
Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski and J. van Wijk
(Guest Editors)

Volume 36 (2017), Number 3

Stardust: Accessible and Transparent GPU Support
for Information Visualization Rendering

Donghao Ren1, Bongshin Lee2, and Tobias Höllerer1

1University of California, Santa Barbara, United States
2Microsoft Research, Redmond, United States

Abstract

Web-based visualization libraries are in wide use, but performance bottlenecks occur when rendering, and especially animating,
a large number of graphical marks. While GPU-based rendering can drastically improve performance, that paradigm has a
steep learning curve, usually requiring expertise in the computer graphics pipeline and shader programming. In addition,
the recent growth of virtual and augmented reality poses a challenge for supporting multiple display environments beyond
regular canvases, such as a Head Mounted Display (HMD) and Cave Automatic Virtual Environment (CAVE). In this paper,
we introduce a new web-based visualization library called Stardust, which provides a familiar API while leveraging GPU’s
processing power. Stardust also enables developers to create both 2D and 3D visualizations for diverse display environments
using a uniform API. To demonstrate Stardust’s expressiveness and portability, we present five example visualizations and
a coding playground for four display environments. We also evaluate its performance by comparing it against the standard
HTML5 Canvas, D3, and Vega.

Categories and Subject Descriptors (according to ACM CCS): D.2.2 [Computer Graphics]: Software Engineering—Design Tools
and Techniques

1. Introduction

There have been continuous research efforts on visualization li-
braries and frameworks to facilitate the creation of informa-
tion visualizations (e.g., [Fek04, HCL05, BH09, BOH11, SWH14,
SMWH17]). Thanks to the recent advancement in web technolo-
gies (e.g., HTML5, SVG, and D3), and modern browsers that sup-
port them, it has become very common to create visualizations for
the web environment. Specifically, since its introduction in 2011,
D3 has been widely utilized by visualization creators targeting the
web. In addition, several higher-level visualization libraries and
frameworks (e.g., C3.js [C3j], and NVD3 [NVD]) have been de-
veloped using D3 for rendering graphical marks.

However, due to its dependency on the DOM tree and SVG, D3
cannot effectively handle a large number of graphical marks, es-
pecially when animating them. For example, in a test on rendering
animated scatterplots, D3 can deal with up to about 2,000 points
in real-time (faster than 24 frames per second) on a modern per-
sonal computer [Rom]. Vega [SWH14] implements its own render-
ing backends (Canvas or SVG) and performs optimizations on the
dataflow model. However, due to the necessity of manipulating or
rendering individual marks, it is still hard to achieve high perfor-
mance on a large number of marks. Visualization libraries based
on imperative rendering (e.g., Processing [RF06] and p5.js [RF06])

have a similar performance drawback. While utilizing GPUs can
drastically improve rendering performance [ME09, SG15], GPU
programming has a steep learning curve and requires a considerable
knowledge of the computer graphics pipeline and shader program-
ming. Hence, visualizations that require handling a large number of
graphical marks are currently inaccessible to visualization creators
who do not have expertise in computer graphics, and thus not yet
fully explored by the community.

Immersive analytics has recently begun to gain attention in
information visualization [CCC∗15, CDK∗16, KMLM16]. Com-
pared to desktop or laptop screens, immersive environments al-
low many more visual elements to be rendered because of the
vast virtual spaces they provide. Furthermore, they come in many
different form factors such as HMDs, large displays [AEYN11],
CAVEs [CNSD∗92], and curved/spherical displays. Therefore, not
only high performance rendering but also support for diverse dis-
play systems are desired in future visualization libraries. Support-
ing diverse display environments requires a more flexible way of
projection and distortion, as well as a uniform representation of
both 2D and 3D content.

To address these issues, we designed and developed Stardust,
a new library that leverages GPU processing power for informa-
tion visualization rendering while providing a familiar and trans-

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

(a) Node-link diagram of Facebook users, 747 nodes and 60,050 edges (b) Instance-based visualization with 3D stacking, 31,618 items

Figure 1: Example visualizations created using the Stardust library for GPU-based rendering. For more examples, see Section 5 and visit
https://stardustjs.github.io/examples.

parent programming interface similar to D3. Stardust is designed to
support both 2D and 3D visualizations on various display environ-
ments through the same programming interface. Stardust consists
of a core library and a set of platform libraries. The core library con-
tains a set of predefined visual marks and provides a TypeScript-
like programming language for developers to specify custom ones.
Mark specifications are compiled to an internal representation that
describes input attributes and rendering process. The core library
also provides a data-binding API and a set of scales similar to
D3’s. The platform libraries take the compiled internal represen-
tations and the developer-specified data bindings, apply display-
environment-specific view transformations, compile them into ap-
propriate GPU shader code (e.g., GLSL, HLSL) and buffers, and
finally execute the rendering commands.

The goal of Stardust is not to replace existing visualization li-
braries and frameworks but to complement them for efficient ren-
dering of graphical marks. Similar to D3.js, we do not intend to
provide a new visualization grammar (cf. The Grammar of Graph-
ics [Wil99b] and Vega-Lite [SMWH17]), but to focus on creating
a set of building blocks that is easy-to-use, transparent in terms of
representation, and portable to multiple platforms.

To evaluate Stardust, we compare it against existing visual-
ization libraries in terms of rendering performance on a modern
GPU-equipped PC. Our results show that Stardust achieves 10–
100 times speed boost compared to existing libraries when ren-
dering more than 100k graphical marks. We also demonstrate five
example visualizations to show its expressiveness (Figure 1, Fig-
ure 4, Figure 5) and the support of multiple platforms to show
its portability. We develop Stardust as an open-source project
(https://stardustjs.github.io) in the hope to further evaluate and im-
prove its usability through adoption and feedback from real users
in the future.

2. Related Work

2.1. Information Visualization Grammars and Frameworks

Many visualization grammars and frameworks have been de-
veloped to facilitate the creation of information visualizations.
Wilkinson’s Grammar of Graphics [Wil99b], ggplot [Wic09],
Vega [SWH14], and Vega-Lite [SMWH17] focus on declarative
representations, decoupling visualization specification from imple-

mentation details. On the other hand, Prefuse [HCL05] provides a
set of fine-grained building blocks to allow the creation of custom
visualization designs. Protovis [BH09] defines graphical marks and
lets developers specify data bindings to their properties. In contrast
to the visualization frameworks that define toolkit-specific mod-
els, D3 [BOH11] provides a way to directly manipulate elements
in the Document Object Model (DOM) based on data attributes.
Besides declarative frameworks and libraries, there are also frame-
works based on imperative rendering. Processing [RF06], a graph-
ics programming tool widely used by designers and artists, uses an
imperative rendering model where developers execute commands
to draw graphics. It provides a clear abstraction of drawing com-
mands and an integrated programming experience, and advanced
developers can also use low-level APIs such as HTML5 Canvas
and OpenGL to draw graphical marks. However, none of these pro-
vide easy access to GPU processing power.

