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Abstract: Commodity CPU architectures, such as
ARM and Intel CPUs, have started to offer trusted com-
puting features in their CPUs aimed at displacing dedi-
cated trusted hardware. Unfortunately, these CPU archi-
tectures raise serious challenges to building trusted sys-
tems because they omit providing secure resources out-
side the CPU perimeter.

This paper shows how to overcome these challenges
to build software systems with security guarantees sim-
ilar to those of dedicated trusted hardware. We present
the design and implementation of a firmware-based TPM
2.0 (fTPM) leveraging ARM TrustZone. Our fTPM is the
reference implementation of a TPM 2.0 used in millions
of mobile devices. We also describe a set of mechanisms
needed for the fTPM that can be useful for building more
sophisticated trusted applications beyond just a TPM.

1 Introduction

In recent years, commodity CPU architectures have
started to offer built-in features for trusted computing.
TrustZone on ARM [1] and Software Guard Extensions
(SGX) [25] on Intel CPUs offer runtime environments
strongly isolated from the rest of the platform’s soft-
ware, including the OS, applications, and firmware. With
these features, CPU manufacturers can offer platforms
with a set of security guarantees similar to those pro-
vided via dedicated security hardware, such as secure co-
processors, smartcards, or hardware security tokens.

Unfortunately, the nature of these features raises se-
rious challenges for building secure software with guar-
antees that match those of dedicated trusted hardware.
While runtime isolation is important, these features omit
many other secure resources present in dedicated trusted
hardware, such as storage, secure counters, clocks, and
entropy. These omissions raise an important question:
Can we overcome the limitations of commodity CPU se-

∗Currently with ContainerX.

curity features to build software systems with security
guarantees similar to those of trusted hardware?

In this work, we answer this question by implement-
ing a software-only Trusted Platform Module (TPM) us-
ing ARM TrustZone. We demonstrate that the low-level
primitives offered by ARM TrustZone and Intel SGX can
be used to build systems with high-level trusted comput-
ing semantics. Second, we show that these CPU security
features can displace the need for dedicated trusted hard-
ware. Third, we demonstrate that these CPU features can
offer backward compatibility, a property often very use-
ful in practice. Google and Microsoft already offer op-
erating systems that leverage commodity TPMs. Build-
ing a backwards compatible TPM in software means that
no changes are needed to Google and Microsoft operat-
ing systems. Finally, we describe a set of mechanisms
needed for our software-only TPM that can also be use-
ful for building more sophisticated trusted applications
beyond just a TPM.

This paper presents firmware-TPM (fTPM), an end-
to-end implementation of a TPM using ARM TrustZone.
fTPM provides security guarantees similar, although not
identical, to a discrete TPM chip. Our implementation
is the reference implementation used in all ARM-based
mobile devices running Windows including Microsoft
Surface and Windows Phone, comprising millions of mo-
bile devices. fTPM was the first hardware or software
implementation to support the newly released TPM 2.0
specification. The fTPM has much better performance
than TPM chips and is fully backwards compatible: no
modifications are required to the OS services or applica-
tions between a mobile device equipped with a TPM chip
and one equipped with an fTPM; all modifications are
limited only to firmware and drivers.

To address the above question, this paper starts with
an analysis of ARM TrustZone’s security guarantees. We
thoroughly examine the shortcomings of the ARM Trust-
Zone technology needed for building secure services,
whether for fTPM or others. We also examine Intel’s
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SGX and show that many of TrustZone’s shortcomings
remain present.

We present three approaches to overcome the limi-
tations of ARM TrustZone: (1) provisioning additional
trusted hardware, (2) making design compromises that
do not affect TPM’s security and (3) slightly changing
the semantics of a small number of TPM 2.0 commands
to adapt them to TrustZone’s limitations. Based on these
approaches, our implementation uses a variety of mech-
anisms, such as cooperative checkpointing, fate sharing,
and atomic updates, that help the fTPM overcome the
limitations of commodity CPU security features. This
paper demonstrates that these limitations can be over-
come or compensated for when building a software-only
implementation of a dedicated trusted hardware compo-
nent, such as a TPM chip. The fTPM has been deployed
in millions of mobile devices running legacy operating
systems and applications originally designed for discrete
TPM chips.

Finally, this paper omits some low-level details of our
implementation and a more extensive set of performance
results. These can be found in the fTPM technical re-
port [44].

2 Trusted Platform Module: An Overview

Although TPMs are more than a decade old, we are see-
ing a resurgence of interest in TPMs from both industry
and the research community. TPMs have had a mixed
history, in part due to the initial perception that the pri-
mary use for TPMs would be to enable digital rights
management (DRM). TPMs were seen as a mechanism
to force users to give up control of their own machines
to corporations. Another factor was the spotty security
record of some the early TPM specifications: TPM ver-
sion 1.1 [52] was shown to be vulnerable to an unsophis-
ticated attack, known as the PIN reset attack [49]. Over
time, however, TPMs have been able to overcome their
mixed reputation, and are now a mainstream component
available in many commodity desktops and laptops.

TPMs provide a small set of primitives that can offer
a high degree of security assurance. First, TPMs offer
strong machine identities. A TPM can be equipped with
a unique RSA key pair whose private key never leaves
the physical perimeter of a TPM chip. Such a key can ef-
fectively act as a globally unique, unforgeable machine
identity. Additionally, TPMs can prevent undesired (i.e.,
malicious) software rollbacks, can offer isolated and se-
cure storage of credentials on behalf of applications or
users, and can attest the identity of the software running
on the machine. Both industry and the research commu-
nity have used these primitives as building blocks in a
variety of secure systems. This section presents several
such systems.

2.1 TPM-based Secure Systems in
Industry

Microsoft. Modern versions of the Windows OS use
TPMs to offer features, such as BitLocker disk en-
cryption, virtual smart cards, early launch anti-malware
(ELAM), and key and device health attestations.

BitLocker [37] is a full-disk encryption system that
uses the TPM to protect the encryption keys. Because
the decryption keys are locked by the TPM, an attacker
cannot read the data just by removing a hard disk and
installing it in another computer. During the startup
process, the TPM releases the decryption keys only af-
ter comparing a hash of OS configuration values with a
snapshot taken earlier. This verifies the integrity of the
Windows OS startup process. BitLocker has been of-
fered since 2007 when it was made available in Windows
Vista.

Virtual smart cards [38] use the TPM to emulate the
functionality of physical smart cards, rather than requir-
ing the use of a separate physical smart card and reader.
Virtual smart cards are created in the TPM and offer sim-
ilar properties to physical smart cards – their keys are not
exportable from the TPM, and the cryptography is iso-
lated from the rest of the system.

ELAM [35] enables Windows to launch anti-malware
before any third-party drivers or applications. The anti-
malware software can be first- or third-party (e.g., Mi-
crosoft Windows Defender or Symantec Endpoint Pro-
tection). Finally, Windows also uses the TPM to con-
struct attestations of cryptographic keys and device boot
parameters [36]. Enterprise IT managers use these attes-
tations to assess the health of devices they manage. A
common use is to gate access to high-value network re-
sources based on its attestations.

Google. Modern versions of Chrome OS [22] use
TPMs for a variety of tasks, including software and
firmware rollback prevention, protecting user data en-
cryption keys, and attesting the mode of a device.

Automatic updates enable a remote party (e.g.,
Google) to update the firmware or the OS of devices
that run Chrome OS. Such devices are vulnerable to “re-
mote rollback attacks”, where a remote attacker replaces
newer software, through a difficult-to-exploit vulnerabil-
ity, with older software, with a well-known and easy-to-
exploit vulnerability. Chrome devices use the TPM to
prevent software updates to versions older than the cur-
rent one.

eCryptfs [14] is a disk encryption system used by
Chrome OS to protect user data. Chrome OS uses the
TPM to rate limit password guessing on the file system
encryption key. Any attempt to guess the AES keys re-
quires the use of a TPM, a single-threaded device that
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is relatively slow. This prevents parallelized attacks and
limits the effectiveness of password brute-force attacks.

Chrome devices can be booted into one of four dif-
ferent modes, corresponding to the state of the devel-
oper switch and the recovery switch at power on. These
switches may be physically present on the device, or they
may be virtual, in which case they are triggered by cer-
tain key presses at power on. Chrome OS uses the TPM
to attest the device’s current mode to any software run-
ning on the machine, a feature used for reporting policy
compliance.

More details on the additional ways in which Chrome
devices make use of TPMs are described in [22].

2.2 TPM-Based Secure Systems in
Research

The research community has proposed many uses for
TPMs in recent years.

• Secure VMs for the cloud: Software stacks in typi-
cal multi-tenant clouds are large and complex, and thus
prone to compromise or abuse from adversaries includ-
ing the cloud operators, which may lead to leakage of
security-sensitive data. CloudVisor [58] and Credo [43]
are virtualization-approaches that protect the privacy and
integrity of customer’s VMs on commodity cloud infras-
tructure, even when the virtual machine monitor (VMM)
or the management VM becomes compromised. These
systems require TPMs to attest to cloud customers the
secure configuration of the hosts running their VMs.

