
Enabling secure and resource-efficient blockchain networks with VOLT

Srinath Setty Soumya Basu⋆ Lidong Zhou Michael L. Roberts Ramarathnam Venkatesan
Microsoft Research ⋆Cornell University

Abstract
This paper describes VOLT, a permissioned blockchain
network for a group of autonomous organizations to au-
tomate cross-organizational business processes. Specif-
ically, VOLT ensures that a correct member—without
trusting anyone else—shares a consistent history of trans-
actions with other members in the system. VOLT achieves
this strong security property using the concept of a self-
verifying ledger: an append-only ledger of transactions
that can be checked locally by a verifier process at each
node; the ledger also embeds succinct cryptographic mes-
sages encoding views of members to enable each veri-
fier to locally determine globally-committed transactions.
To orchestrate this concept, VOLT employs a logically
centralized—but untrusted—service provider. We instan-
tiate the service provider using a highly-available cloud
service built atop a fault-tolerant cloud storage service.
An experimental evaluation of our implementation demon-
strates that VOLT achieves tens of thousands of transac-
tions per second for a realistic 50-node payment network.

1 Introduction
Blockchain technology promises to dramatically trans-
form business processes that span multiple autonomous or-
ganizations in areas such as finance [84], supply chains [38],
and the public sector [77]. The fundamental reason is that
it enables a new form of trustworthy business processes
among multiple, mutually distrusting business entities
by offering automation, auditability, and integrity with-
out requiring participants to trust any single entity, or
mutual trust among the participating entities. Example ap-
plications include: (a) a distributed payment network that
enables banks to execute clearing and settlement mecha-
nism [39]; (b) a group of financial institutions maintaining
asset registries for securities such as bonds and gold [51].

Motivated by these mission-critical applications, our
goal is to build a permissioned blockchain network: a sys-
tem that enables a group of mutually distrusting member
organizations to define rules for validating transactions
and then maintain a shared, append-only ledger contain-
ing an ordered list of valid transactions processed by the
network. The primary requirement of such a system is that
all participants following the protocol must share a con-
sistent view of the shared ledger; i.e., a pair of correct par-
ticipants must share the same prefix of the ledger. Further-
more, for many applications, the system must maintain
high throughput (e.g., tens of thousands of transactions

per second) at relatively low latency (e.g., a few seconds).
While Byzantine fault-tolerant (BFT) protocols [22,

31, 36, 55] seem to solve the core consensus problem,
subtle, but fundamental, aspects render these protocols
insufficient for permissioned blockchain networks, even
though the underlying substrate in BFT remains relevant.
These BFT protocols were primarily designed to replicate
services in a datacenter environment—to guard against
crash failures and Byzantine behavior by a subset of the
replicas. In the context of permissioned blockchain net-
works, the protocol has to be carried out across trusted
domains with each member representing a participating
organization (such as a bank), rather than a replica of a
replicated service typically in the same trusted domain.
Consequently, the desirable guarantees must be defined
from the perspective of each member, rather than for a
replicated service as a whole only. The assumptions in
these BFT protocols must also be revisited. As an ex-
ample, the availability properties of each member (repre-
senting a well-resourced autonomous business entity) are
different from a replica running on an unreliable machine
in a traditional replicated system. Furthermore, under the
status quo, an organization does not trust the computing
infrastructure of other organizations for the security of its
cross-organizational business transactions.

These observations lead to the design of a system
called VOLT, a permissioned blockchain in which a member—
without trusting anyone else—constructs an append-only
ledger such that it shares a verifiably consistent prefix with
all other members. To accomplish this, VOLT introduces
the concept of a self-verifying ledger. Specifically, VOLT
employs a simple verifier run by each member node, and
each verifier lazily verifies an append-only ledger main-
tained by a highly-available—but untrusted—cloud ser-
vice, which we refer to as the blockchain service provider
(BSP). In other words, VOLT’s approach is to delegate
the task of maintaining a ledger to the BSP and have each
verifier execute simple, local checks on the end-to-end
behavior of the service. Naturally, these checks are inde-
pendent of the internal details of how these services are
implemented and deployed. More fundamentally, VOLT’s
approach decouples the work of a member from the rest
of the system, thereby offering desirable flexibility to
each member in terms of implementation, operation, and
configuration.

Operationally, to ensure all correct members in the
system share a consistent view of the ledger maintained

1



by the BSP, VOLT’s verifiers persist succinct messages
on the BSP’s ledger itself. Specifically, each verifier peri-
odically submits a special transaction, called an approval
transaction, to the BSP to be included in the BSP’s ledger.
Such an approval transaction cryptographically encodes
a member’s complete local view of the BSP’s ledger.
We show that each verifier can process approval trans-
actions (submitted by other members) recorded in the
BSP’s ledger as part of its local checks to compute an
approved prefix—a prefix of the BSP’s ledger shared by
other members in the system. Because computing an ap-
proved prefix is a local operation, it offers the flexibility to
members to layer business-specific policies to determine
when a transaction can be considered committed.

We implement VOLT’s BSP as a cloud service atop
Azure Cosmos DB [1], a fault-tolerant cloud storage sys-
tem, and VOLT’s verifier and the approval protocol in
a client library that interacts with the BSP. To evaluate
VOLT’s costs, we build a distributed payment network.
Our experimental evaluation demonstrates that VOLT
can process up to 20K transactions/second with one sec-
ond latency and scales to 50 members in a permissioned
blockchain network.

This paper contributes the following:

• A new foundation—the concept of a self-verifying
ledger instantiated with a simple verifier and an un-
trusted BSP—for building practical distributed ledgers.

• Extensions to the core system that offer flexible, member-
controlled policies, decentralized membership man-
agement, and scale-out throughput via partitioning.

• An experimental evaluation of our implementation
that demonstrates VOLT scales to realistic workloads:
for 50-member payment network, our system achieves
about 20,000 transactions per second.

2 Requirements and design principles
This section provides an overview of VOLT’s target appli-
cations as well as its high level architecture.

2.1 Applications and requirements

Target applications. Our principal goal is to enable an
emerging class of applications that employ blockchain
networks to re-architect mission-critical business pro-
cesses [13, 38, 39, 51, 77, 84]. In a nutshell, these ap-
plications involve a group of autonomous entities process-
ing transactions that span multiple entities (e.g., payment
transactions, asset trading, transferring title of a prop-
erty, etc.), and then maintaining a ledger containing those
transactions (for auditability and compliance).

Setup and requirements. Our target system consists of
a set of members, and at setup time, they agree on the
initial list of members identified by their public keys in

a digital signature scheme. They also agree on code (or
a state machine) for validating transactions. The system
must enable these members to construct an append-only
ledger containing an ordered list of valid transactions.
Specifically, we wish to build a system that satisfies the
requirements listed below.

1. Consistency. A correct member (i.e., one that follows
its prescribed protocol) shares a consistent view of a
ledger containing an ordered list of valid transactions
processed by the system.

2. Progress. If a participant submits a valid transaction,
then it eventually (e.g., in a few seconds) appears in
the views of the ledger on all correct participants.

3. Governance. The system enables members to evolve
membership in the system (e.g., admit or evict partic-
ipants) and transaction processing rules. Concretely,
members share a consistent view of membership in a
blockchain network.

2.2 Design goals and principles

As discussed in Section 1, traditional BFT protocols fo-
cus on replicating a (deterministic) service across a set of
unreliable machines to emulate a single correct service.
Permissioned blockchains is fundamentally a different
problem, even though the core building blocks and mech-
anisms in a traditional BFT protocol remain relevant in
the design of a permissioned blockchain. We now discuss
the key observations and principles that guide the design
of our system, VOLT.

Egocentric members. Members participating in permis-
sioned blockchains are egocentric with their own inde-
pendent identities, as they usually represent organizations
(e.g., banks) to carry out business-critical transactions.
This is in contrast to the largely nameless replicas in tra-
ditional replicated services, where the correctness of the
replicated service is what matters.

Trust thyself only. Each member defines its own trust
domain and engages with other distrusting members across
trust boundaries in a permissioned blockchain. Thus, the
system must empower each member to enforce end-to-
end guarantees through a local mechanism within its trust
domain. Furthermore, the mechanism must be flexible
enough to allow each member to implement the mecha-
nism independent of how the rest of the system is archi-
tected. Whereas in a traditional BFT protocol, the entire
protocol is architected in service of one thing: emulating
a single, correct service out of multiple unreliable servers.

Realistic liveness. A BFT protocol’s goal is to tolerate
machine failures, thus requiring all nodes in the system to
participate in every step of the protocol is explicitly ruled
out. Whereas in a permissioned blockchain, each member
represents an organization and can be expected to have

2



high availability as any online business-critical services
(e.g., financial transactions). Such a member can be ex-
pected to be internally fault-tolerant and any downtime
over minutes is considered an incident that triggers imme-
diate attention. Thus, permissioned blockchain protocols
can expect all members to participate in the system—at
least periodically. However, if a member fails to partici-
pate at some point, the system must not sacrifice safety.