In designing a new library that leverages the GPU, we build
on the main strengths of D3, one of the most successful libraries
widely adopted by developers. Stardust aims for representational
transparency to improve understandability, and provides an API
that is similar to D3’s. On the other hand, instead of mapping data
to the DOM, Stardust maps data to GPU-rendered marks. While it
is not straightforward to specify a new DOM element using D3,
Stardust enables developers to specify their own marks with cus-
tom input attributes. We explain the commonalities and differences
of Stardust’s binding API and D3’s in Section 3.

2.2. GPU-based Visualization Rendering

GPU-based rendering has been widely used in scientific visualiza-
tion tools. For instance, GPUs are used for accelerating volume
rendering [KW03], particle and glyph rendering [FGKR16]. The
Visualization Toolkit [SLM04] uses GPUs extensively for scien-
tific visualizations. However, most of these techniques are limited
to data that has existing 2D/3D spatial structures. Customization of
visual encoding and data binding is limited to the domain of usage.
Our work focuses on information visualization where there can be
a wide variety of visual mapping and encoding, and existing spatial
representations are not guaranteed to exist.

For information visualization, several research projects re-
cently utilized GPUs for accelerating visualizations. For exam-
ple, SplatterJs [SG15] provides extensive support for scatterplots

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

with WebGL rendering techniques and the FluidDiagrams [AW14]
system implements bar charts, line charts, parallel coordinates,
and cone tree visualizations [RMC91]. SandDance [DF15] uses
WebGL to efficiently render instance-based visualizations for
large datasets and enable smooth transitions between layouts. im-
Mens [LJH13] uses the GPU for efficient data transformation and
rendering, but it does not allow customization of GPU-rendered
graphical marks. GPU acceleration has also been successfully ap-
plied for edge bundling [HvW09]. These visualizations are custom-
made, and thus developers of such systems have to write GPU
shaders, convert data to buffers, and execute rendering commands.
They also provide fixed sets of visualization templates or modules
instead of providing developers flexibility in creating their own vi-
sualizations.

While GPU-based techniques can significantly improve perfor-
mance, they are challenging to implement and thus not accessible to
developers without expertise in the computer graphics pipeline and
shader programming. While compilers (e.g., Sh [MDTP∗04] and
Brook [BFH∗04]) can make GPU acceleration accessible through
common programming languages such as C/C++, they are not de-
signed to support information visualizations. Stardust provides vi-
sualization developers a simple and familiar programming interface
to leverage GPU processing power. We anticipate that developers
with some D3 expertise could easily adopt Stardust.

2.3. Information Visualization in Novel Display Environments

Researchers have explored large display walls [AEYN11] and im-
mersive environments such as CAVEs [CNSD∗92]. The growth of
virtual and augmented reality suggests a stronger need for support-
ing a wide variety of display environments, and efficient rendering
is of particular importance in these environments. Although more
research is needed to understand when 3D and 2D visualizations
are preferable in these environments, enabling more designers to
support them can facilitate the exploration of the design space and
thus improve our understanding about it.

There are many libraries, frameworks, and engines that sup-
port rendering in Virtual Reality (VR) and Augmented Real-
ity (AR), such as FreeVR [SCS13], OpenSG [BO04], Process-
ing [RF06], TechViz [Tec], Unreal Engine [Unr], and Unity Game
Engine [Uni]. However, there is little support for building com-
plex information visualizations. Developers have to manually map
data items to graphical marks. In a recent demo, Le et al. intro-
duced b3.js [LJB], which supports bar charts, scatterplots, and sur-
face plots in VR displays such as the Oculus Rift. However, it only
supports a fixed set of visualizations, and depends on many other
libraries. Stardust, in contrast, focuses on solving the data binding
problem. It does not provide a set of predefined visualizations, but
exposes an easy-to-use API for specifying and manipulating GPU-
rendered marks.

Different display environments have different ways of con-
tent rendering. For example, some stereoscopic displays employ
tilted view frustums; full-surround spherical displays use Omni-
stereo [PBEP01]. We designed the Stardust’s core API to be
platform-independent thus allowing developers to customize the
platform-dependent part. In our current version, we provide support

for WebGL in normal 2D, 3D, and WebVR. By integrating with
its rendering library, Stardust visualizations also can be rendered
in the AlloSphere [KMWW∗14], a full-surround spherical multi-
projector display environment. With these display environments we
have supported, we demonstrate a web-based coding playground
that allows developers to create visualizations using Stardust and
run them without modification in multiple display environments in-
cluding WebGL, Cardboard, HTC Vive, and the AlloSphere.

3. Stardust Design

We see Stardust as a complement to D3 instead of a replacement.
Stardust is good at rendering a large number of marks and animate
them with parameters, while D3 has better support for fine-grained
control and styling on a small number of items. For example, to
create a scatterplot with a large number of items, we can use D3
to render its axes and handle interactions such as range selections,
and use Stardust to render and animate the points.

3.1. Design Rationales

DR1. Representational Transparency and Familiar API: Rep-
resentational transparency makes it easy for developers to reason
about outcomes (i.e., the resulting visualization), and thus reduces
programming and debugging efforts. For example, D3 removes the
intermediate layer between user programs and the underlying API
by directly binding data to DOM elements. In Stardust, we strive
to create an API with similar representational transparency. In ad-
dition, we designed the Stardust API to be as close to D3’s as pos-
sible, while utilizing the GPU for rendering. We believe that the
similar API makes it easier for developers to adopt Stardust by
transferring their existing knowledge on D3.

DR2. Declarative Data-Binding over Imperative Evaluation:
D3’s imperative evaluation model makes it easier to debug because
there are no hidden layers of data flow that complicate the devel-
opers’ mental model. In GPU programming, however, data binding
and shader uniforms have to be fully prepared before one can render
anything. This means one cannot render any graphical marks before
all attribute bindings are specified. In addition, there is no web in-
spector for GPU-rendered graphics to provide a similar debugging
experience as with D3. Therefore, we decided to use declarative
data-binding instead of imperative evaluation.