• Secure applications, OSs and hypervisors:
Flicker [33], TrustVisor [32], Memoir [41] lever-
age the TPM to provide various (but limited) forms
of runtimes with strong code and data integrity and
confidentiality. Code running in these runtimes is
protected from the rest of the OS. These systems have
small TCBs because they exclude the bulk of the OS.

• Novel secure functionality: Pasture [30] is a secure
messaging and logging library that provides secure of-
fline data access. Pasture leverages the TPM to pro-
vide two safety properties: access-undeniability (a user
cannot deny any offline data access obtained by his de-
vice without failing an audit) and verifiable-revocation
(a user who generates a verifiable proof of revocation
of unaccessed data can never access that data in the fu-
ture). These two properties are essential to an offline
video rental service or to an offline logging and revo-
cation service.

Policy-sealed data [47] relies on TPMs to provide a
new abstraction for cloud services that lets data be sealed
(i.e., encrypted to a customer-defined policy) and then
unsealed (i.e., decrypted) only by hosts whose configu-

rations match the policy.
cTPM [9] extends the TPM functionality across sev-

eral devices as long as they are owned by the same user.
cTPM thus offers strong user identities (across all of her
devices), and cross-device isolated secure storage.

Finally, mobile devices can leverage a TPM to offer
new trusted services [19, 31, 28]. One example is trusted
sensors whose readings have a high degree of authen-
ticity and integrity. Trusted sensors enable new mobile
apps relevant to scenarios in which sensor readings are
very valuable, such as finance (e.g., cash transfers and
deposits) and health (e.g., gather health data) [48, 56].
Another example is enforcing driver distraction regula-
tions for in-car music or navigation systems [28].

2.3 TPM 2.0: A New TPM Specification

The Trusted Computing Group (TCG) recently defined
the specification for TPM version 2.0 [54]. This newer
TPM is needed for two key reasons. First, the crypto
algorithms in TPM 1.2 [55] have become inadequate. For
example, TPM 1.2 only offers SHA-1 and not SHA-2;
SHA-1 is now considered weak and cryptographers are
reluctant to use it. Another example is the introduction
of ECC with TPM 2.0.

The second reason is the lack of an universally-
accepted reference implementation of the TPM 1.2 spec-
ification. As a result, different TPM 1.2 implementations
exhibit slightly different behaviors. The lack of a refer-
ence implementation also keeps the TPM 1.2 specifica-
tion ambiguous. It can be difficult to specify the exact
behavior of cryptographic protocols in English. Instead,
with TPM 2.0 the specification is the same as the refer-
ence implementation. The specification consists of sev-
eral documents describing the behavior of the codebase,
and these documents are derived directly from the TPM
2.0 codebase, thereby ensuring uniform behavior.

Recently, TPM manufacturers have started to release
discrete chips implementing TPM 2.0. Also, at least one
manufacturer has released a firmware upgrade that can
update a TPM 1.2 chip into one that implements both
TPM 2.0 and TPM 1.2. Note that although TPM 2.0 sub-
sumes the functionality of TPM 1.2, it is not backwards
compatible. A BIOS built to use a TPM 1.2 would not
work with a TPM 2.0-only chip. A list of differences
between the two versions is provided by the TCG [53].

3 Modern Trusted Computing Hardware

Recognizing the increasing demand for security, mod-
ern CPUs have started to incorporate trusted computing
features, such as ARM TrustZone [1] and Intel Software
Guard Extensions (SGX) [25]. This section presents

3



the background on ARM TrustZone (including its short-
comings); this background is important to the design of
fTPM. Later, Section 12 will describe Intel’s SGX and
its shortcomings.

3.1 ARM TrustZone

ARM TrustZone is ARM’s hardware support for trusted
computing. It is a set of security extensions found
in many recent ARM processors (including Cortex A8,
Cortex A9, and Cortex A15). ARM TrustZone provides
two virtual processors backed by hardware access con-
trol. The software stack can switch between the two
states, referred to as “worlds”. One world is called se-
cure world (SW), and the other normal world (NW).
Each world acts as a runtime environment with its own
resources (e.g., memory, processor, cache, controllers,
interrupts). Depending on the specifics of an individual
ARM SoC, a single resource can be strongly partitioned
between the two worlds, can be shared across worlds,
or assigned to a single world only. For example, most
ARM SoCs offer memory curtaining, where a region of
memory can be dedicated to the secure world. Similarly,
processor, caches, and controllers are often shared across
worlds. Finally, I/O devices can be mapped to only one
world, although on certain SoCs this mapping can be dy-
namically controlled by a trusted peripheral.

• Secure monitor: The secure monitor is an ARM pro-
cessor mode that enables context switching between the
secure and normal worlds. A special register determines
whether the processor core runs code in the secure or
non-secure worlds. When the core runs in monitor mode
the processor is considered secure regardless of the value
of this register.

An ARM CPU has separate banks of registers for each
of the two worlds. Each of the worlds can only access
their separate register files; cross-world register access is
blocked. However, the secure monitor can access non-
secure banked copies of registers. The monitor can thus
implement context switches between the two worlds.

• Secure world entry/exit: By design, an ARM plat-
form always boots into the secure world first. Here, the
system firmware can provision the runtime environment
of the secure world before any untrusted code (e.g., the
OS) has a chance to run. For example, the firmware allo-
cates secure memory for TrustZone, programs the DMA
controllers to be TrustZone-aware, and initializes any se-
cure code. The secure code eventually yields to the nor-
mal world where untrusted code can start executing.

The normal world uses a special ARM instruction
called smc (secure monitor call) to transfer control into
the secure world. When the CPU executes the smc in-
struction, the hardware switches into the secure monitor,

which performs a secure context switch into the secure
world. Hardware interrupts can trap directly into the
secure monitor code, which enables flexible routing of
those interrupts to either world. This allows I/O devices
to map their interrupts to the secure world if desired.

• Curtained memory: At boot time, the software run-
ning in the secure monitor can allocate a range of phys-
ical addresses to the secure world only, creating the ab-
straction of curtained memory – memory inaccessible to
the rest of the system. For this, ARM adds an extra con-
trol signal for each of the read and write channels on the
main memory bus. This signal corresponds to an extra
bit (a 33rd-bit on a 32-bit architecture) called the non-
secure bit (NS-bit). These bits are interpreted whenever
a memory access occurs. If the NS-bit is set, an access
to memory allocated to the secure world fails.

3.2 Shortcomings of ARM TrustZone

Although the ARM TrustZone specification describes
how the processor and memory subsystem are protected
in the secure world and provides mechanisms for secur-
ing I/O devices, the specification is silent on how many
other resources should be protected. This has led to frag-
mentation – SoCs offer various forms of protecting dif-
ferent hardware resources for TrustZone, or no protec-
tion at all. While there may be major differences between
the ARM SoCs offered by different vendors, the observa-
tions below held across all the major SoCs vendors when
products based on this work shipped.

• No Trusted Storage: Surprisingly, the ARM Trust-
Zone specification offers no guidelines on how to imple-
ment secure storage for TrustZone. The lack of secure
storage drastically reduces the effectiveness of Trust-
Zone as trusted computing hardware.

Naively, one might think that code in TrustZone could
encrypt its persistent state and store it on untrusted stor-
age. However, encryption alone is not sufficient because
(1) one needs a way to store the encryption keys securely,
and (2) encryption cannot prevent rollback attacks.

• Lack of Secure Entropy and Persistent Counters:
Most trusted systems make use of cryptography. How-
ever, the TrustZone specification is silent on offering a
secure entropy source or a monotonically increasing per-
sistent counter. As a result, most SoCs lack an entropy
pool that can only be read from the secure world, and
a counter that can persist across reboots and cannot be
incremented by the normal world.

• Lack of virtualization: Sharing the processor across
two different worlds in a stable manner can be done using
virtualization techniques. Although ARM offers virtual-
ization extensions [2], the ARM TrustZone specification
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does not mandate them. As a result, many ARM-based
SoCs used in mobile devices today lack virtualization
support. Virtualizing commodity operating systems on
an ARM platform lacking hardware-assistance for virtu-
alization is challenging.

• Lack of secure clock and other peripherals: Secure
systems often require a secure clock. While TrustZone
can protect memory, interrupts, and certain system buses
on the SoC, this protection does extend to the ARM pe-
ripheral bus. It is hard to reason about the security guar-
antees of a peripheral if its controller can be programmed
by the normal world, even when its interrupts and mem-
ory region are mapped into the secure world. Malicious
code could program the peripheral in a way that could
make it insecure. For example, some peripherals could
be put in “debug mode” to generate arbitrary readings
that do not correspond to the ground truth.

• Lack of access: Most SoC hardware vendors do not
provide access to their firmware. As a result, many de-
velopers and researchers are unable to find ways to de-
ploy their systems or prototypes to TrustZone. In our
experience, this has seriously impeded the adoption of
TrustZone as a trusted computing mechanism.