With these observations, VOLT embraces the follow-
ing key design choices.

End-to-end verification with a simplified protocol and
a local verifier. Instead of adopting the non-trivial BFT
protocol, the design of VOLT uses a simplified protocol
with a single message type, coupled with a local verifier
that each member runs locally for end-to-end verification.
The local verifier is the only piece of code that a member
needs to trust for safety. Due to its simplicity, a member
can have its own verifier implementation. The use of a
local verifier effectively decouples each member from
how the system is architected outside of its trust domain.

Separation of policy and mechanism via a self-verifying
ledger abstraction. VOLT separates the policy from its
mechanism by implementing a self-verifying ledger ab-
straction using an untrusted blockchain service provider
(BSP). The same mechanism can be used to implement
a policy for utmost safety, for example, where a mem-
ber does not need to trust any other member for safety
and can ensure progress as long as all members remain
available to participate. Other policies similar to BFT’s
quorum failure assumptions can also be implemented. A
member can even choose a policy in between based on
it own business requirements and the policy can even be
different for different transactions (e.g., a member might
opt for utmost safety for high-value transactions, but wait
for only a sufficient quorum for low-value transactions to
make faster progress).

3 Design and architecture
This section describes the VOLT’s core building blocks
to realize a permissioned blockchain network based on a
self-verifying ledger.

3.1 Overview of VOLT’s self-verifying ledgers

Figure 1 depicts VOLT’s high level architecture to imple-
ment the concept of a self-verifying ledger. At its core,
VOLT consists of a simple verifier process run by each
member such as a financial institution that wishes to par-
ticipate in a blockchain network with other financial in-
stitutions. To orchestrate a blockchain network with the
properties discussed earlier (§2.1), VOLT relies on an
untrusted service provider that we call a blockchain ser-
vice provider (BSP). The job of the BSP is to maintain
an append-only ledger of transactions (discussed in the

BSP
Member Node

Verifier

Member Node

Verifier

Member Node

Verifier

Member Node

Verifier

FIGURE 1—High level architecture of VOLT. Members run a
simple verifier process that communicates with the BSP, exe-
cutes local end-to-end checks, and outputs a consistent view of
the BSP’s ledger. The internal implementation details of the BSP
and other member nodes (denoted with shaded color) do not
compromise the safety guarantees that VOLT’s verifier ensures
to a correct member (denoted without a shaded color). Dotted
arrows represent optional communication channels.

next subsection) submitted by different members in a
blockchain network. In practice, the BSP could be of-
fered as a commercial service by a cloud provider such as
Amazon AWS and Microsoft Azure [6].

At setup time, the set of members in a blockchain
network initialize a ledger on the BSP. Then, each veri-
fier interacts with the BSP through a set of well-defined
APIs and constructs a view of the shared ledger. In the
subsections ahead, we discuss how each verifier (running
on the infrastructure controlled by a member) can ensure
properties we desire (§2.1)—by relying on end-to-end
verification of simple properties (§3.4).

Threat model. VOLT achieves its goals (§2.1) in the
following threat model. We assume participating mem-
bers and the BSP cannot violate standard cryptographic
hardness assumptions. We assume that malicious mem-
bers can arbitrarily deviate from their prescribed proto-
col. We assume that the network could be adversarial by
dropping, reordering, and duplicating messages. However,
we assume that correct entities in the system can even-
tually communicate with other correct entities. We also
assume that the network is eventually synchronous for
liveness [44]. Finally, we assume that all members in a
blockchain network periodically participate in the system
(this assumption can be relaxed at the cost of weakening
guarantees; §3.5).

3.2 Ledgers and blockchain network state

A core ingredient in VOLT is an append-only ledger. For
concreteness, we define a ledger as follows. A ledger, L,
is a chain of blocks (B1, B2, . . . , Bl) where each block, Bi,
is a tuple (Mi, Di). Di is a data block, which contains a list
of transactions, and Mi is a metadata block. Mi is a triple:

3



H(D0)

D0

Genesis block B1

Membership 
list, blockchain 
code, and initial 

state

id null

D1
List of 

transactions

H(D1)id H(B1)

FIGURE 2—Overview of an append-only ledger that VOLT uses
to maintain data of a blockchain network. The data structure
itself is borrowed from decentralized cryptocurrencies such as
Bitcoin: each block contains transactions and embeds a crypto-
graphic hash of its predecessor using a collision-resistant hash
function H(·). In VOLT, however, the ledger also acts as a mech-
anism for disseminating a blockchain network’s metadata, for
example, the first block in a ledger stores rules that govern the
blockchain network it represents.

(id, prev, h) where id is the identity of the ledger (the
BSP can host more than one ledger), prev ← H(Mi−1)
if i > 1 and null otherwise, h ← H(Di), and H(·) is a
collision-resistant hash function. Furthermore, the height
of a ledger height(L) is the number of blocks in L.

From a ledger to a blockchain network. We now dis-
cuss how VOLT uses the ledger data structure discussed
earlier to maintain data of a blockchain network. Figure 2
provides an overview of this, but we discuss details below.

Network constitution. A VOLT blockchain network
must reliably maintain the list of participating members,
which we refer to as the constitution. At setup time, the
list of members identified by their public keys is recorded
on the first block of the ledger, called the genesis block,
maintained by the network. The constitution is not how-
ever a static state of a VOLT blockchain network; VOLT
enables its members to evolve the membership list as well
as other metadata associated with the network (§3.6).

Network state and code. Besides the constitution of
a blockchain network, there are two other elements: (i)
blockchain network state and (ii) blockchain code. Each
member’s state in VOLT is a set of key-value pairs. For
example, if a participating member is a financial institu-
tion, the list of key-value pairs of a member can represent
account balances of its customers, or the ownership infor-
mation of physical or digital assets [12]. Thus, the state
of a VOLT network is a set of individual participating
members’ state. The blockchain code of a VOLT network
defines code that validates transactions and updates the
network state. For example, a transaction that transfers
money from an account of member bank X must include a
valid digital signature by X’s private key and there should
be enough money in the account. The initial blockchain
network state as well as blockchain code are stored in the
genesis block of a ledger along with the initial constitu-

tion.

3.3 Blockchain service provider (BSP)

As discussed earlier, the BSP’s job is to maintain and up-
date an append-only ledger (introduced above), and make
it available for members. We abstract the BSP using the
following three simple APIs: init, append, and read.

1. init(Block b)→ LedgerId id: creates a new ledger
with b as its first block and returns its identity id.

2. append(LedgerId id, Transaction t)→ Bool b:
appends t to the ledger with identity id if t is a valid
transaction according to the associated blockchain
code, and returns whether t is valid.1

3. read(LedgerId id, Height h) → LedgerSuffix
l: returns the requested suffix of a ledger containing
blocks with height greater than h.

VOLT implements these APIs using a cloud-hosted
service with high availability by leveraging a fault-tolerant
cloud storage service (§5).

3.4 VOLT’s verifier and end-to-end verification

Recall that the primary requirement of a blockchain net-
work is ensuring members share a consistent view of an
append-only ledger (containing an ordered list of transac-
tions) despite arbitrary failures of various entities in the
system. We now discuss the design of a simple verifier
run by each member to perform end-to-end verification,
which in turn enforces desirable consistency semantics—
even if the BSP or any number of members misbehave.

Approval transactions. A key building block to achieve
end-to-end verification (and hence consistency) is a spe-
cial transaction called an approval transaction. An ap-
proval transaction succinctly encodes a member’s local
view of the BSP’s ledger. Concretely, given a well-formed
ledger L = (B1, . . .Bl), an approval transaction is of the
form: (m, l, h)σm , where m is the identity of a member
(i.e., its public key), l = height(L), h = H(Bl), and σm is
a signature using the private key of m.

Observe that an approval transaction encodes the tuple
(l, h), so it uniquely certifies a ledger L (including its
contents) up to height l due to the collision-resistance
properties of H(·). Also, the transaction is signed using
the private key of m, so it cannot be forged by the BSP or
any malicious member due to the unforgeability properties
of the digital signature scheme.

Constructing a self-verifying ledger by embedding ap-
provals. VOLT embeds approval transactions in the BSP’s
ledger itself, along with other “normal” transactions sub-
mitted as part of the blockchain network. Consequently,
members can locally determine a consistent prefix of the
1For higher throughput, the BSP batches a configurable number of
transactions in a single block.

4



BSP’s ledger—by processing each others’ approval trans-
actions embedded in the BSP’s ledger, as we explain next.

We first define a local validity check on a well-formed
ledger that embeds approval transactions as follows. A
well-formed ledger L = (B1, B2, . . .) is valid if, for every
approval transaction included in it s = (m, l, h)σm , σm is a
valid signature by m on s, height(L) ≥ l, and H(Bl) = h.