DR3. Being Platform Agnostic: One important design goal of
Stardust is to be able to target multiple display environments. Thus,
we designed Stardust to be agnostic with respect to platform de-
tails including (1) the graphics API (e.g., OpenGL in Unix-based
systems and Direct3D in Microsoft Windows) and (2) the render-
ing and projection method. For example, there are multiple stereo-
scopic rendering techniques, including tilted view frustums, Omni-
stereo [PBEP01]. For 3D contents, there are also different shading
techniques and post-processing.

3.2. API Design

Graphical elements are called “marks” in the Stardust API. The
units of operation in Stardust are arrays of marks (e.g., Figure 2-2).

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

let platform = Stardust.platform("webgl-2d", canvasElement, width, height);

let polyline = Stardust.mark.create(Stardust.mark.polyline(), platform);

let positionScale = Stardust.scale.custom(`
 Vector2(
 (R - r) * cos(value) + d * cos((R / r - 1) * value),
 (R - r) * sin(value) - d * sin((R / r - 1) * value)
) * 50 + Vector2(250, 250)
`);
positionScale.attr("d", 2.19).attr("R", 5).attr("r", 5 * (18 / 41));

polyline.attr("p", positionScale(d => d * 41))
 .attr("width", 2).attr("color", [0, 0, 0, 0.3]);

polyline.data(_makeRange(0, Math.PI * 2, 10000));

polyline.render();

(1)

(2)

(3)

(4)

(5)

(6)
Figure 2: Plotting a parametric function (Hypotrochoid) with Stardust. Left (1) creating a platform object with the given “canvasElement”
using the WebGL platform; (2) creating the polyline mark; (3) creating a custom scale for position; (4) setting the attributes for the polyline;
(5) assigning data (here we create an array of 10,000 numbers from 0 to 2π); and (6) rendering the polyline. Right: The resulting plot. Refer
to the supplemental material for an animated version of this example.

Each array of marks has (1) a specification of the mark type; (2)
attribute bindings that declare how data items map to marks’ input
attributes (e.g., Figure 2-4); and (3) an array of data items (e.g., Fig-
ure 2-5). Stardust uses a declarative model with lazy evaluation that
is different from D3’s selection-driven approach where operations
are imperatively evaluated (DR2). In Stardust, actual data bindings
happen at the render call (e.g., Figure 2-6), where Stardust creates
GPU shaders and uploads data to GPU buffers for rendering. To be
independent of platform details (DR3), Stardust does not rely on
any underlying scene graph representation such as the DOM model
operated by D3, avoiding the complexity of D3’s enter and exit
operations. Updates to the array of data items can be done with
array operations.

Mark Specification: To make it easy to create basic visualizations,
Stardust provides a set of predefined marks, including circle,
rectangle, line, polyline, and wedge. For example, in Fig-
ure 2-2, we use the polyline mark to plot the parametric func-
tion. Because the expressiveness of predefined marks is limited, we
provide a mark specification language based on TypeScript [Typ],
which is a typed superset of JavaScript (DR1). Custom marks can
be created by writing a function with input attributes, intermedi-
ate computation steps, and emit statements. For example, the code
below creates a custom mark — a range bar with a circle:

xmin xmaxx

y

// Import predefined marks
import { Circle, Line } from P2D;
// Define a utility mark
mark VLine(x: float, y: float) {
Line(Vector2(x, y - 3), Vector2(x, y + 3), 1);

}
mark RangeBarWithCircle(
x: float, y: float,
xmin: float, xmax: float

) {
// Emit the VLine mark defined above
VLine(xmin, y);

VLine(xmax, y);
// Emit predefined marks, Line and Circle
Line(Vector2(xmin, y), Vector2(xmax, y), 1);
Circle(Vector2(x, y), 2);

}

The mark specification language exposes the details of marks
(DR1). For the marks composed of other marks, developers can
follow the function calls until they reach the specification of prede-
fined marks, which are also written in the same language.

Stardust currently supports variables, basic expressions, if-else
statements, fixed range for-loops, and function calls. It enables de-
velopers to represent a wide range of useful marks including com-
mon shapes, parametrized glyphs, Bézier curves, ribbons, wedges,
and polylines. More language constructs such as arrays, lambda
functions, and classes are left for future implementation work.

Attribute Binding: Similar to D3’s data-driven selections, Stardust
allows mapping data items to marks with user-defined attribute
bindings. Attribute bindings can be specified in the same way as
D3’s attr operator (DR1); all D3 scales that return numerical val-
ues (e.g., linear, log, and time) as well as layout modules in-
cluding force and treemap in D3 can be used in Stardust.

In addition to using D3’s scales, Stardust introduces compilable
scales (DR2). Stardust provides predefined scales including linear,
logarithmic, and color interpolation, which have parameters such
as domain and range similar to their counterpart in D3. Besides
predefined scales, Stardust allows custom scale expressions and at-
tributes. For example, in Figure 2-3, we declare the positions of the
polyline points using the parametric function.

In contrast to D3’s immediate scale evaluation at the time of data
binding, Stardust’s compilable scales are transformed to shader
code to be executed in GPU. This allows for adjusting parame-
ters (such as the domain and range of a scale) without having to
go through all the data items again and upload updated data to
the GPU. Since there is currently no support for introspection in
JavaScript, Stardust’s scale API is different from D3’s. For exam-

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

ple, in Figure 2-4, the lambda function is inside the Stardust scales,
which is different from D3’s pattern.

Stardust introduces Array-typed attributes, which are imple-
mented as textures in the GPU. Developers can use these objects
to store additional data attributes or parameters and reference them
in the code. This is very useful when the amount of changing data is
small but the number of graphical marks to render is large. For ex-
ample, in a node-link visualization of a relatively dense graph (e.g.,
a social network), there are O(n) layout parameters, but usually
O(n2) edges to render. Storing the layout parameters using Array
objects and referencing them while rendering the edges results in a
much better animation performance.

Rendering, Animation, and Interaction: After specifying all
required attributes and data items, simply calling the mark’s
render() function draws the items. The platform object (e.g.,
Figure 2-1) manages the platform-dependent details such as cam-
era position and projection matrices (DR3).

Attributes that are defined as constant values (including Array
attributes) can be changed after the render call without having to
rebuild the GPU shader nor uploading data to the GPU. This helps
creating parametric animations such as transition and morphing.
For example, the parametric plot in Figure 2 can be animated by
changing the positionScale’s d, R, and r attributes.

D3 uses events directly from DOM elements, such as
mousedown and mouseup, to support interactions. These events
occur on the item level where programmers can easily figure out
corresponding marks and data items. However, they are not avail-
able in GPU-based graphics APIs including WebGL. Stardust sup-
ports item-picking by introducing another pass that renders marks
into an item-picking render buffer. We assign a unique index to
each mark based on the rendering order, and in a buffer, we use the
four 8-bit color channels to encode the index of the rendered mark
at each pixel; we can encode up to 232 marks. Then, we retrieve the
corresponding data item by decoding the pixel’s color to convert it
back to the index.