SoC vendors are reluctant to give access to their
firmware. They argue that their platforms should be
“locked down” to reduce the likelihood of “hard-to-
remove” rootkits. Informally, SoC vendors also per-
ceive firmware access as a threat to their competitiveness.
They often incorporate proprietary algorithms and code
into their firmware that takes advantage of the vendor-
specific features offered by the SoC. Opening firmware
to third parties could expose more details about these fea-
tures to their competitors.

4 High-Level Architecture

Leveraging ARM TrustZone, we implement a trusted ex-
ecution environment (TEE) that acts as a basic operat-
ing system for the secure world. Figure 1 illustrates our
architecture, and our system’s trusted computing base
(TCB) is shown in the shaded boxes.

At a high-level, the TEE consists of a monitor, a dis-
patcher, and a runtime where one or more trusted ser-
vices (such as the fTPM) can run one at a time. The TEE
exposes a single trusted service interface to the normal
world using shared memory. Our system’s TCB com-
prises the ARM SoC hardware, the TEE layers, and the
fTPM service.

By leveraging the isolation properties of ARM Trust-
Zone, the TEE provides shielded execution, a term
coined by previous work [5]. With shielded execution,
the TEE offers two security guarantees:

ARM SoC Hardware

Commodity OS
Linux/Windows

fTPM

TEE Monitor

Normal World Secure World

TEE Dispatcher

Other secure services

TEE Runtime

Figure 1: The architecture of the fTPM. This diagram
is not to scale.

• Confidentiality: The whole execution of the fTPM
(including its secrets and execution state) is hidden from
the rest of the system. Only the fTPM’s inputs and out-
puts, but no intermediate states, are observable.

• Integrity: The operating system cannot affect the be-
havior of the fTPM, except by choosing to refuse exe-
cution or to prevent access to system’s resources (DoS
attacks). The fTPM’s commands are always executed
correctly according to the TPM 2.0 specification.

4.1 Threat Model and Assumptions

A primary assumption is that the commodity OS running
in the Normal World is untrusted and potentially com-
promised. This OS could mount various attacks to code
running in TrustZone, such as making invalid calls to
TrustZone (or setting invalid parameters), not respond-
ing to requests coming from TrustZone, or responding
incorrectly. In handling these attacks, it is important to
distinguish between two cases: (1) not handling or an-
swering TrustZone’s requests, or (2) acting maliciously.

The first class of attacks corresponds to refusing ser-
vice, a form of Denial-of-Service attacks. DoS attacks
are out of scope according to the TPM 2.0 specifica-
tion. These attacks cannot be prevented as long as an un-
trusted commodity OS has access to platform resources,
such as storage or network. For example, a compromised
OS could mount various DoS attacks, such as erasing all
storage, resetting the network card, or refusing to call the
smc instruction. Although our fTPM will remain secure
(e.g., preserves confidentiality and integrity of its data) in
the face of these attacks, the malicious OS could starve
the fTPM leaving it inaccessible.

However, the fTPM must behave correctly when the
untrusted OS makes incorrect requests, returns unusual
values (or fails to return at all), corrupts data stored on
stable storage, injects spurious exceptions, or sets the
platform clock to an arbitrary value.

At the hardware level, we assume that the ARM SoC
(including ARM TrustZone) itself is implemented cor-
rectly, and is not compromised. An attacker cannot
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mount hardware attacks to inspect the contents of the
ARM SoC, nor the contents of RAM memory on the plat-
form. However, the adversary has full control beyond the
physical boundaries of the processor and memory. They
may read the flash storage and arbitrarily alter I/O includ-
ing network traffic or any sensors found on the mobile
device. In other work, we address the issue of physical
attacks on the memory of a mobile device [10].

We defend against side-channel attacks that can be
mounted by malicious software. Cache collision attacks
are prevented because all caches are flushed when the
processor context switches to and from the Secure World.
Our fTPM implementation’s cryptography library uses
constant time cryptography and several other timing at-
tack preventions, such as RSA blinding [27]. However,
we do not defend against power analysis or other side-
channel attacks that require physical access to hardware
or hardware modifications.

We turn our focus on the approaches taken to over-
come TrustZone’s shortcomings in the fTPM.

5 Overcoming TrustZone Shortcomings

We used three approaches to overcome the shortcomings
of ARM TrustZone’s technology.

• Approach #1: Hardware Requirements. Providing
secure storage to TEE was a serious concern. One option
was to store the TEE’s secure state in the cloud. We dis-
missed this alternative as not viable because of its drastic
impact on device usability. TPMs are used to measure
the boot software (including the firmware) on a device.
A mobile device would then require cloud connectivity
at boot time in order to download the fTPM’s state and
start measuring the boot software.

Instead, we imposed additional hardware require-
ments on device manufacturers to ensure a minimum
level of hardware support for the fTPM. Many mobile
devices already come equipped with an embedded Multi-
Media Controller (eMMC) storage controller that has an
(off-SoC) replay-protected memory block (RPMB). The
RPMB’s presence, combined with encryption, ensures
that TEE can offer storage that meets the needs of all the
fTPM’s security properties. Thus, our first hardware re-
quirement for TEE is an eMMC controller with support
for RPMB.

Second, we require the presence of hardware fuses ac-
cessible only from the secure world. A hardware fuse
provides write-once storage. At provisioning time (be-
fore being released to a retail store), manufacturers pro-
vision our mobile devices by setting the secure hardware
fuses with a secure key unique per device. We also re-
quire an entropy source accessible from the secure world.

The TEE uses both the secure key and the entropy source
to generate cryptographic keys at boot time.

Section 6 provides in-depth details of these three hard-
ware requirements.

• Approach #2: Design Compromises. Another big
concern was long-running TEE commands. Running in-
side TrustZone for a long time could jeopardize the sta-
bility of the commodity OS. Generally, sharing the pro-
cessor across two different worlds in a stable manner
should be done using virtualization techniques. Unfor-
tunately, many of the targeted ARM platforms lack vir-
tualization support. Speaking to the hardware vendors,
we learned that it is unlikely virtualization will be added
to their platforms any time soon.

Instead, we compromised and require that no TEE
code path can execute for long periods of time. This
translates into an fTPM requirement – no TPM 2.0 com-
mand can be long running. Our measurements of TPM
commands revealed that only one TPM 2.0 command is
long running: generating RSA keys. Section 7 presents
the compromise made in the fTPM design when an RSA
key generation command is issued.

• Approach #3: Modifying the TPM 2.0 Semantics.
Lastly, we do not require the presence of a secure clock
from the hardware vendors. Instead, the platform only
has a secure timer that ticks at a pre-determined rate.
We thus determined that the fTPM cannot offer any TPM
commands that require a clock for their security. Fortu-
nately, we discovered that some (but not all) TPM com-
mands can still be offered by relying on a secure timer
albeit with slightly altered semantics. Section 8 will de-
scribe all these changes in more depth.

6 Hardware Requirements

6.1 eMMC with RPMB
eMMC stands for embedded Multi-Media Controller,
and refers to a package consisting of both flash memory
and a flash memory controller integrated on the same sil-
icon die [11]. eMMC consists of the MMC (multimedia
card) interface, the flash memory, and the flash memory
controller. Later versions of the eMMC standard offer
a replay-protected memory block (RPMB) partition. As
the name suggests, RPMB is a mechanism for storing
data in an authenticated and replay-protected manner.

RPMB’s replay protection utilizes three mechanisms:
an authentication key, a write counter, and a nonce.

RPMB Authentication Key: A 32-byte one-time pro-
grammable authentication key register. Once written,
this register cannot be over-written, erased, or even read.
The eMMC controller uses this authentication key to
compute HMACs (SHA-256) to protect data integrity.
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Programming the RPMB authentication key is done by
issuing a specially formatted dataframe. Next, a result
read request dataframe must be also issued to check that
the programming step succeeded. Access to the RPMB
is prevented unless the authentication key has been pro-
grammed. Any write/read requests will return a special
error code indicating that the authentication key has yet
to be programmed.

RPMB Write Counter: The RPMB partition also
maintains a counter for the number of authenticated write
requests made to RPMB. This is a 32-bit counter ini-
tially set to 0. Once it reaches its maximum value, the
counter will no longer be incremented and a special bit
will be turned on in all dataframes to indicate that the
write counter has expired. The correct counter value
must be included in each dataframe written to the con-
troller.

Nonce: RPMB allows a caller to label its read re-
quests with 16-byte nonces that are reflected in the read
responses. These nonces ensure that reads are fresh.

6.1.1 Protection against replay attacks

To protect writes from replay attacks, each write includes
a write counter value whose integrity is protected by
an authentication key (the RPMB authentication key), a
shared secret provisioned into both the secure world and
the eMMC controller. The read request dataframe that
verifies a write operation returns the incremented counter
value, whose integrity is protected by the RPMB authen-
tication key. This ensures that the write request has been
successful.