Approved ledger prefix. The verifier on each member
m maintains a local copy of the BSP’s ledger, Lm. m
periodically executes the following to compute a prefix
of the ledger, called an approved prefix.

1. Suppose Lm = (B1, B2, . . . , Bi) where i ≥ 1.

2. Call the BSP’s read to get a suffix of the BSP’s ledger,
(Bi+1, Bi+2, . . . , Bj) where j ≥ i + 1. The verifier re-
quires that these ledger entries from BSP are signed
with the BSP’s private key.

3. Check if the ledger (B1, B2, . . . , Bi, Bi+1, . . . , Bj) is
valid (see the definition of a valid ledger above). If so,
set Lm = (B1, B2, . . . , Bi, Bi+1, . . . , Bj). If not, invoke
the recovery protocol (§4).

4. Create an approval transaction (m, j, H(Bj))σm . Post
the transaction to the BSP using append.

5. Compute an approved prefix of the BSP’s ledger using
the following steps:

5a. Find the “most recent” approval transaction from each
member (i.e., an approval transaction that encodes the
longest prefix of the ledger) embedded in Lm. Let
A = [AM1 ,AM2 , . . . ,AMk ] denote those transactions,
where M1, M2, . . . , Mk are the identities of members
in the blockchain network.

5b. Compute the approved height ĥ = min∀a∈A a.h and
the approved ledger is a prefix of Lm with height ĥ.

We now prove that this protocol satisfies a desirable
consistency property defined below.

Definition 3.1. Two valid ledgers L1 and L2 are consis-
tent iff, for 0 ≤ i ≤ min(height(L1), height(L2)), block i
on L1 is the same as block i on L2.

Lemma 3.1. If two correct members m1 and m2 compute
approved ledgersLm1 andLm2 respectively, then they must
be consistent regardless of actions of any other members
and the BSP.

Proof. A correct node always maintains the following in-
variant: its approved prefix is always a valid ledger. Thus,
we just need to prove that approved ledger prefixes com-
puted by a pair of correct nodes are consistent according
to the above definition. We use proof by contradiction.

Suppose Lm1 and Lm2 are not consistent. Let i be the
first index such that block i on Lm1 is different than block
i on Lm2 , where block i is in the approved prefix of ledger

Lm1 and Lm2 . Since blocks in the ledger point to their
previous block, the hash of the block at height j ≥ i is
distinct on each ledger. Because the members are correct,
any approval transaction from a member node for height
j ≥ i must contain a different block hash on the two
ledgers.

Now, by the computation of the approved height, we
see that there must exist some approval transaction on
the full ledger Lm2 of the form (m1, j, H(Bj))σm1

for j ≥
height(Lm2). Since block i is contained in the approved
prefix of Lm2 , we know that height(Lm2) ≥ i. Thus, we
see that j ≥ i.

Since m2 is correct, we know that Lm2 is a well-
formed ledger. So, existence of the approval transaction
(m1, j, H(Bj))σm1

from m1 means that the block hash at
height j on Lm2 is H(Bj). Since m1 has signed that ap-
proval transaction, this means that the block hash at height
j onLm1 must be the same as the hash in the approval trans-
action (i.e., H(Bj)). However, this is not possible since we
assumed that block i on both ledgers are distinct and j ≥ i.
Hence the two ledger prefixes must be consistent.

3.5 Flexible policies on safety and availability

The verifier in the prior subsection ensures a strong safety
property to each correct member. The safety property
holds even if the BSP is malicious and even if any subset
of other members behave maliciously. Consistent with
our realistic liveness principle (§2.2), it requires periodic
participation from every member in the system. We now
discuss how different blockchain deployments can config-
ure policies to trade off safety for availability—without
any changes to the core design of the verifier or the BSP.
Such a support for flexible policies is a side effect of
how VOLT orchestrates self-verifying ledgers: the verifier
run by each member lazily validates a ledger created and
maintained by the BSP.

Concretely, we describe how the VOLT verifier can re-
lax the availability requirement on members—at the cost
of introducing assumptions for ensuring safety properties.
At a high level, this refinement adopts quorum intersec-
tion ideas from classical fault-tolerance protocols [31, 57].
It guarantees safety and liveness as long as any 2/3rd of
members and the BSP participate in the system. Specifi-
cally, the verifier on each member runs the same protocol
as before except that it computes the approved prefix a
bit differently with a two-round approval protocol (i.e.,
step 5 in the protocol discussed in Section 3.4):

a. Find the most recent approval transaction from each
member in Lm as before and sort them based on the
length of the ledger prefix encoded in those transac-
tions. Let Â = [A1,A2, . . . ,Ak] denote the sorted
approval transactions, one from each of the k mem-
bers, embedded in Lm.

5



T(m1, B11) 
T(m4, B10)

T(m3, B12)
T(m1, B13) 
T(m2, B13)

T(m1, B10) 
T(m2, B10) 
T(m3, B10)

. . .

B10 B11 B12 B13 B14

approved 
height

pre-approved 
height

FIGURE 3—State of the BSP’s ledger during an example run
of the two-round approval protocol (§3.5). We denote Bi as
the previous block for Bi+1 and omit metadata blocks. We use
T(mi, Bj) to denote a approval transaction from a member node
mi for block Bj (§3.4). Suppose there are four members (i.e., n =
4), so at most one member can be faulty (i.e., f=1). Observe that
2f +1 members (i.e., m1, m2, m3) have sent approval transactions
for block B12 or B13, thus all blocks prior to and including
B12 are pre-approved. To find the approved block with the
highest height, members run the same algorithm assuming that
the ledger ends at the highest pre-approved height. This ensures
that at least 2f + 1 members have witnessed the block at the
highest pre-approved height. Thus, all blocks up to and including
B10 are approved.

b. Compute the pre-approved height as ĥp = A⌈2n/3⌉.h.
The pre-approved ledger is the prefix of Lm with
height ĥp.

c. Rerun the above two steps with the pre-approved
ledger. Output the resulting ledger prefix as the ap-
proved prefix.

Figure 3 depicts an example run. We now prove that
this modified protocol preserves consistency and liveness.
Our proofs rely on the assumption that at most ⌊n/3⌋
members deviate arbitrarily from their prescribed protocol
where n is the total number of members at any instance in
the system. Consider n = 3f + 1 members where at most
f members can deviate from their protocol.

Lemma 3.2. If two correct members m1 and m2 output
approved ledgers Lm1 and Lm2 respectively, then the two
ledgers are consistent as long as at most f members devi-
ate arbitrarily.

Proof (sketch). We first prove the following: if a block b
is in the pre-approved ledger at height h for one correct
member, then no block b′ can be in the pre-approved
ledger at height h for any other correct member. If a block
b is in the pre-approved ledger at height h, then there is at
least 2f +1 members whose approval transactions include
block b at height h. Thus, if block b′ is in the pre-approved
ledger at height h for some other correct member, then
there is another set of 2f + 1 members whose approval
transactions include block b at height h. Since there are
only 3f + 1 members, these two quorums intersect in
at least f + 1 members, of which at least one is correct.
Therefore, at least one correct member must have sent an
approval transaction for block b and block b′ at height h,
which is a contradiction. Since the approved ledgers are

a prefix of the pre-approved ledgers, our lemma implies
that any two approved ledgers are consistent.

Lemma 3.3. If the BSP is live, then any transaction sub-
mitted to the BSP will eventually appear in the approved
prefixes of correct members as long as at most f members
deviate arbitrarily.

Proof (sketch). The liveness property is satisfied since no
coalition of f members can stop the protocol from mak-
ing progress: our two-round approval protocol requires
participation of only 2f + 1 members and the BSP.

3.6 Network governance: dynamic membership

One of the requirements of permissioned blockchain net-
works is support for network governance. The simplest ex-
ample is managing membership in the network—adding
and removing members from the network. Other examples
include evolving transaction processing state machine, or
updating the identity (i.e., public key) of a member. Such
reconfiguration is a thorny problem in traditional replica-
tion protocols.

Fortunately, it is straightforward to implement net-
work governance tasks with VOLT. Our key insight is that
a self-verifying ledger (where members share a consistent
view of the ledger) is a powerful abstraction to efficiently
implement desirable network governance tasks. Specifi-
cally, we can treat the list of members or their identities as
state on the BSP’s ledger. Thus, we can mutate that state
consistently with our transaction processing logic; and
share a consistent view of such transactions via VOLT’s
approval protocol.