4. Architecture and Implementation

We have designed Stardust using a modular structure and a
platform-independent internal representation (DR3) that acts as an
intermediate layer between the developer-facing API and display-
environment-specific internal code.

Modular Structure: Stardust consists of the stardust-core
module and a set of platform modules. The core module defines
the developer-facing API, built-in marks, and scales, and contains a
compiler that converts the mark specification language to Stardust’s
internal representation. The platform libraries transform internal
representations into shader programs, and manage shader uniforms
and GPU buffers for rendering. The modular structure allows de-
velopers to choose only the parts they need (i.e., core plus desired
platforms), and thus minimize the library’s download size. Devel-
opers could also write support modules for additional mark types,
scales, and helper functions. As a demonstration, we have created
the stardust-isotype module, which supports importing SVG
files as isotype [HKF15] marks.

Compiling to an Internal Representation: The compiler in the
stardust-core module transforms mark specifications (Fig-
ure 3-1) to Stardust’s internal representations (Figure 3-3), which
are encoded as JSON objects, and thus can be easily serialized and
deserialized (DR3). A mark’s internal representation consists of (1)
a set of input attributes, which can be bound to data using Stardust’s
data binding API; (2) a set of internal variables, which store com-
putation states; (3) a set of output attributes; and (4) a list of state-
ments. The statements can be assign statements, conditional state-
ments, loop statements, or emit statements. Conceptually, a mark is
rendered by setting the input attributes according to user-specified
data bindings, executing the statements, and finally capturing the
emitted vertices. Each triplet of consecutive emitted vertices forms
a triangle, which is rendered to the screen.

The compiler parses the input code and transforms the resulting
abstract syntax tree (AST) to the internal representation by inlin-
ing function calls and (optionally) unrolling loops. The compiler
also performs a necessary type inference and inserts code for type
conversions. When a custom scale is used for a mark attribute, the
compiler inserts the scale code and scale attributes to the internal
representation, and then assigns the result of the scale to a variable
for the mark attribute. In this way, the compiler produces a single
piece of internal representation that can be passed to the code and
buffer generation step as described below.

Code and Buffer Generation: The internal representation serves
as a platform-independent representation of marks, from which
the platform modules (e.g., stardust-webgl) perform the fi-
nal code generation step to produce GPU shader programs (Fig-
ure 3-4,5). Stardust first determines the forms of input attributes.
It converts the mark attributes that are specified as immedi-
ate values (e.g., .attr("y", 100)) to GPU shader uniforms
(Figure 3-7), and the mark attributes that are data-driven (e.g.,
.attr("x", d => d * 10)) to vertex attributes along with the
corresponding GPU buffer (Figure 3-6). Stardust employs lazy up-
date to prevent sending the same uniforms and buffers multiple
times. Stardust re-writes the statements in the internal representa-
tion using GPU’s shader language (GLSL in the case of WebGL),
and executes the shaders and associated uniforms and buffers in the
GPU (e.g., glDrawArrays) to render the final geometry.

The platform implementation adds its own geometry transforma-
tions. For example, in Figure 3-4, the stardust_mvp_transform
function is inserted and called to produce the gl_Position val-
ues. Note that the geometry transformations are not necessarily
matrix multiplications. For example, to render content in the Allo-
Sphere, we use its own Omnistereo [PBEP01] per-vertex displace-
ment to achieve stereoscopic effects in all directions. The emit
statements can be directly mapped to geometry shader’s EmitVer-
tex statements on platforms with geometry shader support. In plat-
forms without geometry shaders (e.g., WebGL and OpenGL ES),
Stardust can convert the data format and re-write the shader pro-
gram as described below.

Handling Emits in the Absence of Geometry Shaders: Stardust’s
internal representation naturally maps to the geometry shader in the
computer graphics pipeline. However, there are multiple versions
of graphics APIs and shading languages, among which only ad-
vanced versions support geometry shaders. For example, WebGL

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

(4) WebGL Vertex Shader
// User defined attributes
attribute float x;
uniform float y;
// Stardust attributes
attribute float emitIndexf;
// Platform-specific model-view-projection transform
vec4 stardust_mvp_transform(vec2 position) { ... }
void main() {
 int vertexIndex = 0;
 int emitIndex = int(emitIndexf);
 float p1 = x + 5.0, p2 = y + 5.0;
 if(emitIndex == vertexIndex) {
 gl_Position = stardust_mvp_transform(vec2(x, y));
 }
 vertexIndex += 1;
 if(emitIndex == vertexIndex) {
 gl_Position = stardust_mvp_transform(vec2(p1, y));
 }
 vertexIndex += 1;
 if(emitIndex == vertexIndex) {
 gl_Position = stardust_mvp_transform(vec2(x, p2));
 }
}

(5) WebGL Fragment Shader
void main() {
 // User-defined colors can be
 // passed from the vertex shader
 gl_FragColor = vec4(0, 0, 0, 1);
}

mark Triangle(x: float, y: float) {
 let p1 = x + 5, p2 = y + 5;
 emit [
 { position: Vector2(x, y) },
 { position: Vector2(p1, y) },
 { position: Vector2(x, p2) }
];
}

(1) Mark Specification Language

3 2 5 …data

marks.attr("x", d => d * 10);
marks.attr("y", 100);
marks.data(data);

(2) Data Bindings

(8) Graphics

inputs:
 x: float, y: float
variables:
 p1: float, p2: float
statements:
 assign p1, x + 5
 assign p2, y + 5
 emit { position = Vector2(x, y) };
 emit { position = Vector2(p1, y) };
 emit { position = Vector2(x, p2) };

(3) Internal Representation

compile code generation

x

(6) WebGL Buffers

emitIndex

(7) WebGL Uniforms

30 20 5030 20 5030 20 50

0 2 01 1 22 0 1

…

…

User Code Stardust Library

stardust-core stardust-webgl

buffer generation
stardust-webgl

stardust-webgl
render

y 1

…

(4), (5)(6), (7)

Figure 3: Stardust’s rendering process: User code creates mark specifications and data bindings (1, 2). The mark specification is compiled
into an internal representation (3). The platform backend, in this case stardust-webgl, converts the internal representation to WebGL shaders
(4, 5), and converts the data bindings to WebGL buffers and uniforms (6, 7). Stardust executes the WebGL shaders along with its buffers and
uniforms in the GPU to produce the graphics (8).