The role of nonces in read operations protects them
against replay attacks. To ensure freshness, whenever a
read operation is issued, the request includes a nonce and
the read response includes the nonce signed with RPMB
authentication key.

6.2 Secure World Hardware Fuses

We required a set of hardware fuses that can be read from
the secure world only. These fuses are provisioned with
a hard-to-guess, unique-per-device number. This number
is used as a seed in deriving additional secret keys used
by the fTPM. Section 9 will describe in-depth how the
seed is used in deriving secret fTPM keys, such as the
secure storage key (SSK).

6.3 Secure Entropy Source

The TPM specification requires a true random number
generator (RNG). A true RNG is constructed by having
an entropy pool whose entropy is supplied by a hardware

oscillator. The secure world must manage this pool be-
cause the TEE must read from it periodically.

Generating entropy is often done via some physical
process (e.g., a noise generator). Furthermore, an en-
tropy generator has a rate of entropy that specifies how
many bits of entropy are generated per second. When the
platform is first started, it can take some time until it has
gathered “enough” bits of entropy for a seed.

We require the platform manufacturer to provision an
entropy source that has two properties: (1) it can be man-
aged by the secure world, and (2) its specification lists a
conservative bound on its rate of entropy; this bound is
provided as a configuration variable to the fTPM. Upon
a platform start, the fTPM waits to initialize until suf-
ficient bits of entropy are generated. For example, the
fTPM would need to wait at least 25 seconds to initialize
if it requires 500 bits of true entropy bits from a source
whose a rate is 20 bits/second.

Alerted to this issue, the TPM 2.0 specification has
added the ability to save and restore any accumulated but
unused entropy across reboots. This can help the fTPM
reduce the wait time for accumulating entropy.

7 Design Compromises

7.1 Background on Creating RSA Keys

Creating an RSA key is a resource-intensive operation
for two reasons. First, it requires searching for two large
prime numbers, and such a search is theoretically un-
bounded. Although many optimizations exist on how
to search RSA keys efficiently [40], searching for keys
is still a lengthy operation. Second, the search must
be seeded with a random number, otherwise an attacker
could attempt to guess the primes the search produced.
Thus the TPM cannot create an RSA key unless the en-
tropy source has produced enough entropy to seed the
search.

The TPM can be initialized with a primary storage
root key (SRK). The SRK’s private portion never leaves
the TPM and is used in many TPM commands (such as
TPM seal and unseal). Upon TPM initialization, our
fTPM waits to accumulate the entropy required to seed
the search for large prime numbers. The fTPM also cre-
ates RSA keys upon receiving a create RSA keys com-
mand1.

TPM 2.0 checks whether a number is prime using the
Miller-Rabin probabilistic primality test [40]. If the test
fails, the candidate number is not a prime. However,
upon passing, the test offers a probabilistic guarantee
– the candidate is likely a prime with high probability.
The TPM repeats this test a couple of times to increase

1This corresponds to the TPM 2.0 TPM2 Create command.
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the likelihood the candidate is prime. Choosing a com-
posite number during RSA key creation has catastrophic
security consequences because it allows an attacker to
recover secrets protected by that key. TPM 2.0 repeats
the primality test five times for RSA-1024 keys and four
times for all RSA versions with longer keys. This re-
duces the likelihood of choosing a false prime to a prob-
ability lower than 2−100.

7.2 Cooperative Checkpointing
Our fTPM targets several different ARM platforms (from
smartphones to tablets) that lack virtualization support,
and the minimal OS in our TEE lacks a preemptive
scheduler. Therefore, we impose a requirement on ser-
vices running in the TEE that the transitions to TEE and
back must be short to ensure that the commodity OS re-
mains stable. Unfortunately, creating an RSA key is a
very long process, often taking in excess of 10 seconds
on our early hardware tablets.

Faced with this challenge, we added cooperative
checkpointing to the fTPM. Whenever a TPM command
takes too long, the fTPM checkpoints its state in mem-
ory, and returns a special error code to the commodity
OS running in the Normal World.

Once the OS resumes running in the Normal World,
the OS is free to call back the TPM command and in-
struct the fTPM to resume its execution. These “resume”
commands continue processing until the command com-
pletes or the next checkpoint occurs. Additionally, the
fTPM also allows all commands to be cancelled. The
commodity OS can cancel any TPM command even
when in the command is in a checkpointed state. Cooper-
ative checkpointing lets us bypass the lack of virtualiza-
tion support in ARM, yet continue to offer long-running
TPM commands, such as creating RSA keys.

8 Modifying TPM 2.0 Semantics

8.1 Secure Clock
TPMs use secure clocks for two reasons. The first use is
to measure lockout durations. Lockouts are time periods
when the TPM refuses service. Lockout are very impor-
tant to authorizations (e.g., checking a password). If a
password is incorrectly entered more than k times (for a
small k), the TPM enters lockout and refuses service for
a pre-determined period of time. This thwarts dictionary
attacks – guessing a password incorrectly more than k
times puts the TPM in lockout mode.

The second use of a secure clock in TPMs is for time-
bound authorizations, such as the issuing an authoriza-
tion valid for a pre-specified period of time. For exam-
ple, the TPM can create a key valid for an hour only. At

TEE increments
volatile clock
+
If (volatile_clock-persisted_clock) > 4ms

persist volatile_clock

Secure WorldNormal World

Figure 2: fTPM clock update.

the end of an hour, the key becomes unusable.

8.1.1 Requirements of the TPM 2.0 Specification

A TPM 2.0 requirement is the presence of a clock with
millisecond granularity. The TPM uses this clock only to
measure intervals of time for time-bound authorizations
and lockouts. The volatile clock value must be persisted
periodically to a specially-designated non-volatile entry
called NVClock. The periodicity of the persistence is a
TPM configuration variable and cannot be longer than
222 milliseconds (˜70 minutes).

The combination of these properties ensures that the
TPM clock offers the following two guarantees: 1. the
clock advances while the TPM is powered, 2. the clock
never rolls backwards more than NVClock update peri-
odicity. The only time when the clock can roll backward
is when the TPM loses power right before persisting the
NVClock value. Upon restoring power, the clock will be
restored from NVClock and thus rolled back. The TPM
also provides a flag that indicates the clock may have
been rolled back. This flag is cleared when the TPM can
guarantee the current clock value could not have been
rolled back.

Given these guarantees, the TPM can measure time
only while the platform is powered up. For example, the
TPM can measure one hour of time as long as the plat-
form does not reboot or shutdown. However, the clock
can advance slower than wall clock but only due to a re-
boot. Even in this case time-bound authorizations are se-
cure because they do not survive reboots by construction:
in TPM 2.0, a platform reboot automatically expires all
time-bound authorizations.

8.1.2 Fate Sharing

The main difficulty in building a secure clock in the
fTPM is that persisting the clock to storage requires the
cooperation of the (untrusted) OS. The OS could refuse
to perform any writes that would update the clock. This
would make it possible to roll back the clock arbitrarily
just by simply rebooting the platform.
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The fate sharing model suggests that it is acceptable to
lose the clock semantics of the TPM as long as the TPM
itself becomes unusable. Armed with this principle, we
designed the fTPM’s secure clock to be the first piece of
functionality the fTPM executes on all commands. The
fTPM refuses to provide any functionality until the clock
is persisted. Figure 2 illustrates how the fTPM updates
its clock when the TEE is scheduled to run.

The fTPM implementation does not guarantee that the
clock cannot be rolled back arbitrarily. For example,
an OS can always refuse to persist the fTPM’s clock
for a long time, and then reboot the platform effectively
rolling back the clock. However, fate sharing guarantees
that the fTPM services commands if and only if the clock
behaves according to the TPM specification.

8.2 Dark Periods

The diversity of mobile device manufacturers raised an
additional challenge for implementing the fTPM. A mo-
bile device boot cycle starts by running firmware devel-
oped by one (of the many) hardware manufacturers, and
then boots a commodity OS. The fTPM must provide
functionality throughout the entire boot cycle. In partic-
ular, both Chrome and Windows devices issue TPM Un-
seal commands after the firmware finishes running, but
before the OS starts booting. These commands attempt
to unseal the decryption keys required for decrypting the
OS loader. At this point, the fTPM cannot rely on exter-
nal secure storage because the firmware has unloaded its
storage drivers while the OS has yet to load its own. We
refer to this point as a “dark period”.

TPM Unseal uses storage to record a failed unseal at-
tempt. After a small number of failed attempts, the TPM
enters lockout and refuses service for a period of time.
This mechanism rate-limits the number of attempts to
guess the unseal authorization (e.g., Windows lets users
enter a PIN number to unseal the OS loader using Bit-
Locker). The TPM maintains a counter of failed at-
tempts and requires persisting it each time the counter
increments. This eliminates the possibility of an attacker
brute-forcing the unseal authorization and rebooting the
platform without persisting the counter. Figures 3, 4,
and 5 illustrate three timelines: a TPM storing its failed
attempts counter to stable storage, a TPM without stable
storage being attacked with by a simple reboot, and the
fTPM solution to dark periods based on the dirty bit.

