e�ectiveness of the proposed tree re-

duction approach. WebSets does not performwell in this test, partly

because it requires triples to be in speci�c order before merging,

which is o�en too strict to form complete concepts.

In Figure 4 we analyze the sensitivity of each method to thresh-

old parameters. �e exact interpretations of thresholds in each

method are slightly di�erent – in the case of clustering they indi-

cate stopping criteria, whereas in C
4
this is the parameter τ used

in De�nition 2. For C
4
-H1 and C

4
-H3, using Jaccard similarity of

0.7 achieves the best performance.

We report the quality of individual concepts in Figure 5. C
4

achieves high accuracy for most concepts. Results with di�erent
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height constraints suggest for almost all concepts, reducing the

initial candidate cluster tree to 3 levels (C
4
-H3) incurs virtually

no cost in terms of quality. Further reducing the tree height to 1

(C
4
-H1), however, does lead noticeable drop in quality for 13 out of

100 concepts.

Validate corpus coverage as a quality measure. A key as-

pect of our problem formulation in Section 4.1 is to use corpus

coverage as a proxy of quality in selecting concept nodes. �e idea

is that if a small set of concepts can cover/describe a large set of

columns, then they are likely to be useful concepts. Intuitively, this

gives us a more �exible way to select concepts – nodes are selected

directly based on table data, as opposed to standard clustering that

always terminates at a �xed threshold.

In Table 2 we analyze the number of concepts generated by dif-

ferent methods, and the number of spreadsheet table columns that

can be covered/described by these concepts. A method is intuitively

more desirable if it uses a few concepts to cover a larger number

of table columns. From Table 2 we can see that the ratio between

these two numbers indeed correlate well with the quality results

obtained using manually-labeled benchmarks. We can see that

C
4
-H3 and C

4
-H1 score well in this regard, which is not surprising

since this is the optimization objective in the problem formulation.

It is interesting to note that C
4
-H3 uses less than 1% of the clusters

of C
4
-All, without losing much coverage of columns.

We think this can be of independent interest to the general

problem of data clustering. In standard clustering, predetermined

thresholds are used to terminate merging in all tree branches. In

practice this may be too rigid as scores computed from di�erent

branches are not directly comparable. An alternative is to directly

optimize for a more relevant metric speci�c to the clustering prob-

lem (like we did for concept selection), which may provide be�er

clusters compared to using �xed thresholds.

6 RELATEDWORK
Knowledge bases such as YAGO [42], Freebase [7], and DBPedia [3]

are widely used today in a variety of applications, and embody really

impressive advances in this �eld. With a few exceptions (e.g. [43]),

most techniques focus on the public web domain as opposed to

proprietary enterprise domains, and are based on variations of

text-pa�erns to construct concepts [2, 30, 34, 43, 49].

�e topic of constructing concepts on enterprise data is large

unexplored to this date, partly because of the di�culty of the task

a�ributable to the scarcity of text documents in enterprises. Our

approach takes the �rst steps towards this direction, by leveraging

concept table columns

generated covered

Connected Component 189K 4K

Correlation Clustering 39K 23K

Density Clustering 59K 26K

Hierarchical Complete Linkage 461K 19K

WebSets 737 2134

C
4
-H1 16K 36K

C
4
-H3 19K 43K

C
4
-All 3641K 53K

Table 2: Analysis of corpus coverage for di�erent methods.

spreadsheet tables that are abundant in enterprise and can be close

to ideal concepts.

�ere is an interesting line of work on identifying new entities

from tables to enrich existing knowledge bases in the public do-

main (e.g., YAGO or DBPedia) [6, 19, 35, 39, 50]. Unfortunately, in

enterprise domains there is no such preexisting knowledge bases

that one can leverage, making these techniques inapplicable in an

enterprise se�ing.

A related problem studied in [48] is to discover mappings rela-

tionships from table corpus. Mapping tables are two-column tables

satisfying functional dependencies that can be viewed as a speci�c

type of knowledge, which is however largely orthogonal to the

concept hierachies studied in this work.

Set-expansion and concept-expansion [10, 22, 27, 47] is another

line of related work. In these methods, a small number of seed entity

instances and/or a concept name are given as input to algorithms;

web tables are then leveraged to automatically discover additional

entities in the same concept. �ese techniques are intended for

human users to complete known concepts, one concept at a time.

In comparison, the approach studied in this work a�empts to dis-

cover all concepts simultaneously based on a spreadsheet corpus

in an o�ine manner. While the results of our approach are still in-

tended for humans to curate just like the set-expansion approaches,

the o�ine se�ing should signi�cantly reduce human overhead of

providing concept names and seed entities.

In the context of semantic web, techniques have been devel-

oped to map relational database into RDF data and OWL ontolo-

gies [11, 41, 45], using a small set of authoritative databases. While

these techniques are important, in enterprises it is o�en di�cult

to identify a comprehensive set of master databases, since they are

likely in di�erent silos and are not easily discoverable/accessible.



In fact, if a small set of master databases were known, then our

problem of extracting concepts/entities is trivial. Our approach is

built on the observation that comprehensive master databases are

not available, and instead solves the concept discovery problem

using spreadsheets, which are readily available and in enterprise

intranets in large quantities.

In addition to enriching knowledge bases, relational tables are

rich data assets that have empowered a variety of application, in-

cluding data integration [9, 26], synonyms discovery [8, 25], and

table search [8, 13], among other things. Leveraging structured

tables for data-driven application is a rich area for future research.

7 CONCLUSION AND FUTUREWORK
In this work, we take �rst steps towards discovering concepts using

enterprise spreadsheet tables. We show that it is a promising direc-

tion by leveraging a large table corpus. �ere are a few interesting

areas that warrant future research. First, it would be useful to test

the proposed method using di�erent table corpora, e.g., on spread-

sheets from di�erent enterprises, and on tables from the public

web domain. Understanding how to best help users to curate the

automatically generated concept hierarchy is another important

area of future work.
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