has no support for geometry shaders in its current version. Thus,
Stardust’s platform implementation converts the geometry genera-
tion process into a non-generative process when the target platform
does not support geometry shaders. Stardust accomplishes this by
expanding the mark generation process through program transfor-
mation. Originally each mark corresponds to a single data item
from which input attributes are derived (e.g., in Figure 3-2, there
are three data items, each corresponds to a mark, and the lambda
function d => d * 10 derives a mark’s x input attribute from the
data item). Stardust duplicates the input attributes such that each
generated vertex becomes one standalone vertex in the vertex ar-
ray, increments a vertex emit index on each repetition to differenti-
ate the vertices (e.g., in Figure 3-6, each data item is transformed by
the lambda function and then repeated three times, with an added
emitIndex attribute), and finally re-writes the vertex generation
process to use the emit index to determine which vertex to display.
Figure 3-4 illustrates how standalone emit statements are trans-
formed, and the code below shows how loops are transformed:

The original for loop:

// (input attributes)
for(let i in 2..7) {

emit F(i);
}

Transformed code:

// (input attributes)
// emitIndex attribute
// vertexIndex, i variable
vertexIndex = 0;
// For loops without state
// update can be simplified
// to run only one step:
i = emitIndex - vertexIndex + 2;
if(i >= 2 && i <= 7) {

emit F(i);
}

Note that this conversion is performed at the internal representa-
tion level so that similar platforms can share it.

5. Examples

With Stardust’s predefined marks (circles, lines, areas, and
wedges), we can create simple visualizations such as 2D/3D bar
charts, scatterplots, line charts, pie charts, area charts, and parallel
coordinates. In this section, we show a diverse set of more com-
plex visualization examples to illustrate Stardust’s expressiveness,
and discuss a coding playground we have created to demonstrate
Stardust’s portability.

5.1. Instance-based Visualization

Researchers have explored instance-based visualizations or unit vi-
sualizations, which explicitly represent each data item from the
dataset (e.g., [Wil99a, KHDH02, HKF15, DF15]). Here, we illus-
trate the power of Stardust by animating and interacting with
instance-based visualizations.

First, we show a reproduction of animated transitions similar to
SandDance [DF15]. The visualization shows voting results in the
United States’ 2012 election; among 17 attributes we use longi-
tude, latitude, state, and percentage of Obama supporters. In the
visualization, we draw the data items as cubes with three differ-
ent layouts including (1) a scatterplot of longitude and latitude, (2)
an instance-based bar chart binned by states, and (3) a 3D stacked
bar chart binned by both longitude and latitude (Figure 1b). The
cubes are colored by the percentage of Obama supporters. To im-
plement the visualization, we first wrote JavaScript code to com-
pute the bin and within-bin index of each data item for layouts (1)
and (3). Then, we wrote marks in the mark specification language.
We wrote three functions to compute the positions of cubes based
on the three layouts, and in the main function we interpolate be-
tween these positions based on the animation time parameter. This
example visualization has 31,618 cubes, and the transitions can be
rendered at the monitor’s refresh rate (60fps) on the computer we
used for our performance evaluation (see Section 6).

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

(a) (b) (c)

Figure 4: Reproduction of Isotype visualization (a) and “The Daily Routines of Famous Creative People” in circular layout (b) and linear
layout (c) with Stardust.

Figure 5: Reproduction of the Squares visualization [RAL∗17] us-
ing Stardust.

Instance-based visualizations become more complex when we
apply multiple levels of grouping, combine them with other vi-
sualizations, and add interaction. We use Stardust to render the
Squares [RAL∗17] visualization designed for multiclass classifier
performance analysis (Figure 5). The Squares visualization design
encodes instances as square marks, bins the squares according to
their prediction scores, groups them by the predicted classes, and
colors them by the labeled classes. Upon selection, parallel co-
ordinates are shown to reveal detailed prediction scores. We use
Stardust’s item-picking functionality to implement the selection
interaction. The version created with Stardust allows parameter
changing and interactions at a much more responsive rate than the
original D3-based version.

5.2. Isotype Visualization

Stardust’s custom mark specification allows developers to import
marks from other sources. The stardust-isotype module can
load SVG files and convert them to mark specifications. The con-
verted isotype marks have attributes including position, size,
and color, which can be bound to data. Stardust thus supports
isotype visualizations [HKF15]. Developers can design isotypes in
vector graphics tools and then export them as SVG files. Figure 4a
shows our example isotype-based multi-column bar chart. It can
perform instance-based animation between two versions (see the
supplemental video for the animation).

5.3. Morphing between Circular and Linear Timelines

To show Stardust’s representational power, we reproduced the vi-
sualization of The Daily Routines of Famous Creative People [Dai]

with Stardust (Figure 4b, Figure 4c), and added a morphing anima-
tion between the linear layout and a circular layout as in [BLB∗16]
(see the supplemental video for the animated transitions). We im-
plemented the marks with Stardust’s Wedge object. Wedges can
also express the linear layout because rectangles are wedges with-
out any curvature. We implemented the morphing animation by
linearly interpolating the wedges’ parameters between the circular
layout and the linear layout. We also used the item index to modu-
late the animation effect such that animation for different circles/-
lines happen at different times. The animated transitions between
the two layouts can be easily rendered at 60fps on the computer we
used for our performance evaluation, even with synthetic data of
100 times more wedges to render (100×237 = 23,700 items).

5.4. Real-time Force-directed Graph Visualization

In graph visualizations, algorithms have been developed to accel-
erate the force-directed layout process [Hu05]. For example, in
D3’s implementation, a quadtree structure is used to accelerate
charge interaction using the Barnes-Hut approximation [BH86].
However, after layout algorithms have been accelerated, render-
ing becomes the bottleneck for animating graphs. In this example,
we use Stardust instead of D3 to render a social-network graph
of 747 nodes and 60,050 edges (Figure 1a). Each time the graph
layout is updated by the algorithm, we re-assign the data to the
nodes and edges, and schedule a re-render of the visualization.
The layout algorithm alone can run at 145fps. The Stardust ver-
sion achieved a significantly better frame rate of 60fps than D3’s
1.6fps. Furthermore, this example achieved a frame rate of 21fps
on a Google Pixel smartphone with Android 7.1.1 running Google
Chrome browser version 56.0.2924.87.