8.2.1 Modifying the Semantics of Failed Tries

We address the lack of storage during a dark period by
making a slight change in how the TPM 2.0 interprets
the failed tries counter. At platform boot time, before
entering any possible dark periods, the fTPM persists

Guess PIN
1st time

Failed 
Attempts++

Guess PIN
2nd time

Failed 
Attempts++

Guess PIN
3rd time

Failed 
Attempts++

Lockout
Period

TPM
w/ storage

Figure 3: TPM with storage (no dark period). TPM
enters lockout if adversary makes too many guess at-
tempts. This sequence of steps is secure.

Guess PIN1st time

Failed Attempts++

Guess PIN2nd time

Failed Attempts++

Guess PIN3rd time

Failed Attempts++
TPMwithoutstorage

Guess PIN4th timeReboot

Dark periodentered here

Figure 4: TPM during a dark period (no stable stor-
age). Without storing the failed attempts counter, the ad-
versary can simply reboot and avoid TPM lockout. This
sequence of steps is insecure.

Guess PIN1st time

Failed Attempts++

Guess PIN2nd time

Failed Attempts++

Guess PIN3rd time

Failed Attempts++
fTPM

Reboot

LockoutPeriodSet DirtyBit
Dark periodentered here

Figure 5: fTPM during a dark period (no stable stor-
age). fTPM sets the dirty bit before entering a dark pe-
riod. If reboot occurs during the dark period, fTPM en-
ters lockout automatically. This sequence of steps is se-
cure.

a dirty bit. If for any reason the fTPM is unable to persist
the dirty bit, it refuses to offer service. If the dark pe-
riod is entered and the unseal succeeds, the OS will start
booting successfully and load its storage drivers. Once
storage becomes available again, the dirty bit is cleared.
However, the dirty bit remains uncleared should the mo-
bile device reboot during a dark period. In this case,
when the fTPM initializes and sees that the bit is dirty,
the fTPM cannot distinguish between a legitimate device
reboot (during a dark period) and an attack attempting
to rollback the failed tries counter. Conservatively, the
fTPM assumes it is under attack, the counter is imme-
diately incremented to the maximum number of failed
attempts, and the TPM enters lockout.

This change in semantics guarantees that an attack
against the counter remains ineffective. The trade-off is
that a legitimate device reboot during a dark period puts
the TPM in lockout. The TPM cannot unseal until the
lockout duration expires (typically several minutes).

Alerted to this problem, the TPM 2.0 designers have
added a form of the dirty bit to their specification, called

9



the non-orderly or unorderly bit (both terms appear in the
specification). Unfortunately, they did not adopt the idea
of having a small number of tries before the TPM enters
lockout mode. Instead, the specification dictates that the
TPM enters lockout as soon as a failed unsealed attempt
cannot be recorded to storage. Such a solution impacts
usability because it locks the TPM as soon as the user
has entered an incorrect PIN or password.

9 Providing Storage to Secure Services

The combination of encryption, the RPMB, and hard-
ware fuses is sufficient to build trusted storage for the
TEE. Upon booting the first time, TEE generates a sym-
metric RPMB key and programs it into the RPMB con-
troller. The RPMB key is derived from existing keys
available on the platform. In particular, we construct a
secure storage key (SSK) that is unique to the device and
derived as following:

SSK := KDF(HF,DK,UUID) (1)

where KDF is a one-way key derivation function, HF
is the value read from the hardware fuses, DK is a de-
vice key available to both secure and normal worlds, and
UUID is the device’s unique identifier.

The SSK is used for authenticated reads and writes of
all TEE’s persistent state (including the fTPM’s state) to
the device’s flash memory. Before being persisted, the
state is encrypted with a key available to TrustZone only.
Encryption ensures that all fTPM’s state remains confi-
dential and integrity protected. The RPMB’s authenti-
cated reads and writes ensure that fTPM’s state is also
resilient against replay attacks.

9.1 Atomic Updates
TEE implements atomic updates to the RPMB partition.
Atomic updates are necessary for fTPM commands that
require multiple separate write operations. If these writes
are not executed atomically, TEE’s persistent state could
become inconsistent upon a failure that leaves the secure
world unable to read its state.

The persisted state of the fTPM consists of a sequence
of blocks. TEE stores two copies of each block: one rep-
resenting the committed version of the state block and
one its shadow (or uncommitted) version. Each block id
X has a corresponding block whose id is X +N, where
N is the size of fTPM’s state. The TEE also stores a bit
vector in its first RPMB block. Each bit in this vector in-
dicates which block is committed: if the i bit is 0 then the
ith block committed id is X , otherwise is X +N. In this
way, all pending writes to shadow blocks are committed
using a single atomic write operation of the bit vector.

0 1 0 0 … … …

Bit Vector 1st copy of blocks 2nd copy of blocks

Figure 6: RMPB blocks. Bit vector mechanism used for
atomic updates.

Allocating the first RPMB entry to the bit vector lim-
its the size of the RPMB partition to 256KB (the cur-
rent eMMC specification limits the size of a block to 256
bytes). If that size is insufficient, an extra layer of indi-
rection can extend the bit vector mechanism to support
up to 512MB (256∗8∗256∗8 = 1,048,576 blocks).

Figure 6 illustrates the bit vector mechanism for
atomic updates. On the left, the bit vector shows which
block is committed (bit value 0) and which block is
shadow (bit value 1). The committed blocks are shown
in solid color.

In the future, we plan to improve the fTPM’s perfor-
mance by offering transactions to fTPM commands. All
writes in a transaction are cached in memory and per-
sisted only upon commit. The commit operation first up-
dates the shadow version of changed blocks, and then up-
dates the metadata in a single atomic operation to make
shadow version for updated blocks the committed ver-
sion. A command that updates secure state must either
call commit or abort before returning. Abort is called
implicitly if commit fails, where shadow copy is rolled
back to the last committed version, and an error code is
returned. In this scenario, the command must implement
rollback of any in-memory data structure by itself.

10 Performance Evaluation

This paper answers two important questions on perfor-
mance2:

1. What is the overhead of long-running fTPM com-
mands such as create RSA keys? The goal is to shed light
on the fTPM implementation’s performance when seek-
ing prime numbers for RSA keys.

2. What is the performance overhead of typical fTPM
commands, and how does it compare to the performance
of a discrete TPM chip? TPM chips have notoriously
slow microcontrollers [33]. In contrast, fTPM com-
mands execute on full-fledged ARM cores.

10.1 Methodology
To answer these questions, we instrumented four off-the-
shelf commodity mobile devices equipped with fTPMs
and three machines equipped with discrete TPMs. We
keep these devices’ identities confidential, and refer to

2The fTPM technical report presents additional results of the per-
formance evaluation [44].
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fTPM Device Processor Type
Device # fTPM1 1.2 GHz Cortex-A7
Device # fTPM2 1.3 GHz Cortex-A9
Device # fTPM3 2 GHz Cortex-A57
Device # fTPM4 2.2 GHz Cortex-A57

Table 1: Description of fTPM-equipped devices used
the evaluation.

them as fTPM1 through fTPM4, and dTPM1 through
dTPM3. All mobile devices are commercially available
both in USA and the rest of the world and can be found in
the shops of most cellular carriers. Similarly, the discrete
TPM 2.0 chips are commercially available. Table 1 de-
scribes the characteristics of the mobile ARM SoC pro-
cessors present in the fTPM-equipped devices. The only
modifications made to these devices’ software is a form
of device unlock that lets us load our own test harness
and gather the measurement results. These modifications
do not interfere with the performance of the fTPM run-
ning on the tablet.

Details of TPM 2.0 Commands. To answer the ques-
tions raised by our performance evaluation, we created
a benchmark suite in which we perform various TPM
commands and measure their duration. We were able
to use timers with sub-millisecond granularity for all our
measurements, except for device fTPM2. Unfortunately,
device fTPM2 only exposes a timer with a 15-ms gran-
ularity to our benchmark suite, and we were not able to
unlock its firmware to bypass this limitation.

Each benchmark test was run ten times in a row. Al-
though this section presents a series of graphs that an-
swer our performance evaluation questions, an interested
reader can find all the data gathered in our benchmarks
in the fTPM technical report [44].

• Create RSA keys: This TPM command creates an
RSA key pair. When this command is issued, a TPM
searches for prime numbers, creates the private and pub-
lic key portions, encrypts the private portion with a root
key, and returns both portions to the caller. We used
2048-bit RSA keys in all our experiments. We chose
2048-bit keys because they are the smallest key size still
considered secure (1024-bit keys are considered insecure
and their use has been deprecated in most systems).

• Seal and unseal: The TPM Seal command takes in a
byte array, attaches a policy (such as a set of Platform
Configuration Register (PCR) values), encrypts with its
own storage key, and returns it to the caller. The TPM
Unseal command takes in an encrypted blob, checks the
policy, and decrypts the blob if the policy is satisfied by
the TPM state (e.g., the PCR values are the same as at
seal time). We used a ten-byte input array to Seal, and
we set an empty policy.
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Figure 7: Latency of create RSA-2048 keys on various
fTPM and dTPM platforms.