Concretely, the ledger’s state machine contains a vari-
able for the list of members identified by their public keys.
Members can submit transactions to add new members
or remove members from that list. Such transactions get
sequenced in the BSP’s ledger similar to regular transac-
tions. Since members share a consistent view of the BSP’s
ledger, every pair of correct members share a consistent
view of the network membership. To prevent malicious
members from misusing such transactions, a simple refine-
ment is to require that such network governance transac-
tions carry digital signatures from a quorum of members
(where the quorum size can be configured depending on
the application). Finally, we expect such governance trans-
actions to be executed infrequently in practical permis-
sioned blockchains, so network governance tasks create
negligible impact on transaction processing throughput.

4 Recovery
The BSP is untrusted by members in a VOLT blockchain
network, except for its availability. However, a compro-
mised BSP can deviate from its desired behavior. For
example, the BSP can create an ill-formed ledger, which

6



is easy to detect locally by the verifier on each mem-
ber. It can also mount a more sophisticated attack that
is hard to detect locally (e.g., the BSP can create a fork
in a ledger that assigns two different blocks to the same
height and expose different forks to different members).
This by itself does not violate any safety property (from
a member’s perspective), but members must detect and
recover from such behavior. Otherwise, it can turn into a
liveness violation.

To address this, VOLT includes a simple mechanism
to reinitialize the state of the BSP. Conceptually, the
BSP in VOLT is similar to a leader in traditional BFT
protocols—although a leader in BFT is an unreliable
replica whereas VOLT’s BSP is an internally-replicated
highly-available service hosted on the cloud. We adapt
ideas from the view-change protocol in traditional BFT
protocols to recover from failures of the BSP. We now dis-
cuss VOLT’s recovery protocol for the one-round approval
protocol (§3.4). The same mechanism can be adapted to
the two-round approval protocol (§3.5) where only 2/3rd
of members need to participate in the protocol.

4.1 Initializing the state of the new BSP

When a correct member detects misbehavior of the BSP,
it convinces other correct members that the BSP is misbe-
having by broadcasting a message to other members. For
safety violations, this is done by broadcasting a proof of
misbehavior, such as a forked chain signed by the BSP or
a malformed ledger signed by the BSP. For liveness viola-
tions, however, it is hard to prescribe a solution for every
application. For some applications, it may be enough for
there to be a programmatic solution like sending a “sus-
pect liveness violation” message to everyone, and then
if a threshold number of members sign the same, correct
members mark the BSP to be faulty and members move
to a new BSP. However, other applications may rely on
human operators or other complex business processes to
mark the BSP faulty. We abstract this and assume that
if one correct member marks the BSP as faulty, then all
other correct members will eventually mark the BSP as
faulty. Recovering from a failed or faulty BSP involves
two steps.

(1) Selecting a new BSP. The new BSP could simply
be a different instance of the BSP on the same service
provider who hosted the prior BSP that is now marked
faulty. Alternatively, the new BSP may be selected ahead
of time or via an offline method. We assume that even-
tually every member agrees on the same new BSP (this
only affects liveness, but not safety as we show later in
the section).

(2) Initializing the new BSP. The new BSP creates a
ledgerL∗ by using the local states of members,L1, . . . ,Ln.
The new BSP selects an L∗’s identity (§3.2) to be greater

than the identity of the ledger that members want to re-
cover. This is analgous to ballot (or view) numbers in tra-
ditional BFT protocols [31]. The new BSP simply records
the local state of all members on the new ledger.

4.2 The verifier’s checks

When the verifier on a correct member marks the BSP as
faulty, it stops interacting with the old BSP. Furthermore,
when the verifier receives a ledger L∗ from the new BSP,
it executes the following checks.

1. By reading L∗, the verifier locally computes a prefix
as follows:

1a. The verifier first drops any Li that is sent from a mis-
behaving member node by checking two invariants:
(i) Li is a valid ledger and (ii) the height of Li is
greater than or equal to the height of any approval
transaction sent by member mi that appears on any
other ledger. DefineA = [L1,L2, · · · Ln] to be the list
of the remaining ledgers.

1b. Let the longest consistent prefix of a set of ledgers
C be the ledger, lcp(C), that is consistent with every
ledger in C and is of maximum height.

1c. The verifier then computes L′ = lcp(A).
2. The verifier then sends an approval transaction that

certifiesL′ on the new BSP’s ledgerL∗. Once the veri-
fier sees approval transactions from all other members,
then it continues to use L∗.
We now show that, for any correct member m, the

above protocol results in the new BSP containing a ledger
L′ that has m’s approved prefix as a prefix of L′. This
protocol is deterministic given the same L∗, so all correct
verifiers will compute the same L′. First, note that the
approved prefix of each member should be a prefix of
all local ledgers included in A. Any ledger not satisfying
property would have been dropped due to Lemma 3.1.2

Finally, to prove correctness of our protocol, we start
with the following lemma:

Lemma 4.1. For a correct member m1, letA be the list of
the ledgers computed in step 1a of the recovery protocol,
then m1’s approved prefix Lm1 is a prefix of any ledger
L′

m2 ∈ A from a member m2.

Proof. Because ledger Lm1 is an approved prefix, due
to the invariants in step 1a, there exists some approval
transaction from m2 of the form
(m2, j, H(Bj))σm2

, where j ≥ height(Lm1) and H(Bj) is the
hash of the block at height j for both Lm1 and m2’s ledger

2Note that, if a member m is compromised with its local ledger corrupted
or lost, VOLT does not guarantee that the previously approved prefix
on m remains a prefix of the new ledger after the recovery. But the
compromise of m does not affect others; the property holds for any
correct member.

7



L′
m2 . Furthermore, since Lm1 is an approved prefix, we

know that it must be a prefix of a ledger whose block
at height j has a block hash H(Bj). Call this ledger L(j).
Additionally, this ledger is unique as H(·) is collision-
resistant.

However, since L′
m2 is valid and contains the above

approval transaction, it must have a block at height j
whose block hash is H(Bj). Therefore, we see that L(j) is
a prefix of L′

m2 . Thus, we see that Lm1 is a prefix of L′
m2 ,

as desired.

Lemma 4.2. Suppose a correct member m1’s verifier
computes L′ during recovery and m1 has an approved
prefix Lm1 before recovery. Then, Lm1 is a prefix of L′.

Proof. By Lemma 4.1, we see that Lm1 is a prefix of
any ledger in A computed in step 1a. Since a correct
member m1 computes L′ as the longest common prefix
of all ledgers in A, we see that L′ must contain Lm1 as a
prefix.

Note that our recovery protocol’s correctness (due
to Lemma 4.2) only relies on Lemma 4.1. Thus, we can
adapt our recovery protocol slightly to work for any safety
policy that satisfies Lemma 4.1, which includes our two-
round approval protocol (§3.5).

5 Implementation
We implement VOLT in 6,000 lines of Rust. The verifier
implementation—that a member must trust or can imple-
ment itself—is only 1,500 lines of code, and the rest is the
BSP implementation, which is about 4,500 lines of code.
Each member persists its local state using LevelDB.3 We
implement the BSP as a Web service built with the Rocket
framework.4 Each API of the BSP (§3.3) is handled by a
separate microservice. All the BSP’s microservices oper-
ate on state maintained in a fault-tolerant data store (our
prototype uses Azure CosmosDB).5

Concretely, the microservice that implements the
append API creates the ledger data structure as an entry
in a table on CosmosDB; and the microservice that im-
plements read API serves its requests by executing read
operations on the same table. Each block of a ledger cre-
ated with the BSP is keyed by the tuple (lid, height) where
lid is the identity of the ledger and height is the height of
the block stored at this location. To reduce roundtrips
to the database, read API issues range queries to re-
trieve a batch of blocks at once from the table in Cos-
mosDB. Finally, we use SHA-256 for a collision-resistant
hash function, and Ed25519 for digital signatures. For
these cryptographic operations, we use rust-crypto

3https://github.com/google/leveldb
4https://github.com/SergioBenitez/Rocket
5https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

and ring crates.6 We have not implemented extensions
for recovery (§4), but it does not impact the normal-case
performance.

Application: Distributed payment network. To demon-
strate the costs and benefits of VOLT, we build a realistic
application: a distributed payment network for a group
of financial institutions, such as banks, to process and
settle payment transactions on behalf of their customers.
At a high level, a payment network consists of a set of
accounts. Each account has a name and a balance. A trans-
action in such a network consists of a transfer of value
from one account to another. In our case, each account is
named by a public key in a digital signature scheme (i.e.,
an Ed25519 public key), which makes it easy to authen-
ticate transactions. We now discuss how we implement
such a payment network with VOLT.

Network constitution. Naturally, financial institutions
that wish to transact with one another form the set of mem-
bers in VOLT’s protocol. The member set can grow or
shrink over time using VOLT’s governance (§3.6). These
members maintain a self-verifying ledger (containing all
transactions including approval transactions processed by
the network) such that all members share a consistent
view of the shared ledger. However, we need a way to
bootstrap the system with a set of accounts and balances.