5.5. Coding Playground for Multiple Display Environments

We have created a coding playground, which enables develop-
ers to write code in a web-browser and run it unmodified in
four different display environments; 1) the browser itself, 2) mo-
bile VR with Cardboard viewers, 3) HTC Vive, and 4) the Allo-
Sphere [KMWW∗14], a full-surround immersive VR environment
(Figure 6). This playground is a starting point for building a cross-
platform visualization authoring environment. For example, in the
future we can explore how to easily design visualizations that can
adapt to different levels of processing powers by using aggregation
or subsampling techniques: we can show an overview visualiza-
tion in mobile devices, while showing individual data items and

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

(a) Browser (b) Cardboard (c) HTC Vive (d) AlloSphere

Figure 6: A sample visualization created with Stardust in the coding playground. Developers can create 2D/3D visualizations for three
different display environments with the same code. (a, b) run in browsers with WebGL; (c, d) run in the AlloSphere’s Allofw framework with
OpenGL 3.3; and (d) uses Omnistereo for a 360° stereo effect.

allowing multiple coordinated views in immersive environments.
Stardust provides a simple visualization representation for various
levels of graphics hardware and rendering process behind different
display environments.

We implemented the coding playground’s user interface using
TypeScript and React. It embeds the Monaco text editor for syntax-
highlighting and intellisense features. The visualizations in the web
browser are rendered in iframe elements to minimize the interfer-
ence between developer code and playground code. In the Allo-
Sphere, we created a web server to receive code and commands
from the user interface and coordinate 13 rendering machines that
power 26 projectors.

6. Performance Evaluation

We evaluate Stardust’s performance in terms of the initialization
and rendering times on three types of visualizations.

6.1. Conditions

We compare Stardust against D3, Vega (Canvas backend), and the
standard HTML5 Canvas. D3 is one of the most commonly used
libraries in web-based visualizations. Vega is a very promising
declarative visualization grammar with a performance-optimized
reactive dataflow architecture [SWH14, SMWH17]. We choose
Vega’s Canvas backend because it is measured to be more efficient
than the SVG backend. The HTML5 Canvas is the basis of many
visualization libraries such as Processing that are not SVG-based.
We implement three visualizations that use common mark types in
information visualization: (1) scatterplots with points, glyphs, and
isotypes; (2) parallel coordinates with lines and polylines; and (3)
node-link graphs with points and lines. The visualizations we cre-
ated with D3 adhere to common D3 programming patterns, and the
ones with Canvas are written to access Canvas’ API as directly as
possible to eliminate any performance overhead introduced by ex-
tra representational layers. For example, to compute an x position,
we choose x = a * data + b over x = scale(data) because
scale(data) introduces an extra function call.

To simulate animation and layout updates, we animate these vi-
sualizations by randomly changing scales for the scatterplots and
parallel coordinates and shifting node positions for the graphs. We
run these visualizations with sizes ranging from 100 to 1M (the
size of a graph is measured as the number of edges, which domi-
nates the rendered marks). The resolution of the visualizations is set

to 1,000× 1,000. We run our performance measurements with an
iMac Retina 5K 27-inch Late 2014 model with the macOS Sierra
10.12.1. The machine has a 4GHz Intel Core i7 processor with
32GB 1600MHz DDR3 memory, and an AMD Radeon R9 M290X
graphics card with 2GB memory. The benchmark is performed on
the Google Chrome browser version 55.0.2883.75 (64-bit).

6.2. Results

It is important to differentiate two types of rendering times: (1) ini-
tializing and rendering the first frame, which directly influences the
page load time; and (2) rendering subsequent frames in response
to parameter updates, which is crucial for parametrized animation.
Because modern web browsers commonly use background threads
for graphics rendering, especially for WebGL-based rendering, it is
not possible to measure frame time directly by timing the API calls.
We used the requestAnimationFrame API to measure the time
duration between adjacent frames and among multiple frames for
initialization and rendering, respectively. This approach, however,
has a minimum measurable unit, which is the refresh rate of the
monitor because browsers wait for the next monitor refresh before
performing an “animation frame” when rendering is faster than the
refresh rate. On the machine we tested with, this minimum unit is
16.7ms. Therefore, all values we report here are more than 16.7ms
whose corresponding frame rate is 60fps. To model parameter up-
dates during rendering, the rendering time is measured by averag-
ing 30 frames with random visual and layout parameters. We also
run each trail 10 times and take the average to minimize perfor-
mance fluctuations. To avoid potential garbage-collection delays,
we restart the browser for every trail larger than 10,000 items.

Our performance simulation results show that Stardust is faster
in both initialization and rendering for large numbers of marks (Fig-
ure 7). The time for initialization and rendering the first frame is
around 2x faster than Canvas, and for subsequent frames Stardust
is 10–100x faster than Canvas, Vega, and D3. However, Stardust’s
initialization time is slower than Canvas, D3, and Vega for small
numbers of marks because Stardust has an overhead of shader com-
pilation. In addition, we observed that while canvas is faster than
D3 for the scatterplot and graph, it is slower than D3 for rendering
the parallel coordinates. The fact that D3’s render time for parallel
coordinates looks quadratic and is slower than its initialization plus
render time is notable. We suspect that this is caused by the Google
Chrome browser’s internal mechanisms for handling updates to the
d attributes on SVG path elements.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

Initialize & Render Render

● ● ● ● ●●●●
●● ● ● ● ●●●●●●

●
●

● ●●●●
●●

●
●

●
●

●●●●●

● ● ● ● ●●●●●● ● ● ● ●●●●●● ● ● ● ●●●●●●
●

●
● ●●

●●●●

● ● ● ● ●●●●●● ● ● ● ●●●●●●

●
●

● ●
●●

●●●

●
●

●
●

●
●

● ● ● ● ●●●●●● ● ● ● ●●●●●● ● ● ● ●●●●●● ● ●
●

●
●

●
●●●

● ● ● ● ●●●●●● ● ● ● ●●●●●● ● ● ● ●●●●●●

●
●

● ●
●●●●●

● ● ● ● ●●●●●● ●
●

●
●

●●●●●

●
●

●
●●●●●●

●

●
●

●
●●

10

100

1,000

10,000

100,000

10

100

1,000

10,000

100,000

10

100

1,000

10,000

100,000

S
catterplot

G
raph

P
arallelC

oordinates

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

10
6

Size

T
im

e
(m

s)

● Stardust D3 Canvas Vega

Figure 7: Performance evaluation results plotted in log-log scales.