• Sign and verify: These TPM commands correspond
to RSA sign and verify. We used a 2048-bit RSA key for
RSA operations and SHA-256 for integrity protection.

• Encryption and decryption: These TPM commands
correspond to RSA encryption and decryption. We used
a 2048-bit RSA key for RSA operations, OAEP for
padding, and SHA-256 for integrity protection.

• Load: This TPM command loads a previously-
created RSA key into the TPM. This allows subsequent
command, such as signing and encryption, to use the
preloaded key. We used a 2048-bit RSA key in our TPM
Load experiments.

10.2 Overhead of RSA Keys Creation
Figure 7 shows the latency of a TPM create RSA-2048
keys command across all our seven devices. As expected,
creating RSA keys is a lengthy command taking several
seconds on all platforms. These long latencies justify
our choice of using cooperative checkpointing (see Sec-
tion 7) in the design of the fTPM to avoid leaving the OS
suspended for several seconds at a time.

Second, the performance of creating keys can be quite
different across devices. fTPM2 takes a much longer
time than all other devices equipped with an fTPM. This
is primarily due to the variations in the firmware perfor-
mance across these devices – some manufacturers spend
more time optimizing the firmware running on their plat-
forms than others. Even more surprisingly, the discrete
TPM 2.0 chips also have very different performance
characteristics: dTPM3 is much faster than dTPM1 and
dTPM2. Looking at the raw data (shown in [44]), we
believe that dTPM3 searches for prime numbers in the
background, even when no TPM command is issued, and
maintains a cache of prime numbers.

Figure 7 also shows that the latency of creating keys
has high variability due to how quickly prime numbers
are found. To shed more light into the variability of
finding prime numbers, we instrumented the fTPM code-
base to count the number of prime candidates considered
when creating an RSA 2048 key pair. For each test, all
candidates are composite numbers (and thus discarded)
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Figure 9: Performance of TPM seal command.
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Figure 10: Performance of TPM unseal command.
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Figure 11: Performance of TPM sign command.

except for the last number. We repeated this test 1,000
times. We plot the cumulative distribution function of
the number of candidates for each of the two primes (p
and q) in Figure 8. These results demonstrate the large
variability in the number of candidate primes considered.
While, on average, it takes about 200 candidates until
a prime is found (the median was 232 and 247 candi-
dates for p and q, respectively), sometimes a single prime
search considers and discards thousands of candidates
(the worst case was 3,145 and 2,471 for p and q, respec-
tively).

10.3 Comparing fTPMs to dTPMs

Figures 9–15 show the latencies of several common TPM
2.0 commands. The main result is that fTPMs are much
faster than their discrete counterparts. On average, the
slowest fTPM is anywhere between 2.4X (for decryp-
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Figure 12: Performance of TPM verify command.
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Figure 13: Performance of TPM encrypt command.
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Figure 14: Performance of TPM decrypt command.
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Figure 15: Performance of TPM load command.

tion) and 15.12X (for seal) faster than the fastest dTPM.
This is not surprising because fTPMs run their code on
ARM Cortex processors, whereas discrete chips are rele-
gated to using much slower microprocessors. The fTPM
technical report illustrates these vast performance im-
provements in even greater detail [44].

These performance results are encouraging. Tradi-
tionally, TPMs have not been used for bulk data crypto-
graphic operations due to their performance limitations.
With firmware TPMs however, the performance of these
operations is limited only by processor speed and mem-
ory bandwidth. Furthermore, fTPMs could become even
faster by taking advantage of crypto accelerators. Over
time, we anticipate that crypto operations will increas-
ingly abandon the OS crypto libraries in favor of the
fTPM. This provides increased security as private keys
never have to leave TrustZone’s secure perimeter.
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10.4 Evaluation Summary

In summary, our evaluation shows that (1) the firmware
TPM has better performance than discrete TPM chips,
and (2) creating RSA keys is a lengthy operation with
high performance variability.

11 Security Analysis

The fTPM’s security guarantees are not identical to those
of a discrete TPM chip. This section examines these dif-
ferences in greater depth.

On- versus off-chip. Discrete TPM chips connect to
the CPU via a serial bus; this bus represents a new attack
surface because it is externally exposed to an attacker
with physical access to the main board. Early TPM chips
were attached to the I2C bus, one of the slower CPU
buses, that made it possible for an attacker to intercept
and issue TPM commands [49]. Modern TPM specifica-
tions have instructed the hardware manufacturers to at-
tach the TPM chip to a fast CPU bus and to provide a
secure platform reboot signal. This signal must guaran-
tee that the TPM reboots (e.g., resets its volatile registers)
if and only if the platform reboots.

In contrast, by running in the device’s firmware, the
fTPM sidesteps this attack surface. The fTPM has no
separate bus to the CPU. The fTPM reads its state from
secure storage upon initialization, and stores all its state
in the CPU and the hardware-protected DRAM.

Memory attacks. By storing its secrets in DRAM,
the fTPM is vulnerable to a new class of physical at-
tacks – memory attacks that attempt to read secrets from
DRAM. There are different avenues to mount memory
attacks, such as cold boot attacks [23, 39], attaching a
bus monitor to monitor data transfers between the CPU
and system RAM [21, 17, 18], or mounting DMA at-
tacks [6, 8, 42].

In contrast, discrete TPM chips do not make use of the
system’s DRAM and are thus resilient to such attacks.
However, there is a corresponding attack that attempts
to remove the chip’s physical encasing, expose its inter-
nal dies, and thus read its secrets. Previous research has
already demonstrated the viability of such attacks (typi-
cally referred to as decapping the TPM), although they
remain quite expensive to mount in practice [26].

The fTPM’s susceptibility to memory attacks has led
us to investigate inexpensive counter-measures. Sentry
is a prototype that demonstrates how the fTPM can be-
come resilient to memory attacks. Sentry retrofits ARM-
specific mechanisms designed for embedded systems but
still present in today’s mobile devices, such as L2 cache
locking or internal RAM [10]. Note that in constrast with
TrustZone, Intel SGX [25] provides hardware encryption

of DRAM, which protects against memory attacks.

Side-channel attacks. Given that certain resources
are shared between the secure and normal worlds, great
care must be given to side-channel attacks. In contrast, a
discrete TPM chip is immune to side-channel attacks that
use caching, memory, or CPU because these resources
are not shared with the untrusted OS.

a. Caches, memory, and CPU: The ARM Trust-
Zone specification takes great care to reduce the likeli-
hood of cache-based side-channel attacks for shared re-
sources [1]. Cache-based side-channel attacks are diffi-
cult because caches are always invalidated during each
transition to and from the secure world. Memory is stat-
ically partitioned between the two worlds at platform
initialization time; such a static partitioning reduces the
likelihood of side-channel attacks. Finally, the CPU also
invalidates all its registers upon each crossing to and
from the secure world.

b. Time-based attacks: The TPM 2.0 specification
takes certain precautions against time-based attacks. For
example, the entire cryptography subsystem of TPM 2.0
uses constant time functions – the amount of computa-
tion needed by a cryptographic function does not depend
on the function’s inputs. This makes the fTPM imple-
mentation as resilient to time-based side-channel attacks
as its discrete chip counterpart.

12 Discussion

Most of ARM TrustZone’s shortcomings stem from the
nature of this technology: it is a standalone CPU-based
security mechanism. CPU extensions alone are insuffi-
cient in many practical scenarios. As described earlier
in Section 3.2, trusted systems need additional hardware
support, such as support for trusted storage, secure coun-
ters, and secure peripherals.

Unfortunately, CPU designers continue to put forward
CPU extensions aimed at building trusted systems that
suffer from similar limitations. This section’s goal is to
describe these limitations in the context of a new, up-
and-coming technology called Intel Software Guard Ex-
tensions (SGX). In the absence of additional hardware
support for trusted systems, our brief discussion of SGX
will reveal shortcomings similar to those of TrustZone.

12.1 Intel SGX Shortcomings
Intel SGX [25] is a set of extensions to Intel processors
designed to build a sandboxing mechanism for running
application-level code isolated from the rest of the sys-
tem. Similar to ARM TrustZone’s secure world, with In-
tel SGX applications can create enclaves protected from
the OS and the rest of the platform software. All memory
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allocated to an enclave is hardware encrypted (unlike the
secure world in ARM). Unlike ARM TrustZone, SGX
does not offer any I/O support; all interrupts are handled
by the untrusted code.