Bootstrapping accounts. To bootstrap accounts, our
implementation employs a group of credit providers who
have the ability to inject new currency into the network,
which is similar in spirit to many enterprise payment net-
works [41, 64]. A credit provider is any bank in the mem-
ber set who can issue coins on the ledger to any account.7

Note that our payment network application generalizes
easily to any digitally-issued assets [84].

Processing transactions. The internal state of the ledger
at any point includes: (1) the list of members in the
blockchain network, (2) the list of credit providers, and
(3) accounts. All these entities are identified by their pub-
lic keys. The blockchain network processes two types
of transactions. A credit provider can create an issue
transaction, which supplies new coins to an account. The
account owner can then spend those coins by creating
a spend transaction, which transfers coins from one ac-
count to another. To prevent an adversary from replaying
transactions, we employ a standard technique: transac-
tions include per-account sequence numbers, and they
must be monotonically increasing.

6https://crates.io/crates/ring
7The idea is that such a credit provider abides by a legally-enforceable
contract that the coins it creates can be converted back to a fiat cur-
rency at anytime by transferring those issued coins back to the credit
provider’s account in the payment network. Another example is a cen-
tral bank of a country who issues coins on this payment network to
a particular financial institution, perhaps after deducting fiat money
in that institution’s account at the central bank. The latter example is
similar to a use case considered in prior works [26, 41].

8



6 Experimental evaluation
Our goal in this section is to demonstrate that the verifier
in VOLT incurs modest resource costs to participate in a
blockchain network and that VOLT can achieve perfor-
mance sufficient for many of our target applications.

Our experimental evaluation answers the following
questions. First, what are the resource costs imposed
on members in a VOLT blockchain network? Second,
what is the end-to-end performance of VOLT in terms
of throughput and latency? And how does it compare to
other blockchain systems? We answer these questions
in the context of an enterprise application: a distributed
payment network that we built atop VOLT (§5). Note the
same application can be used for other forms of consor-
tium applications for asset tracking and value exchange.
Figure 4 summarizes our results.

6.1 Setup, metrics, and microbenchmarks

We deploy the BSP on a cluster of five machines on Mi-
crosoft Azure cloud, each with the following configura-
tion: Ubuntu Linux 16.04 running on Standard_F16s_v2
VMs (i.e., an Intel Xeon E5-2673 v3 processor, 16 cores,
32 GB RAM, and 128 GB local SSD storage). In our ex-
periments, we reserve 250 GB for storage and 500,000
request units per second on Azure’s CosmosDB.8 We use
a similar cluster to run members, but we pack multiple
members on the same machine to allow us to experiment
with larger network sizes without deploying excessive
hardware. Note that members and the BSP machines run
in the same geographic region, so our results do not con-
sider the effect of a geo-distributed deployment. We ex-
pect the peak throughput to remain the same, but discuss
the effect on end-to-end latency due to a wide-area net-
work below. We run all experiments at least five times and
report averages. Standard deviations are less than 10%,
so we do not report them.

Our principal evaluation metrics include: resource
costs (CPU, network, etc.) imposed on members to partic-
ipate in a blockchain network; we are also interested in
throughput (in transactions/second) and latency (in sec-
onds). In our experiments, we use a dedicated machine to
submit transactions to the BSP, and members execute the
VOLT approval protocol to locally compute their approval
prefixes.

Microbenchmarks. To put our end-to-end performance
results in context, we run a set of microbenchmarks to
measure the cost of various cryptographic primitives that
VOLT uses. Figure 5 depicts our results. As expected, the
cryptographic operations that VOLT relies on are light-
weight, thus we expect VOLT’s approval protocol to add
negligible overheads to end-to-end performance.

8https://docs.microsoft.com/en-us/azure/cosmos-db/request-units

6.2 Resource costs of VOLT’s verifier

The principal cost incurred by a member in VOLT is par-
ticipating in the approval protocol: members must validate
the BSP’s ledger, send approval transactions, and compute
approval prefixes by using approval transactions of other
members. To understand these costs, we run a series of
experiments in which the verifier interacts with the BSP
and executes the approval protocol (§3.4).

We measure resource costs in terms of CPU, storage,
and network incurred by the verifier in these experiments.
Figure 6 summarizes our results. As we expect from our
microbenchmarks, the verifier incurs little overheads to
participate in VOLT’s approval protocol.

6.3 End-to-end performance of VOLT

To understand VOLT’s performance, we deploy the BSP
and members on our cluster (§6.1), configured to run
our payment network (§5). For comparison, we consider
the following baselines: (1) a private Ethereum network
using Azure Blockchain as a Service [6]; (2) Chain [2], a
system closest to VOLT except that it does not provide the
same level of security and recovery guarantees as VOLT;
(3) VOLT–, A version of VOLT that does not include its
approval protocol (hence trusts the BSP for security).

To put our results in perspective, we also compare
VOLT’s performance to recent BFT-based permissioned
blockchains [17, 47]. Asymptotically, VOLT requires the
same number of messages to reach consensus as prior
BFT protocols, although it achieves a natural batching
effect due to its approval transactions (§3.4). Thus, our
goal here is not to demonstrate that VOLT performs bet-
ter or worse than BFT-based baselines, but rather assess
whether VOLT’s performance is in the same ballpark—
while achieving its design goals (§2.2), which are relevant
for practical deployments of permissioned blockchains.
For comparison, we rely on results reported in their pa-
pers (on comparable hardware); in the future, we plan to
run those systems on the same hardware platform.

For other baselines, we implement the payment net-
work application on Ethereum using Solidity [10], and de-
ploy a private Ethereum network using Azure Blockchain
as a Service [6]. The other baseline, Chain [2], natively
supports such an application. We deploy both of them on
the same cluster and measure their transaction processing
throughput. By default, Chain generates a block with ≈ 1
second latency, so we configure VOLT so members send
their approval transactions every second. For VOLT and
VOLT–, we batch 1,000 transactions in a block and use
our one-round approval protocol (§3.4).

Throughput. To measure the throughput of processing
transactions, we use a client process that submits trans-
actions to a given blockchain network: the client process
creates multiple threads where each thread submits trans-

9



The verifier in a VOLT blockchain network incurs small resource costs §6.2
VOLT scales to realistic workloads: 20,000 transactions/second and sub-second block latencies, with 50 members §6.3
The approval protocol adds negligible overheads on the transaction processing throughput §6.3

FIGURE 4—Summary of evaluation results

Size of signature material
key pair 85 bytes
public key 32 bytes
signature 64 bytes

CPU cost of signature operations
generate a key pair 85.7µs
sign a message 43.3µs
verify a signature 0.14 ms

Ledger parameters
transaction size ≈ 188 bytes
block size (1000 transactions) ≈ 220 KB

FIGURE 5—Microbenchmarks for VOLT’s underlying crypto-
graphic primitives and ledger building blocks.

CPU costs
generate approval transaction <100µs
verify approval transaction 0.15 ms
validate ledger (100 blocks, batch=1000) 0.40 s
validate ledger (200 blocks, batch=1000) 0.85 s
validate ledger (400 blocks, batch=1000) 1.22 s

Storage costs
block (batch=1000) ≈ 220 KB

Network costs
approval transaction 256 bytes

FIGURE 6—Resource costs of members in a VOLT.

 0

 5000

 10000

 15000

 20000

 25000

tr
a
n
s
a
c
ti

o
n
s
/s

e
c
o
n
d

Ethereum

Chain

VOLT-

VOLT

1
1

5
6

2
2
.1

4
K

2
1
.8

3
K

FIGURE 7—Transaction processing throughput of VOLT and
its baselines (§6.1) for our payment network application (§5).
VOLT does not rely on mining, so its throughput is orders of
magnitude higher than Ethereum. We find Chain to be unop-
timized for throughput, but we include it here for rough com-
parison. Both VOLT and VOLT- achieve excellent throughput
due to their powerful BSP. See text for additional details of the
experiment.

actions in a closed loop. We then measure the number
of transactions processed per second by the blockchain
network and latency for each transaction from the perspec-

tive of the client process. To determine peak throughput,
we progressively increase the number of threads in the
client process. Figure 7 depicts our results.

As expected, VOLT’s throughput is orders of magni-
tude better than a private Ethereum network since
Ethereum uses expensive proof-of-work, which is unnec-
essary for permissioned blockchain networks. Perhaps
surprisingly, Chain’s throughput is not significantly better
than Ethereum (though it does not use proof-of-work to
construct a ledger): we find that its codebase is not opti-
mized for high throughput, possibly because we use the
developer edition.9 Furthermore, the results we describe
for Chain is optimistic for Chain: we depict results with a
single member (whereas for VOLT and VOLT–, we use
10 members in the network) as our measurements show
much worse performance for Chain when we vary the
number of members from 1 to 8. This is indeed not funda-
mental as we demonstrate with VOLT–, which is similar
to VOLT except that it does not use the approval protocol
(so VOLT– is closer to Chain except for the microser-
vices architecture with a highly-available cloud storage
service).