7. Discussion and Future Work

Stardust is inspired by the observation of media artists creating
3D data visualizations that render and animate a large number of
data-driven glyphs. This was very difficult in Processing; drawing
the glyphs one by one was too slow even with WebGL/OpenGL,
but putting them altogether into a mesh object made it impossi-
ble to parametrically animate the glyphs without using a vertex
shader. We initially created a library that supports a set of prede-
fined marks and D3-like data bindings. However, creating a new
mark required a considerable knowledge of the library and shader
programming, and geometry shaders used in the initial version is
not currently available in web browsers. Stardust’s internal repre-
sentation and shader code generation architecture contribute to its
expressiveness and portability. Together, they support a simple and
uniform API while hiding complex platform-specific implementa-
tion details (e.g., the geometry generation process).

In this section, we discuss Stardust’s limitations which form in-
teresting directions for future work.

Pixel-space Specifications: Like D3, the Stardust API currently
only specifies geometry with a few styling options including color,
opacity, and shading options. Although these cover a large set of
information visualizations, other visualizations require advanced
styling of marks such as pattern-encoded marks and textured marks.
Therefore, it would be useful to extend Stardust to support pixel-
space specifications.

Per-mark State: To be platform-agnostic, Stardust only abstracts
the data-driven geometry generation process without relying on
scene-graph models, which naturally keep mark states in nodes.
Because Stardust’s geometry generation process on GPU is cur-
rently stateless, it cannot provide a support for some of the D3
functionalities such as filtered selections and enter/exit selections.
Only data-bindings that are specified as immediate values can

be changed without having to re-compile shaders and re-upload
buffers to GPU. Therefore, it is hard to implement animations that
require per-mark state recording such as particle system simula-
tions in Stardust. Having an API support for per-mark state storage,
update, and retrieval is important for future work.

GPU Support for Data Transformation and Aggregation:
Stardust currently supports only GPU-based rendering. Similar to
D3, to use Stardust, data has to be aggregated so that each data item
independently maps to a mark. For example, in our instance-based
visualization example (Section 5.1), we have to compute the bin-
ning in JavaScript and assign a bin and a within-bin index for each
data item. In the future, we would like to investigate how to support
GPU-based data aggregation and transformation (e.g., [LJH13]).

Optimization: As a first step, we primarily address the problem of
simple and easy specification. As we have not yet implemented op-
timization techniques, Stardust currently relies on the shader com-
piler’s optimizations. For future versions of Stardust, we plan to
explore optimization techniques.

Further Evaluation: Given Stardust’s simplicity and similarity to
D3’s API, we anticipate it can be easily adopted by visualization
creators. As a public deployment could lead to more meaningful
evaluations, we constructed a website that provides online code ex-
amples and documentation to help developers get started. We hope
to get feedback from visualization creators and improve the library.

8. Conclusion

We have designed and implemented Stardust, a GPU-based li-
brary for information visualization, as an open-source project
(https://stardustjs.github.io). It provides a simple programming in-
terface while targeting both regular and novel display environ-
ments. Stardust enables the creation of a variety of GPU-powered
visualizations as demonstrated by our examples. It achieves a sig-
nificant performance boost compared to the standard HTML5 Can-
vas, D3, and Vega on a large number of graphical marks.

9. Acknowledgments

We thank Andrés Cabrera and JoAnn Kuchera-Morin for the dis-
cussion and support in the AlloSphere. This work was in part sup-
ported by ONR grants N00014-14-1-0133 and N00014-16-1-3002.

References
[AEYN11] ANDREWS C., ENDERT A., YOST B., NORTH C.: Informa-

tion visualization on large, high-resolution displays: Issues, challenges,
and opportunities. Information Visualization 10, 4 (2011), 341–355. 1, 3

[AW14] ANDREWS K., WRIGHT B.: FluidDiagrams: Web-based infor-
mation visualisation using JavaScript and WebGL. In EuroVis - Short
Papers (2014), Elmqvist N., Hlawitschka M., Kennedy J., (Eds.), The
Eurographics Association. 3

[BFH∗04] BUCK I., FOLEY T., HORN D., SUGERMAN J., FATAHALIAN
K., HOUSTON M., HANRAHAN P.: Brook for GPUs: stream computing
on graphics hardware. In ACM Transactions on Graphics (TOG) (2004),
vol. 23, ACM, pp. 777–786. 3

[BH86] BARNES J., HUT P.: A hierarchical O(N logN) force-calculation
algorithm. Nature 324, 6096 (1986), 446–449. 7

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

D. Ren, B. Lee, and T. Höllerer / Stardust

[BH09] BOSTOCK M., HEER J.: Protovis: A graphical toolkit for visu-
alization. IEEE Transactions on Visualization and Computer Graphics
15, 6 (2009), 1121–1128. 1, 2

[BLB∗16] BREHMER M., LEE B., BACH B., HENRY RICHE N., MUN-
ZNER T.: Timelines revisited: A design space and considerations for ex-
pressive storytelling. IEEE Transactions on Visualization and Computer
Graphics PP, 99 (2016), 1–1. 7

[BO04] BURNS D., OSFIELD R.: Tutorial: Open scene graph. In IEEE
Virtual Reality 2004 (2004), IEEE, pp. 265–265. 3

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-driven
documents. IEEE Transactions on Visualization and Computer Graphics
17, 12 (2011), 2301–2309. 1, 2

[C3j] C3.js: D3-based reusable chart library. http://c3js.org/, ac-
cessed Dec. 3, 2016. 1

[CCC∗15] CHANDLER T., CORDEIL M., CZAUDERNA T., DWYER T.,
GLOWACKI J., GONCU C., KLAPPERSTUECK M., KLEIN K., MAR-
RIOTT K., SCHREIBER F., ET AL.: Immersive analytics. In Big Data
Visual Analytics (BDVA), 2015 (2015), IEEE, pp. 1–8. 1

[CDK∗16] CORDEIL M., DWYER T., KLEIN K., LAHA B., MARRIOT
K., THOMAS B. H.: Immersive collaborative analysis of network con-
nectivity: CAVE-style or head-mounted display? IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2016), 441–450. 1

[CNSD∗92] CRUZ-NEIRA C., SANDIN D. J., DEFANTI T. A., KENYON
R. V., HART J. C.: The CAVE: Audio visual experience automatic vir-
tual environment. Communications of the ACM 35, 6 (1992), 64–72. 1,
3

[Dai] The daily routines of famous creative people. https://podio.
com/site/creative-routines/, accessed Dec. 3, 2016. 7

[DF15] DRUCKER S., FERNANDEZ R.: A Unifying Framework for An-
imated and Interactive Unit Visualizations. Tech. rep., Microsoft Re-
search, 2015. 3, 6

[Fek04] FEKETE J.-D.: The InfoVis toolkit. In Proceedings of the IEEE
Symposium on Information Visualization (2004), IEEE, pp. 167–174. 1