SGX has numerous shortcomings for trusted systems
such as the fTPM:
1. Lack of trusted storage. While code executing inside
an enclave can encrypt its state, encryption cannot pro-
tect against rollback attacks. Currently, the Intel SGX
specification lacks any provision to rollback protection
against persisted state.
2. Lack of a secure counter. A secure counter is im-
portant when building secure systems. For example, a
rollback-resilient storage system could be built using en-
cryption and a secure counter. Unfortunately, it is diffi-
cult for a CPU to offer a secure counter without hardware
assistance beyond the SGX extensions (e.g., an eMMC
storage controller with an RPMB partition).
3. Lack of secure clock. SGX leaves out any specifi-
cation of a secure clock. Again, it is challenging for the
CPU to offer a secure clock without extra hardware.
4. Side-channel dangers. SGX enclaves only protect
code running in ring 3. This means that an untrusted
OS is responsible for resource management tasks, which
opens up a large surface for side-channel attacks. Indeed,
recent work has demonstrated a number of such attacks
against Intel SGX [57].

13 Related Work

Previous efforts closest to ours are Nokia OnBoard cre-
dentials (ObC), Mobile Trusted Module (MTM), and
previous software implementations of TPMs. ObC [29]
is a trusted execution runtime environment leveraging
Nokia’s implementation of ARM TrustZone. ObC can
execute programs written in a modified variant of the
LUA scripting language or written in the underlying run-
time bytecode. Different scripts running in ObC are
protected from each other by the underlying LUA in-
terpreter. A more recent similar effort ported the .NET
framework to TrustZone [45, 46] using techniques simi-
lar to ObC.

While the fTPM serves as the reference implementa-
tion of a firmware TPM for ARM TrustZone, ObC is a
technology proprietary to Nokia. Third-parties need their
code signed by Nokia to allow it to run inside TrustZone.
In contrast, the fTPM offers TPM 2.0 primitives to any
application. While TPM primitives are less general than
a full scripting language, both researchers and industry
have already used TPMs in many secure systems demon-
strating its usefulness. Recognizing the TPM platform’s
flexibility, ObC appears to have recently started to offer
primitives more compatible with those of the TPM spec-
ification [15].

The Mobile Trusted Module (MTM) [51] is a specifi-
cation similar to a TPM but aimed solely at mobile de-
vices. Previous work investigated possible implementa-
tions of MTM for mobile devices equipped with secure
hardware, such as ARM TrustZone, smartcards, and Java
SecureElements [12, 13]. These related works acknowl-
edged upfront that the limitations of ARM TrustZone for
implementation MTM remain future work [12]. Unfortu-
nately, MTMs have not gone past the specification stage
in the Trusted Computing Group. As a result, we are un-
aware of any systems that make use of MTMs. If MTMs
were to become a reality, our techniques would remain
relevant in building a firmware MTM.

A more recent article presents a high-level description
of the work needed to implement TPM 2.0 both in hard-
ware and in software [34]. Like the fTPM, the article
points out the need of using a replay-protected memory
block partition to protect against replay attacks. How-
ever, this article appeared much later, after the fTPM was
launched in mobile devices. It is unclear whether any im-
plementation of their architecture exists.

IBM has been maintaining a software implementation
of TPM 1.2 [24]. An independent effort implemented
a TPM 1.2 emulator without leveraging any secure hard-
ware [50]. This emulator was aimed at debugging scenar-
ios and testbeds. We are unaware of efforts to integrate
any of these earlier implementations into mobile devices.

Another area of related work is building virtualized
TPM implementations. Virtual TPMs are needed in vir-
tualized environments where multiple guest operating
systems might want to share the physical TPM without
having to trust each other. Several designs of virtual
TPMs have been proposed [7, 16].

Finally, a recent survey describes additional efforts in
building trusted runtime execution environments for mo-
bile devices based on various forms of hardware, includ-
ing physically uncloneable functions, smartcards, and
embedded devices [4]. A recent industrial consortium
called GlobalPlatform [20] has also started to put to-
gether a standard for trusted runtime execution environ-
ments on various platforms, including ARM [3].

14 Conclusions

This paper demonstrates that the limitations of CPU-
based security architectures, such as ARM TrustZone,
can be overcome to build software systems with secu-
rity guarantees similar to those of dedicated trusted hard-
ware. We use three different approaches to overcome
these challenges: requiring additional hardware support,
making design compromises without affecting security,
and slightly changing command semantics.

This paper describes a software-only implementation
of a TPM chip. Our software-only TPM requires no

14



application-level changes or changes to OS components
(other than drivers). Our implementation is the reference
implementation of TPM 2.0 used in millions of smart-
phones and tablets.
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[16] ENGLAND, P., AND LÖSER, J. Para-virtualized tpm sharing.
Proc. of 1st International Conference on Trusted Computing and
Trust in Information Technologies (TRUST), LNCS 4968 (2008),
119–132.

[17] EPN SOLUTIONS. Analysis tools for DDR1, DDR2, DDR3,
embedded DDR and fully buffered DIMM modules. http:
//www.epnsolutions.net/ddr.html. Accessed: 2014-
12-10.

[18] FUTUREPLUS SYSTEM. DDR2 800 bus analysis
probe. http://www.futureplus.com/download/
datasheet/fs2334_ds.pdf, 2006.

[19] GILBERT, P., JUNG, J., LEE, K., QIN, H., SHARKEY, D.,
SHETH, A., AND COX, L. P. YouProve: Authenticity and Fi-
deltiy in Mobile Sensing. In Proc. of 10th International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys)
(Lake District, UK, 2012).

[20] GLOBALPLATFORM. Technical Overview. http://www.
globalplatform.org/specifications.asp.

[21] GOGNIAT, G., WOLF, T., BURLESON, W., DIGUET, J.-P.,
BOSSUET, L., AND VASLIN, R. Reconfigurable hardware for
high-security/high-performance embedded systems: The SAFES
perspective. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 16, 2 (2008), 144–155.

[22] GOOGLE. The Chromium Projects. http://www.
chromium.org/developers/design-documents/
tpm-usage.

[23] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARK-
SON, W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J.,
APPELBAUM, J., AND FELTEN, E. W. Lest we remember: Cold
boot attacks on encryption keys. In Proc. of the 17th USENIX
Security Symposium (2008).

[24] IBM. Software TPM Introduction. http://ibmswtpm.
sourceforge.net/.

[25] INTEL. Intel Software Guard Extensions Programming Ref-
erence. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf,
2014.

[26] JACKSON, W. Engineer shows how to crack a ’secure’
TPM chip. http://gcn.com/Articles/2010/02/02/
Black-Hat-chip-crack-020210.aspx, 2010.

[27] KOCKER, P. C. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Proc. of 16th Annual
International Cryptology Conference (CRYPTO) (Santa Barbara,
CA, 1996).

[28] KOSTIAINEN, K., ASOKAN, N., AND EKBERG, J.-E. Practi-
cal Property-Based Attestation on Mobile Devices. Proc. of 4th
International Conference on Trusted Computing and Trust in In-
formation Technologies (TRUST), LNCS 6470 (2011), 78–92.

[29] KOSTIAINEN, K., EKBERG, J.-E., ASOKAN, N., AND
RANTALA, A. On-board Credentials with Open Provisioning. In
Proc. of the 4th International Symposium on Information, Com-
puter, and Communications Security (ASIA CCS) (2009).

[30] KOTLA, R., RODEHEFFER, T., ROY, I., STUEDI, P., AND
WESTER, B. Pasture: Secure Offline Data Access Using Com-
modity Trusted Hardware. In Proc. of 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI) (Hol-
lywoood, CA, 2012).

[31] LIU, H., SAROIU, S., WOLMAN, A., AND RAJ, H. Software
Abstractions for Trusted Sensors. In Proc. of 10th International

15

http://community.arm.com/servlet/JiveServlet/previewBody/8376-102-1-14233/GlobalPlatform%20based%20Trusted%20Execution%20Environment%20and%20TrustZone%20Ready%20-%20Whitepaper.pdf
http://community.arm.com/servlet/JiveServlet/previewBody/8376-102-1-14233/GlobalPlatform%20based%20Trusted%20Execution%20Environment%20and%20TrustZone%20Ready%20-%20Whitepaper.pdf
http://community.arm.com/servlet/JiveServlet/previewBody/8376-102-1-14233/GlobalPlatform%20based%20Trusted%20Execution%20Environment%20and%20TrustZone%20Ready%20-%20Whitepaper.pdf
http://community.arm.com/servlet/JiveServlet/previewBody/8376-102-1-14233/GlobalPlatform%20based%20Trusted%20Execution%20Environment%20and%20TrustZone%20Ready%20-%20Whitepaper.pdf
http://community.arm.com/servlet/JiveServlet/previewBody/8376-102-1-14233/GlobalPlatform%20based%20Trusted%20Execution%20Environment%20and%20TrustZone%20Ready%20-%20Whitepaper.pdf
http://www.datalight.com/solutions/technologies/emmc/what-is-emmc
http://www.datalight.com/solutions/technologies/emmc/what-is-emmc
http://www.datalight.com/solutions/technologies/emmc/what-is-emmc
http://ecryptfs.org/
http://www.epnsolutions.net/ddr.html
http://www.epnsolutions.net/ddr.html
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
http://www.globalplatform.org/specifications.asp
http://www.globalplatform.org/specifications.asp
http://www.chromium.org/developers/design-documents/tpm-usage
http://www.chromium.org/developers/design-documents/tpm-usage
http://www.chromium.org/developers/design-documents/tpm-usage
http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://gcn.com/Articles/2010/02/02/Black-Hat-chip-crack-020210.aspx
http://gcn.com/Articles/2010/02/02/Black-Hat-chip-crack-020210.aspx


Conference on Mobile Systems, Applications, and Services (Mo-
biSys) (Lake District, UK, 2012).

