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ABSTRACT
Emerging smart cities are typically equipped with thousands of out-

door cameras. However, these cameras are typically not calibrated,

i.e., information such as their precise mounting height and orienta-

tion is not available. Calibrating these cameras allows measurement

of real-world distances from the video, thereby, enabling a wide

range of novel applications such as identifying speeding vehicles,
city road planning, etc. Unfortunately, robust camera calibration is

a manual process today and is not scalable.

In this paper, we propose AutoCalib, a system for scalable, auto-

matic calibration of traffic cameras. AutoCalib exploits deep learn-

ing to extract selected key-point features from car images in the

video and uses a novel filtering and aggregation algorithm to au-

tomatically produce a robust estimate of the camera calibration

parameters from just hundreds of samples. We have implemented

AutoCalib as a service on Azure that takes in a video segment and

outputs the camera calibration parameters. Using video from real-

world traffic cameras, we show that AutoCalib is able to estimate

real-world distances with an error of less than 12%.
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1 INTRODUCTION
Capitalizing on the dramatic reduction in costs of sensing devices,

many smart cities are deploying public cameras at large-scale [2, 3].

For example, according to one estimate, there are as many as 100

million public cameras in China [3]. In this paper, we focus on the

subset of public cameras that are installed to observe road traffic,

called traffic cameras.
Video feeds from many such public traffic cameras are freely

available today [6]. To facilitate building interesting applications

from these video feeds, these traffic cameras need to be calibrated.
Calibration allows automatic estimation of real-world distances in

the traffic videos, thereby enabling development of several novel
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smart city applications: (1) Road safety: Nearly 1.3 million people

die due to road accidents every year [5]. Calibrated traffic cameras

can help in automatic estimation of vehicle speed, enabling always-

on enforcement of road speed limits. Calibrated cameras can also

estimate inter-vehicular and human-vehicle separations, which can

help accident prediction and prevention applications [16]; (2) City
planning: Calibrated cameras can help generate automatic traffic

reports such as count of various vehicles (car, bus, bicycle) and

their flows (direction, turns, etc.) [16]. This can help city officials

in planning, for example, the introduction of special bike lanes. (3)

Multi-camera fusion: Calibration brings different cameras viewing

a scene to the same frame of reference which is essential for multi-

camera fusion applications. Different cameras can collaborate to

construct a 3D-view [17] by fusing the observed images. Finally, au-

tomatic calibration equips cameras to steer themselves and provide

various services [12].

In this paper, we design and implement a system called Auto-

Calib, that takes in a video snippet from a given traffic camera

and automatically outputs its calibration. AutoCalib uses a custom-

trained deep neural network (§ 4), to automatically determine the

location of several carefully-selected key-points from the image of

a car (e.g., tail lamps, mirrors, etc.). AutoCalib then uses a novel

filtering and aggregation algorithm that matches these feature co-

ordinates against known dimensions of the same features of the

most popular car models, filters out outliers (e.g., car model mis-

matches or errors in feature identification) and aggregates the rest

to produce a low-error calibration.

Camera calibration involves estimating two types of camera

parameters, viz., the intrinsic parameters such as focal length and

distortion matrix of the camera, and the extrinsic parameters which

are orientation (represented by rotation matrix R) and position of

the camera in real-world coordinates (T ). In this paper, we focus on

automatic estimation of the extrinsic parameters of traffic cameras

and assume that the intrinsic parameters, which are based on the

camera’s make/model, are known.

Estimation of camera extrinsic parameters is challenging today

as it requires manual effort. When the cameras are installed, the

primary objective is visibility of the scene. Physically measuring

orientation of the installed camera is challenging due to the poor ac-

curacy of commodity compasses which are affected by electromag-

netic properties of the environment. Thus, camera calibration today

is done virtually by visually identifying four or more landmarks in

the scene of the camera, estimating their real-world coordinates

using an application such as Google earth [4], and utilizing these

real-world coordinates to calculate the extrinsic parameters using

a standard vision-based solver (§ 2). This process is error-prone

and manual, requiring enormous human effort for calibrating mil-

lions of already installed cameras. Further, for advanced cameras

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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that have pan, tilt, and zoom (PTZ) capabilities, the calibration has

to be redone whenever the PTZ parameters are changed by the

authorities (which we see often in our dataset [6]).