The key takeaway is that VOLT and VOLT– both
achieve similar throughput i.e., VOLT’s approval protocol
adds negligible overheads. The fundamental reason is that
members send their approval transactions every second
i.e., every ≈20 blocks. Since there are only 10 approval
transactions (i.e., one from each member) per second sub-
mitted to the BSP (vs. 0 in VOLT–), the overheads on
end-to-end throughput are negligible: the BSP processes
≈20K regular transactions/second and approval transac-
tions constitute less than 0.1% of regular transactions (for
this configuration we experiment with).

Finally, compared to BFT-based systems, VOLT achieves
competitive performance: VOLT has higher throughput
(by a small factors), but it also incurs higher latency com-
pared to those BFT-based systems (not depicted). For
example, Hyperledger Fabric [17] achieves about 4,000
transactions/second with several hundred milliseconds of
latency, and SBFT [47] achieves about 10,000 transac-
tions/second with 100 ms of latency,
whereas VOLT’s latency is about 2 seconds with one-
round approval protocol. VOLT can also lower its la-
tency to hundreds of milliseconds since the verifier is
fast enough to validate a ledger and submit its approval
transactions (Figure 6)—while not significantly overload-
ing the BSP with their approval transactions.

9https://github.com/chain/chain

10



Larger network sizes. Many permissioned blockchain
applications require the system to scale to tens of mem-
bers. We now assess whether VOLT can support such
network sizes. we run many experiments with number of
members varied in increments of 10. We keep the same
parameters for the approval protocol as before.

Figure 8 depicts our results. We find that VOLT with
its experimental infrastructure backed by a powerful cloud
storage can sustain high throughput (>20K transactions/second)
with tens of members in a network. However, our imple-
mentation does not scale indefinitely, and the BSP appears
to the bottleneck in our current implementation: for larger
network sizes with 60 or 70 members, the BSP’s through-
put drops to several thousand transactions per second. We
hypothesize that VOLT can sustain its peak throughput
if we introduce a sophisticated caching layer at the BSP
between its microservices and CosmosDB and shard the
data stored on CosmosDB so that it can support collec-
tively support larger request rates. Experimenting with
these refinements is work in progress.

FIGURE 8—Throughput of VOLT with increasing network sizes.
Our experimental results demonstrate that VOLT can sustain
realistic throughput for modest-sized networks (see text for
details of the experiment).

7 Related work
VOLT relates to prior work in distributed systems and
cryptocurrencies. We now discuss their relationship with
VOLT. (Bonneau et al. [24] and Cachin et al. [30] provide
an excellent survey of many of these works.)

BFT and permissioned blockchains. Byzantine fault-
tolerant (BFT) replication protocols enable building dis-
tributed systems that can tolerate the compromise of a
fraction of machines in the system. Following PBFT [31],
there is a long line of work to improve performance [49,
55, 56, 63, 75], robustness [32, 37, 60], confidential-
ity [85, 86], and fault models [15] of BFT protocols.
These protocols and systems were developed for replicat-
ing a service for fault-tolerance. However, one could apply
them to build a permissioned blockchain network [5, 8, 26,

78]. There are also recent proposals [17, 47, 64, 67, 74]
to improve prior BFT protocols in the context of permis-
sioned blockchain networks. VOLT departs from these
works by embracing a different set of design principles
that are more suitable in the context of a permissioned
blockchain (§2.2), which leads to a significantly different
design (§3)—while being competitive on performance
with the state-of-the-art BFT systems (§6).

Public cryptocurrencies. Cryptocurrencies such as Bit-
coin [68] and Ethereum [83] create a trustworthy ledger
abstraction using a combination of resource-intensive puz-
zles and incentives [45, 69, 73]. However, enterprises
cannot directly use them to build our target business ap-
plications (§2.1). If we look at them from a traditional
systems perspective, they scale poorly [27, 40]. There are
proposals to address the performance limitations of these
systems [14, 42, 46, 53, 66, 75]. However, they all operate
in a permissionless model (so they must defend against
Sybil attacks). Thus, they inherently require incentives
(provided in the form of a cryptocurrency by the proto-
col) in addition to proof-of-work [14, 42, 53] (or alter-
nate approaches such as proof-of-stake [20, 21, 52, 88]).
Thus, the guarantees of these systems are rooted in con-
suming resources to prevent Sybil attacks. Finally, these
cryptocurrencies are monetarily expensive. For exam-
ple, it costs over millions of USD per GB of storage
on Ethereum.10 Compared to these works, VOLT targets
enterprise applications where entities have well-known
identities sidestepping the need for expensive permission-
less consensus protocols.

Untrusted storage. As in VOLT and other blockchain
systems, prior untrusted storage systems [29, 43, 59, 61,
62, 76, 79] use hash chains to prevent untrusted partici-
pants in the system from tampering with operation his-
tories. For example, they use hash chains to implement
various storage interfaces such as file systems [59], key-
value stores [43, 61, 76, 79]. All these systems target low
latency and high availability (e.g., they strive to avoid
client-to-client communication), so they only provide
weaker consistency guarantees such as variants of fork
consistency [65]. Since VOLT targets mission-critical ap-
plications with financial implications (§2), VOLT prefers
stronger safety and higher throughput over low latency.
While these systems implement various storage inter-
faces, VOLT is more general since it exposes the abstrac-
tion of a ledger, which it uses to store a general-purpose
state machine and transactions. Cachin proposes a similar
abstraction atop a ledger, but retains the weaker fork-
linearizability [28].

Trusted hardware. A2M [34] and Trinc [58] explore
small trusted primitives (at each server) for building trust-

10It costs 20,000 gas/256 bits [83]; the gas price is ≈ 10−8 ETH [3, 4].

11



worthy distributed systems. Relatedly, there are other pro-
posals for permissioned blockchains by relying on trusted
hardware such as Intel SGX enclaves (e.g., Coco [7] and
Sawtooth Lake [9]). REM [90] leverages enclaves in con-
junction with proof-of-useful-work to operate in an open,
permissionless model. VOLT does not require a trusted
hardware. We leave it to future work to explore extensions
to our current design to offload more work to the BSP.

Other substrates. Several works [11, 89] propose using
secure hardware for trusted data injection into blockchain
systems. VOLT can naturally incorporate these ideas. Vir-
tual chain [71] proposes a layer atop blockchains (like
VOLT’s protocol), but only provides fork* consistency.
Many works [16, 23, 35, 82] propose techniques to reduce
(in a security proof sense) equivocation by entities that
generate hash chains to the security of a public blockchain.
VOLT can leverage them to limit BSP’s misbehavior when
members are offline. Finally, CoSi [80] enables a group
of entities to create succinct signatures on a given state-
ment. It can be used in VOLT to compress approval trans-
actions. However, it requires increased coordination be-
tween member nodes and the BSP to generate a signature.
Furthermore, the BSP must know how many signatures
it has to collect and what policies member nodes follow
to commit transactions. All of these are oblivious to the
BSP in our current design. Thus the use of CoSi increases
the complexity of the BSP.

8 Discussion
Verifier acceleration and additional outsourcing. In
VOLT, members re-execute transactions on the BSP’s
ledger to verify their validity. As a simple extension, the
verifiers can save CPU resources by batch verifying sig-
natures. In the future, we wish to employ recent progress
on verifying concurrent applications and services [81]
to make the BSP process transactions concurrently and
to further accelerate the verifier. Relatedly, we wish to
augment the BSP to employ cryptographic verifiable com-
putation protocols [19, 25, 72] to produce a succinct proof
that the ledger contains only valid transactions. Members
can simply verify such succinct proofs before sending
their approval transactions.

Confidentiality. VOLT does not aim to provide con-
fidentiality properties, for example, hiding data and/or
metadata about transactions from entities not involved in
a transaction. There are broadly two existing approaches
to confidentiality: (1) using trusted execution environ-
ments such as Intel SGX to process transactions [7, 9];
and (2) applying cryptographic proof systems [33, 54, 70].
Both approaches compose well with VOLT; we leave it
to future work to integrate them with VOLT.

Fairness. A key concern in blockchain systems is pro-
viding a form of fairness to transactions. Broadly speak-

ing, fairness typically means that transactions will be con-
firmed in a timely manner. Permissionless blockchains use
transaction fees (i.e., economic incentives) to achieve fair-
ness. An potential approach is to encrypt the transactions
and hide useful metadata through the use of hardware
enclaves and/or other cryptographic methods [18, 54].
However, there is no perfect solution: while we can try to
hide the transaction data and some metadata, malicious en-
tities can always filter transactions based on any metatdata
that can be inferred via collusion with other malicious
members, a point made by Herlihy and Moir [50] who
also propose a scheme to improve fairness in blockchains
via accountability [48, 87]. VOLT can be extended to
incorporate these ideas depending on the application.