[32] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB Re-
duction and Attestation. In Proc. of IEEE Symposium on Security
and Privacy (Oakland, CA, May 2010).

[33] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An Execution Infrastructure for TCB
Minimization. In Proc. of the ACM European Conference on
Computer Systems (EuroSys) (Glasgow, UK, 2008).

[34] MCGILL, K. N. Trusted Mobile Devices: Requirements for a
Mobile Trusted Platform Module. Johns Hopkings Applied Phys-
ical Laboratory Technical Digest 32, 2 (2013).

[35] MICROSOFT. Early launch antimalware. http:
//msdn.microsoft.com/en-us/library/windows/
desktop/hh848061(v=vs.85).aspx.

[36] MICROSOFT. HealthAttestation CSP. https://msdn.
microsoft.com/en-us/library/dn934876%28v=
vs.85%29.aspx?f=255&MSPPError=-2147217396.

[37] MICROSOFT. Help protect your files with BitLocker Driver En-
cryption. http://windows.microsoft.com/en-us/
windows-8/using-bitlocker-drive-encryption.

[38] MICROSOFT. Understanding and Evaluating Virtual
Smart Cards. http://www.microsoft.com/en-
us/download/details.aspx?id=29076.

[39] MÜLLER, T., AND SPREITZENBARTH, M. FROST - foren-
sic recovery of scrambled telephones. In Proc. of the Interna-
tional Conference on Applied Cryptography and Network Secu-
rity (ACNS) (2013).

[40] NIST. Digital Signature Standard (DSS). http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[41] PARNO, B., LORCH, J. R., DOUCEUR, J. R., MICKENS, J.,
AND MCCUNE, J. M. Memoir: Practical State Continuity for
Protected Modules. In Proc. of IEEE Symposium on Security and
Privacy (Oakland, CA, 2011).

[42] PIEGDON, D. R. Hacking in physically addressable memory -
a proof of concept. Presentation to the Seminar of Advanced
Exploitation Techniques, 2006.

[43] RAJ, H., ROBINSON, D., TARIQ, T., ENGLAND, P., SAROIU,
S., AND WOLMAN, A. Credo: Trusted Computing for Guest
VMs with a Commodity Hypervisor. Tech. Rep. MSR-TR-2011-
130, Microsoft Research, 2011.

[44] RAJ, H., SAROIU, S., WOLMAN, A., AIGNER, R.,
JEREMIAH COX, A. P. E., FENNER, C., KINSHUMANN, K.,
LOESER, J., MATTOON, D., NYSTROM, M., ROBINSON, D.,
SPIGER, R., THOM, S., AND WOOTEN, D. fTPM: A Firmware-
based TPM 2.0 Implementation. Tech. Rep. MSR-TR-2015-84,
Microsoft, 2015.

[45] SANTOS, N., RAJ, H., SAROIU, S., AND WOLMAN, A. Trusted
Language Runtime (TLR): Enabling Trusted Applications on
Smartphones. In Proc. of 12th Workshop on Mobile Computing
Systems and Applications (HotMobile) (Phoenix, AZ, 2011).

[46] SANTOS, N., RAJ, H., SAROIU, S., AND WOLMAN, A. Using
ARM TrustZone to Build a Trusted Language Runtime for Mo-
bile Applications. In Proc. of 19th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS) (Salt Lake City, UT, 2014).

[47] SANTOS, N., RODRIGUES, R., GUMMADI, K. P., AND
SAROIU, S. Policy-Sealed Data: A New Abstraction for Build-
ing Trusted Cloud Services. In Proc. of the 21st USENIX Security
Symposium (Bellevue, WA, 2012).

[48] SAROIU, S., AND WOLMAN, A. I Am a Sensor and I Approve
This Message. In Proc. of 11th International Workshop on Mo-
bile Computing Systems and Applications (HotMobile) (Annapo-
lis, MD, 2010).

[49] SPARKS, E., AND SMITH, S. W. TPM Reset Attack. http:

//www.cs.dartmouth.edu/˜pkilab/sparks/.
[50] STRASSER, M., AND STAMER, H. A Software-Based Trusted

Platform Module Emulator. Proc. of 1st International Confer-
ence on Trusted Computing and Trust in Information Technolo-
gies (TRUST), LNCS 4968 (2008), 33–47.

[51] TRUSTED COMPUTING GROUP. Mobile Trusted Module Speci-
fication. http://www.trustedcomputinggroup.org/
resources/mobile_phone_work_group_mobile_
trusted_module_specification.

[52] TRUSTED COMPUTING GROUP. TCPA Main Specification
Version 1.1b. http://www.trustedcomputinggroup.
org/files/resource_files/64795356-1D09-
3519-ADAB12F595B5FCDF/TCPA_Main_TCG_
Architecture_v1_1b.pdf.

[53] TRUSTED COMPUTING GROUP. TPM 2.0 Library Specification
FAQ. http://www.trustedcomputinggroup.org/
resources/tpm_20_library_specification_faq.

[54] TRUSTED COMPUTING GROUP. TPM Library Specifica-
tion. http://www.trustedcomputinggroup.org/
resources/tpm_library_specification.

[55] TRUSTED COMPUTING GROUP. TPM Main Speci-
fication Level 2 Version 1.2, Revision 116. http:
//www.trustedcomputinggroup.org/resources/
tpm_main_specification.

[56] WOLMAN, A., SAROIU, S., AND BAHL, V. Using Trusted Sen-
sors to Monitor Patients’ Habits. In Proc. of 1st USENIX Work-
shop on Health Security and Privacy (HealthSec) (Washington,
DC, 2010).

[57] XU, Y., CUI, W., AND PEINADO, M. Controlled-Channel At-
tacks: Deterministic Side Channels for Untrusted Operating Sys-
tems. In Proc. of the 36th IEEE Symposium on Security and Pri-
vacy (Oakland) (2015).

[58] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant Cloud
with Nested Virtualization. In Proc. of Symposium on Operating
Systems Principles (SOSP) (Cascais, Portugal, 2011).

16

http://msdn.microsoft.com/en-us/library/windows/desktop/hh848061(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh848061(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh848061(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dn934876%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/dn934876%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/dn934876%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
http://windows.microsoft.com/en-us/windows-8/using-bitlocker-drive-encryption
http://windows.microsoft.com/en-us/windows-8/using-bitlocker-drive-encryption
http://www.microsoft.com/en-us/download/details.aspx?id=29076
http://www.microsoft.com/en-us/download/details.aspx?id=29076
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_module_specification
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_module_specification
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_module_specification
http://www.trustedcomputinggroup.org/files/resource_files/64795356-1D09-3519-ADAB12F595B5FCDF/TCPA_Main_TCG_Architecture_v1_1b.pdf
http://www.trustedcomputinggroup.org/files/resource_files/64795356-1D09-3519-ADAB12F595B5FCDF/TCPA_Main_TCG_Architecture_v1_1b.pdf
http://www.trustedcomputinggroup.org/files/resource_files/64795356-1D09-3519-ADAB12F595B5FCDF/TCPA_Main_TCG_Architecture_v1_1b.pdf
http://www.trustedcomputinggroup.org/files/resource_files/64795356-1D09-3519-ADAB12F595B5FCDF/TCPA_Main_TCG_Architecture_v1_1b.pdf
http://www.trustedcomputinggroup.org/resources/tpm_20_library_specification_faq
http://www.trustedcomputinggroup.org/resources/tpm_20_library_specification_faq
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

	Introduction
	Trusted Platform Module: An Overview
	TPM-based Secure Systems in  Industry
	TPM-Based Secure Systems in  Research
	TPM 2.0: A New TPM Specification

	Modern Trusted Computing Hardware
	ARM TrustZone
	Shortcomings of ARM TrustZone

	High-Level Architecture
	Threat Model and Assumptions

	Overcoming TrustZone Shortcomings
	Hardware Requirements
	eMMC with RPMB
	Protection against replay attacks

	Secure World Hardware Fuses
	Secure Entropy Source

	Design Compromises
	Background on Creating RSA Keys
	Cooperative Checkpointing

	Modifying TPM 2.0 Semantics
	Secure Clock
	Requirements of the TPM 2.0 Specification
	Fate Sharing

	Dark Periods
	Modifying the Semantics of Failed Tries


	Providing Storage to Secure Services
	Atomic Updates

	Performance Evaluation
	Methodology
	Overhead of RSA Keys Creation
	Comparing fTPMs to dTPMs
	Evaluation Summary

	Security Analysis
	Discussion
	Intel SGX Shortcomings

	Related Work
	Conclusions