While the problem of automatic traffic camera calibration has

been studied (§ 3), most prior work make strong assumptions (e.g.,

straight line motion of vehicles) that are often violated, resulting

in high error calibrations. In contrast, AutoCalib assumes only that

known popular car models will occur with sufficient frequency in

the video and utilizes the cars’ known geometric properties (e.g.,

distance between the two tail lights of a Honda Civic).

Advances in deep learning has resulted in high accuracy for im-

age classification tasks [14]. Further, there exists pre-trained models

for several image classification tasks. For example, CompCars [24]

is a pre-trained deep neural network (DNN) that can classify a car

model from an image with high accuracy. Unfortunately, we were

unable to directly use this pre-trained model for our needs because

the image of a single car forms a small part of the typical traffic

camera view as seen in leftmost image in Figure 1.
1
The resolution

of the car image is thus of not sufficient quality for the pre-trained

model to accurately identify the model of the car (visually, the

authors were also unable to identify the models).

However, the features of the car such as the mirrors, tail lights,

etc., are still clearly visible in the image. Thus, we built an anno-

tation tool that would automatically label the location of selected

features of a car from these video images. While deep learning

typically requires thousands of labeled images for training, we use

transfer learning [14] to build a custom DNN from the pre-trained

CompCars DNN using only about 500 manually annotated images

containing labels of car features. In § 6, we show that our anno-

tation tool has a median error of only 6% of the car width, when

compared to the manually annotated labels.

The output of the annotation tool produces the locations of

various car features in the image. From this, we can calculate the

distance between the feature points in the image coordinate system.

We now need their corresponding distances in the real-world. Since

we are unable to automatically identify the car model, we only have

a set of candidates distances (e.g., one each for the top 10 popular

car models). The challenge then is to find a camera calibration that

results in the best match with one of these car models. Errors are

possible due to a variety of reasons including the car in the image

not belonging to any of the top 10 models, errors in the annotation

tool, etc. We thus develop a novel filtering and aggregation algo-

rithm that outputs a high accuracy camera calibration by carefully

filtering out outliers and then averaging the results of estimated

good matches.

We evaluate AutoCalib on ten traffic camera video feeds that

vary in camera location and orientation, and lighting conditions.We

show that AutoCalib is able to produce a calibration with distance

estimation errors of 12% or lower. This is in comparison to distance

estimation errors of about 5% that are inevitable even using the

manual calibration approach described earlier and prior techniques

that result in errors as high as 56% (§ 6). Finally, anonymous viewing

of a live demonstration of AutoCalib is available at [1].

In summary, we make the following contributions:

1
The cameras are typically mounted to provide coverage over as large an area as

possible.

• First robust automatic calibration system for traffic cameras.

• A first of its kind custom-trained DNN-based annotation

tool that automatically annotates several key features of a

car from low-resolution vehicular images.

• A novel filtering and aggregation algorithm that carefully

refines and aggregates a large set of values obtained from the

feature points identified by the annotation tool to produce

an accurate calibration value with about 12% error or less.

2 BACKGROUND
In this section, we describe the pinhole camera model, provide some

background on the camera calibration problem and describe how

calibration can be used in applications.

2.1 Camera Model
The pinhole camera model [22] describes the geometric relationship

between the 2D image-plane (i.e, pixel positions in an image cap-

tured by a camera) and the 3D Ground Coordinate System (GCS),

which is some fixed coordinate system in which real-world coordi-

nates are measured.

Let the image plane be represented by the UV -plane and the

GCS be represented by the (XYZ ) space. The following equation

relates the pixel position (u, v) with its respective GCS coordinates

(x , y, z) as,

s


u
v
1

 =

fx 0 cx
0 fy cy
0 0 1



r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



x
y
z
1


(1)

where fx and fy are focal lengths of camera along x and y axis of

camera respectively, and (cx , cy ) represents the image center of the

camera. R =


r11 r12 r13
r21 r22 r23
r31 r32 r33

 and T =

t1
t2
t3

 are the rotation matrix

and the translation matrix of the camera, respectively.