9 Summary
This paper studies the problem of designing a permis-
sioned blockchain for an emerging class of mission-critical
cross-organizational business applications among a group
of mutually distrusting members. Our goal was to build
a system that is (1) member-centric (ii) achieves practi-
cal performance, (iii) ensures strong safety guarantees to
each correct member in the system. These goals led us to
depart from prior work on BFT (§2.2,§7) and embrace the
concept of a self-verifying ledger orchestrated with a sim-
ple verifier on each member and an untrusted blockchain
service provider (BSP). Our system, VOLT, implements
this concept and achieves all of the above goals; it is also
simple to implement and deploy in practice.

References
[1] Azure Cosmos DB.
https://docs.microsoft.com/en-
us/azure/cosmos-db/introduction.

[2] Chain Core. https://chain.com/technology/.
[3] Ether historical prices (USD).
https://etherscan.io/chart/etherprice.

[4] Ethereum average gasprice chart.
https://etherscan.io/chart/gasprice.

[5] Hyperledger – Blockchain for Business.
https://www.hyperledger.org/.

[6] Microsoft Azure Blockchain as a Service (BaaS).
https://azure.microsoft.com/en-
us/solutions/blockchain/.

[7] Microsoft Coco framework.
https://github.com/Azure/coco-
framework/blob/master/docs/Coco%
20Framework%20whitepaper.pdf.

[8] Quorum.
https://github.com/jpmorganchase/quorum.

[9] Sawtooth Lake. https://intelledger.github.io/.
[10] Solidity.

https://solidity.readthedocs.io/en/develop/.
[11] The Cryptlet Fabric.

https://github.com/Azure/azure-blockchain-

12

https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://chain.com/technology/
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/gasprice
https://www.hyperledger.org/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://github.com/Azure/coco-framework/blob/master/docs/Coco%20Framework%20whitepaper.pdf
https://github.com/Azure/coco-framework/blob/master/docs/Coco%20Framework%20whitepaper.pdf
https://github.com/Azure/coco-framework/blob/master/docs/Coco%20Framework%20whitepaper.pdf
https://github.com/jpmorganchase/quorum
https://intelledger.github.io/
https://solidity.readthedocs.io/en/develop/
https://github.com/Azure/azure-blockchain-projects/blob/master/bletchley/CryptletsDeepDive.md


projects/blob/master/bletchley/
CryptletsDeepDive.md.

[12] TradeWind markets.
http://www.tradewindmarkets.com/technology-
solutions/.

[13] Trust, confidence and verifiable data audit.
https://deepmind.com/blog/trust-confidence-
verifiable-data-audit/.

[14] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and
A. Spiegelman. Solidus: An incentive-compatible
cryptocurrency based on permissionless Byzantine
consensus. CoRR, abs/1612.02916, 2016.

[15] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P.
Martin, and C. Porth. BAR fault tolerance for cooperative
services. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 45–58, 2005.

[16] M. Ali, J. Nelson, R. Shea, and M. J. Freedman.
Blockstack: a global naming and storage system secured
by blockchains. In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 181–194, 2016.

[17] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. D. Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolic, S. W. Cocco, and
J. Yellick. Hyperledger fabric: A distributed operating
system for permissioned blockchains. In Proceedings of
the ACM European Conference on Computer Systems
(EuroSys), 2018.

[18] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized
anonymous payments from Bitcoin. In Proceedings of the
IEEE Symposium on Security and Privacy, pages
459–474, 2014.

[19] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and
M. Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In Proceedings of the
International Cryptology Conference (CRYPTO), pages
90–108, Aug. 2013.

[20] I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurrencies
without proof of work. In Proceedings of the
International Financial Cryptography and Data Security
Conference, pages 142–157, 2016.

[21] I. Bentov, R. Pass, and E. Shi. Snow white: Provably
secure proofs of stake. Cryptology ePrint Archive, Report
2016/919, 2016.

[22] A. Bessani, J. a. Sousa, and E. E. P. Alchieri. State
machine replication for the masses with BFT-SMART. In
International Conference on Dependable Systems and
Networks (DSN), pages 355–362, 2014.

[23] J. Bonneau. EthIKS: Using Ethereum to audit a CONIKS
key transparency log. In Proceedings of the International
Financial Cryptography and Data Security Conference,
pages 95–105, 2016.

[24] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll,
and E. W. Felten. SoK: Research Perspectives and
Challenges for Bitcoin and Cryptocurrencies. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 104–121, 2015.

[25] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg,
and M. Walfish. Verifying computations with state. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 341–357, 2013.

[26] E. Buchman. Tendermint: Byzantine fault tolerance in the
age of blockchains. Master’s thesis, The University of
Guelph, 2016.

[27] V. Buterin. Notes on scalable blockchain protocols.
https://github.com/vbuterin/scalability_
paper/blob/master/scalability.pdf, 2015.

[28] C. Cachin. Integrity and consistency for untrusted
services. In SOFSEM 2011: Theory and Practice of
Computer Science, pages 1–14, 2011.

[29] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted
storage. SIAM Journal on Computing, 40(2):493–533,
Apr. 2011.

[30] C. Cachin and M. Vukolic. Blockchain consensus
protocols in the wild. CoRR, abs/1707.01873, 2017.

[31] M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Transactions on
Computer Systems (TOCS), 20(4):398–461, Nov. 2002.

[32] M. Castro, R. Rodrigues, and B. Liskov. Base: using
abstraction to improve fault tolerance. ACM Transactions
on Computer Systems (TOCS), pages 236–269, 2003.

[33] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and
E. Shi. Solidus: Confidential distributed ledger
transactions via PVORM. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2017.

[34] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick
to their word. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 189–204,
2007.

[35] J. Clark and A. Essex. Commitcoin: Carbon dating
commitments with bitcoin. In Proceedings of the
International Financial Cryptography and Data Security
Conference, pages 390–398, 2012.

[36] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. UpRight cluster services. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 277–290, 2009.

[37] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making Byzantine fault tolerant systems
tolerate Byzantine faults. In Proceedings of the USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), pages 153–168, 2009.

[38] Cognizant. Blockchain’s smart contracts: Driving the next
wave of innovation across manufacturing value chains.
https://www.cognizant.com/whitepapers/
blockchains-smart-contracts-driving-the-
next-wave-of-innovation-across-
manufacturing-value-chains-codex2113.pdf,
June 2016.

[39] D. Creer, R. Crook, M. Hornsby, N. G. Avalis,
M. Simpson, N. Weisfeld, B. Wyeth, and I. Zielinski.
Proving Ethereum for the clearing use case. Technical
report, Royal Bank of Scotland, 2016.

[40] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels,

13

https://github.com/Azure/azure-blockchain-projects/blob/master/bletchley/CryptletsDeepDive.md
https://github.com/Azure/azure-blockchain-projects/blob/master/bletchley/CryptletsDeepDive.md
http://www.tradewindmarkets.com/technology-solutions/
http://www.tradewindmarkets.com/technology-solutions/
https://deepmind.com/blog/trust-confidence-verifiable-data-audit/
https://deepmind.com/blog/trust-confidence-verifiable-data-audit/
https://github.com/vbuterin/scalability_paper/blob/master/scalability.pdf
https://github.com/vbuterin/scalability_paper/blob/master/scalability.pdf
https://www.cognizant.com/whitepapers/blockchains-smart-contracts-driving-the-next-wave-of-innovation-across-manufacturing-value-chains-codex2113.pdf
https://www.cognizant.com/whitepapers/blockchains-smart-contracts-driving-the-next-wave-of-innovation-across-manufacturing-value-chains-codex2113.pdf
https://www.cognizant.com/whitepapers/blockchains-smart-contracts-driving-the-next-wave-of-innovation-across-manufacturing-value-chains-codex2113.pdf
https://www.cognizant.com/whitepapers/blockchains-smart-contracts-driving-the-next-wave-of-innovation-across-manufacturing-value-chains-codex2113.pdf


A. M. Ahmed Kosba, P. Saxena, E. Shi, E. Gün Sirer,
D. Song, and R. Wattenhofer. On scaling decentralized
blockchains (a position paper). In Proceedings of the
Workshop on Bitcoin Research (BITCOIN), 2016.

[41] G. Danezis and S. Meiklejohn. Centrally banked
cryptocurrencies. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2016.

[42] I. Eyal, A. E. Gencer, E. Gün Sirer, and R. van Renesse.
Bitcoin-NG: A scalable blockchain protocol. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016.

[43] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group collaboration using untrusted
cloud resources. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 337–350, 2010.

[44] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. In Proceedings of the Symposium on Principles
of Database Systems, pages 1–7, 1983.

[45] J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin
backbone protocol: Analysis and applications. In
Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2015.