[FGKR16] FALK M., GROTTEL S., KRONE M., REINA G.: Interac-
tive GPU-based Visualization of Large Dynamic Particle Data, vol. 4 of
Synthesis Lectures on Visualization. Morgan & Claypool Publishers, San
Rafael, CA, 2016. 2

[HCL05] HEER J., CARD S. K., LANDAY J. A.: Prefuse: A toolkit
for interactive information visualization. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2005), CHI ’05,
ACM, pp. 421–430. 1, 2

[HKF15] HAROZ S., KOSARA R., FRANCONERI S. L.: ISOTYPE Vi-
sualization: Working memory, performance, and engagement with pic-
tographs. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (2015), CHI ’15, ACM, pp. 1191–1200. 5, 6, 7

[Hu05] HU Y.: Efficient, high-quality force-directed graph drawing.
Mathematica Journal 10, 1 (2005), 37–71. 7

[HvW09] HOLTEN D., VAN WIJK J. J.: Force-directed edge bundling for
graph visualization. In Proceedings of the 11th Eurographics / IEEE -
VGTC Conference on Visualization (2009), EuroVis ’09, The Eurographs
Association & John Wiley & Sons, Ltd., pp. 983–998. 3

[KHDH02] KEIM D. A., HAO M. C., DAYAL U., HSU M.: Pixel bar
charts: A visualization technique for very large multi-attribute data sets.
Information Visualization 1, 1 (Mar. 2002), 20–34. 6

[KMLM16] KWON O.-H., MUELDER C., LEE K., MA K.-L.: A study
of layout, rendering, and interaction methods for immersive graph visu-
alization. IEEE Transactions on Visualization and Computer Graphics
22, 7 (2016), 1802–1815. 1

[KMWW∗14] KUCHERA-MORIN J., WRIGHT M., WAKEFIELD G.,
ROBERTS C., ADDERTON D., SAJADI B., HÖLLERER T., MAJUMDER
A.: Immersive full-surround multi-user system design. Computers &
Graphics 40 (2014), 10–21. 3, 7

[KW03] KRUGER J., WESTERMANN R.: Acceleration techniques for
GPU-based volume rendering. In Proceedings of the 14th IEEE Visual-
ization (2003), VIS ’03, IEEE Computer Society, p. 38. 2

[LJB] LE H., JOSHI A., BETKE M.: b3.js: A library for interactive
web data visualizations in virtual reality. https://github.com/
huyle333/b3, accessed Dec. 3, 2016. 3

[LJH13] LIU Z., JIANG B., HEER J.: imMens: Real-time visual querying
of big data. Computer Graphics Forum 32, 3 (2013), 421–430. 3, 9

[MDTP∗04] MCCOOL M., DU TOIT S., POPA T., CHAN B., MOULE
K.: Shader algebra. ACM Transactions on Graphics 23, 3 (2004), 787–
795. 3

[ME09] MCDONNEL B., ELMQVIST N.: Towards utilizing GPUs in in-
formation visualization: A model and implementation of image-space
operations. IEEE Transactions on Visualization and Computer Graphics
15, 6 (2009), 1105–1112. 1

[NVD] NVD3: Reusable charts for D3.js. http://nvd3.org/, ac-
cessed Dec. 3, 2016. 1

[PBEP01] PELEG S., BEN-EZRA M., PRITCH Y.: Omnistereo:
Panoramic stereo imaging. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23, 3 (Mar. 2001), 279–290. 3, 5

[RAL∗17] REN D., AMERSHI S., LEE B., SUH J., WILLIAMS J. D.:
Squares: Supporting interactive performance analysis for multiclass clas-
sifiers. IEEE Transactions on Visualization and Computer Graphics 23,
1 (2017), 61–70. 7

[RF06] REAS C., FRY B.: Processing: Programming for the media arts.
AI & Society 20, 4 (2006), 526–538. 1, 2, 3

[RMC91] ROBERTSON G. G., MACKINLAY J. D., CARD S. K.: Cone
Trees: Animated 3D visualizations of hierarchical information. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (1991), CHI ’91, ACM, pp. 189–194. 3

[Rom] ROMERO M.: SVG performance test. http://bl.ocks.org/
mjromper/95fef29a83c43cb116c3, accessed Dec. 3, 2016. 1

[SCS13] SHERMAN W. R., COMING D., SU S.: FreeVR: Honoring the
past, looking to the future. In Proc. SPIE, The Engineering Reality of
Virtual Reality (Mar. 2013), vol. 8649. 3

[SG15] SARIKAYA A., GLEICHER M.: Using WebGL as an interactive
visualization medium: Our experience developing SplatterJs. In Pro-
ceedings of the Data Systems for Interactive Analysis Workshop (Oct.
2015), DSIA ’15, IEEE. 1, 2

[SLM04] SCHROEDER W. J., LORENSEN B., MARTIN K.: The visual-
ization toolkit. Kitware, 2004. 2

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT
K., HEER J.: Vega-Lite: A grammar of interactive graphics. IEEE Trans-
actions on Visualization and Computer Graphics 23, 1 (2017), 341–350.
1, 2, 8

[SWH14] SATYANARAYAN A., WONGSUPHASAWAT K., HEER J.:
Declarative interaction design for data visualization. In Proceedings of
the ACM Symposium on User Interface Software and Technology (2014),
UIST ’14, ACM, pp. 669–678. 1, 2, 8

[Tec] TechViz. http://www.techviz.net/, accessed Dec. 3, 2016. 3

[Typ] TypeScript: JavaScript that scales. https://www.
typescriptlang.org/, accessed Dec. 3th, 2016. 4

[Uni] Unity Game Engine. https://unity3d.com/, accessed Dec. 3,
2016. 3

[Unr] Unreal Engine. https://www.unrealengine.com/, accessed
Dec. 3, 2016. 3

[Wic09] WICKHAM H.: ggplot2: elegant graphics for data analysis.
Springer Science & Business Media, 2009. 2

[Wil99a] WILKINSON L.: Dot plots. The American Statistician 53, 3
(1999), 276–281. 6

[Wil99b] WILKINSON L.: The Grammar of Graphics. Springer-Verlag,
1999. 2

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://c3js.org/
https://podio.com/site/creative-routines/
https://podio.com/site/creative-routines/
https://github.com/huyle333/b3
https://github.com/huyle333/b3
http://nvd3.org/
http://bl.ocks.org/mjromper/95fef29a83c43cb116c3
http://bl.ocks.org/mjromper/95fef29a83c43cb116c3
http://www.techviz.net/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://unity3d.com/
https://www.unrealengine.com/