[46] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and
N. Zeldovich. Algorand: Scaling byzantine agreements
for cryptocurrencies. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
pages 51–68, 2017.

[47] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. K. Reiter, D.-A. Seredinschi, O. Tamir, and
A. Tomescu. Sbft: a scalable decentralized trust
infrastructure for blockchains. arxiv:1804/01626v1, Apr.
2018. https://arxiv.org/abs/1804.01626.

[48] A. Haeberlen, P. Kouznetsov, and P. Druschel.
PeerReview: practical accountability for distributed
systems. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 175–188,
2007.

[49] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K.
Reiter. Zzyzx: Scalable fault tolerance through byzantine
locking. In International Conference on Dependable
Systems and Networks (DSN), pages 363–372, 2010.

[50] M. Herlihy and M. Moir. Enhancing accountability and
trust in distributed ledgers. CoRR, abs/1606.07490, 2016.

[51] J.P. Morgan and Oliver Wyman. Unlocking economic
advantage with blockchain: A guide for asset managers.
http://www.oliverwyman.com/our-
expertise/insights/2016/jul/unlocking-
economic-advantage-with-blockchain.html, July
2016.

[52] S. King and S. Nadal. PPCoin: Peer-to-peer
crypto-currency with proof-of-stake. http:
//peerco.in/assets/paper/peercoin-paper.pdf,
2012.

[53] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,
L. Gasser, and B. Ford. Enhancing Bitcoin security and
performance with strong consistency via collective

signing. In Proceedings of the USENIX Security
Symposium, 2016.

[54] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou.
Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In Proceedings of the
IEEE Symposium on Security and Privacy, 2016.

[55] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), pages 45–58, 2007.

[56] R. Kotla and M. Dahlin. High throughput Byzantine fault
tolerance. In International Conference on Dependable
Systems and Networks (DSN), pages 575–584, 2004.

[57] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems (TOCS), 16(2):133–169, 1998.

[58] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
Trinc: Small trusted hardware for large distributed
systems. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 1–14, 2009.

[59] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2004.

[60] J. Li and D. Maziéres. Beyond one-third faulty replicas in
Byzantine fault tolerant systems. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2007.

[61] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), pages 307–322, 2010.

[62] P. Maniatis. Historic Integrity in Distributed Systems.
PhD thesis, Stanford, CA, USA, 2003. AAI3104277.

[63] J.-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine
quorum systems. In International Conference on
Dependable Systems and Networks (DSN), pages
374–383, 2002.

[64] D. Mazières. The Stellar consensus protocol: A federated
model for Internet-level consensus. Technical report,
Stellar Devlopment Foundation, Apr. 2015.

[65] D. Mazières and D. Shasha. Building secure file systems
out of Byzantine storage. In Proceedings of the ACM
Conference on Principles of Distributed Computing
(PODC), pages 108–117, 2002.

[66] S. Micali. ALGORAND: the efficient and democratic
ledger. CoRR, abs/1607.01341, 2016.

[67] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The
Honey Badger of BFT Protocols. Cryptology ePrint
Archive, Report 2016/199, 2016.

[68] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. Oct. 2008.

[69] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and
S. Goldfeder. Bitcoin and Cryptocurrency Technologies:
A Comprehensive Introduction. Princeton University
Press, 2016.

[70] N. Narula, W. Vasquez, and M. Virza. zkLedger:
Privacy-preserving auditing for distributed ledgers. In

14

https://arxiv.org/abs/1804.01626
http://www.oliverwyman.com/our-expertise/insights/2016/jul/unlocking-economic-advantage-with-blockchain.html
http://www.oliverwyman.com/our-expertise/insights/2016/jul/unlocking-economic-advantage-with-blockchain.html
http://www.oliverwyman.com/our-expertise/insights/2016/jul/unlocking-economic-advantage-with-blockchain.html
http://peerco.in/assets/paper/peercoin-paper.pdf
http://peerco.in/assets/paper/peercoin-paper.pdf


Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2018.

[71] J. Nelson, M. Ali, R. Shea, and M. J. Freedman.
Extending existing blockchains with virtualchain. In
Proceedings of the Workshop on Distributed
Cryptocurrencies and Consensus Ledgers (DCCL), July
2016.

[72] B. Parno, C. Gentry, J. Howell, and M. Raykova.
Pinocchio: Nearly practical verifiable computation. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 238–252, May 2013.

[73] R. Pass, L. Seeman, and abhi shelat. Analysis of the
blockchain protocol in asynchronous networks.
Cryptology ePrint Archive, Report 2016/454, 2016.

[74] R. Pass and E. Shi. The sleepy model of consensus.
Cryptology ePrint Archive, Report 2016/918, 2016.

[75] R. Pass and E. Shi. Thunderella: Blockchains with
optimistic instant confirmation. Cryptology ePrint
Archive, Report 2017/913, Sept. 2017.
https://eprint.iacr.org/2017/913.pdf.

[76] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and
L. Zhuang. Enabling security in cloud storage SLAs with
CloudProof. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2011.

[77] J. Schneider, A. Blostein, B. Lee, S. Kent, I. Groer, and
E. Beardsley. Blockchain: Putting theory to practice. In
Goldman Sachs’ profiles of innovation, May 2016.

[78] D. Schwartz, N. Youngs, and A. Britto. The Ripple
protocol consensus algorithm. Technical report, Ripple
Labs Inc, 2014.

[79] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky,
and D. Shaket. Venus: Verification for untrusted cloud
storage. In Proceedings of the Cloud Computing Security
Workshop (CCSW), pages 19–30, 2010.

[80] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic,
L. Gasser, N. Gailly, I. Khoffi, and B. Ford. Keeping
authorities “honest or bust” with decentralized witness
cosigning. In Proceedings of the IEEE Symposium on
Security and Privacy, 2016.

[81] C. Tan, L. Yu, J. B. Leners, and M. Walfish. The efficient
server audit problem, deduplicated re-execution, and the
Web. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 546–564,
2017.

[82] A. Tomescu and S. Devadas. Catena: Efficient
non-equivocation via Bitcoin. Cryptology ePrint Archive,
Report 2016/1062, 2016.

[83] G. Wood. Ethereum: A secure decentralised generalised
transaction ledger homestead revision.
http://gavwood.com/paper.pdf.

[84] World Economic Forum. The future of financial
infrastructure: An ambitious look at how blockchain can
reshape financial services.
https://www.weforum.org/reports/the-future-
of-financial-infrastructure-an-ambitious-
look-at-how-blockchain-can-reshape-
financial-services, Aug. 2016.

[85] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Byzantine fault-tolerant confidentiality. In

Proceedings of the International Workshop on Future
Directions in Distributed Computing, pages 12–15, 2002.

[86] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
byzantine fault tolerant services. In Proceedings of the
ACM Symposium on Operating Systems Principles
(SOSP), pages 253–267, 2003.

[87] A. R. Yumerefendi and J. S. Chase. Strong accountability
for network storage. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2007.

[88] V. Zamfir. Introducing Casper “The Friendly Ghost”.
https://blog.ethereum.org/2015/08/01/
introducing-casper-friendly-ghost, 2015.

[89] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi.
Town Crier: an authenticated data feed for smart contracts.
Cryptology ePrint Archive, Report 2016/168, 2016.

[90] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. van
Renesse. REM: resource-efficient mining for blockchains.
In Proceedings of the USENIX Security Symposium, 2017.

15

https://eprint.iacr.org/2017/913.pdf
http://gavwood.com/paper.pdf
https://www.weforum.org/reports/the-future-of-financial-infrastructure-an-ambitious-look-at-how-blockchain-can-reshape-financial-services
https://www.weforum.org/reports/the-future-of-financial-infrastructure-an-ambitious-look-at-how-blockchain-can-reshape-financial-services
https://www.weforum.org/reports/the-future-of-financial-infrastructure-an-ambitious-look-at-how-blockchain-can-reshape-financial-services
https://www.weforum.org/reports/the-future-of-financial-infrastructure-an-ambitious-look-at-how-blockchain-can-reshape-financial-services
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost

	1 Introduction
	2 Requirements and design principles
	2.1 Applications and requirements
	2.2 Design goals and principles

	3 Design and architecture
	3.1 Overview of VOLT's self-verifying ledgers
	3.2 Ledgers and blockchain network state
	3.3 Blockchain service provider (BSP)
	3.4 VOLT's verifier and end-to-end verification
	3.5 Flexible policies on safety and availability
	3.6 Network governance: dynamic membership

	4 Recovery
	4.1 Initializing the state of the new BSP
	4.2 The verifier's checks

	5 Implementation
	6 Experimental evaluation
	6.1 Setup, metrics, and microbenchmarks
	6.2 Resource costs of VOLT's verifier
	6.3 End-to-end performance of VOLT

	7 Related work
	8 Discussion
	9 Summary