2.2 Calibration Problem
Equation 1 can be written compactly in matrix-notation as

spc = C[R |T ]pw (2)

The camera calibration problem is the problem of estimatingC , R,
and T . The camera matrix C depends only on the camera (and not

on its position or orientation), while R andT represent the camera’s

position and orientation. Hence, C is referred to as the intrinsic

camera parameters, while R and T are referred to as the camera’s

extrinsic parameters. In our work, we focus only on the problem of

estimating the camera’s extrinsic parameters, and assume that its

intrinsic parameters are known.

Givenn point-correspondences, consisting of both the real-world
(GCS) coordinates as well as the corresponding image coordinates of

n ≥ 4 different points, as well as the camera’s intrinsic parameters,

we can solve for the camera’s extrinsic parameters using equation 1.

This is known as the perspective-n-point problem. Several solutions

exist for this problem [15] and an efficient O(n) implementation is

available in OpenCV (the open source computer vision library). We
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refer to this solution as SolvePnP and our auto-calibration makes

use of this.

In this paper, we automatically identify n point-correspondences

from the image of a car in a traffic video and then use SolvePnP
to compute a calibration. Similarly, we compute calibrations for

different car images and then use a novel filtering and aggregation

algorithm that carefully combines these calibrations to produce a

final calibration that is robust to errors such as in identifying the

point-correspondences.

2.3 Using the Calibration
Once the camera parameters (C , R, and T ) are known, equation 2

can be used to transform between real-world (GCS) coordinates

and image coordinates. However, the mapping from the GCS coor-

dinates to the image coordinates is not a one-to-one function, as we

map from 3-dimensional coordinates to 2-dimensional coordinates.

Given a point P (u,v) in the image (the camera frame), equation 2

allows us to map the point P to an infinite ray in the real-world.

Thus, in order to obtain the exact location of point P in GCS, we

must have some extra information, such as one of its GCS coordi-

nates.

Fortunately, this is not an issue for vehicular applications if we

assume that the road in the region of interest is approximately flat.

Then, the feature-points in vehicles are at known heights from

the ground plane. Using the knowledge of P ’s height hp , its 3D
coordinates in GCS can be derived from Equation 1 by substituting

z with hp . Here, (x , y, hp ) denote the P ’s coordinates in GCS. There

are 3-unknowns, s , x and y which can be solved using 3-equations.

Now, consider the problem of estimating the speed of a car.

We identify one of its feature-points, such as its tail-light, in two

different frames at two different time points t1 and t2. We map the

image of the tail-light to its GCS coordinate at t1 and t2, allowing us
to compute the car’s speed between the two time-instances. This can

enable off-the-shelf traffic cameras to measure traffic speed without

any dedicated sensors. A demo of vehicle speed measurement using

the AutoCalib framework is published at [1].

3 RELATEDWORK
The problem of camera calibration has previously been studied

in literature. Two broad approaches to compute a static camera’s

calibration parameters are i) using known geometric fixtures and

ii) using vanishing points.

Calibration using known geometric fixtures: Camera calibration

can be performed from different static features present on the road

such as road markings, width of the road, electric poles etc. These

features must be identified in the camera frame and their coordi-

nates in GCS need to be obtained. To compute the GCS coordinates,

dimensions of fixed markers can known from road marking stan-

dards or measured using Google Earth[4].

However, in traffic camera views, static features such as markers

on the road and traffic signs are often occluded or not available.

Moreover, the dimensions of static features may vary across roads

depending on the city, mean traffic speed and need for traffic de-

lineation [7]. Thus, it is desirable to have minimal dependence on

static scene features. Since vehicles are generally visible in any

traffic camera, AutoCalib leverages vehicle key-points for camera

calibration.

Rotation matrix using vanishing points: The set of parallel lines
in the GCS when projected to the camera frame intersect at a

unique point which is referred as the vanishing point. Location
of the vanishing point from parallel lines along each axis (X , Y
and, Z axis respectively) derives the respective columns values of

the rotation matrix. In fact vanishing points along two axes only

are needed as two columns of the rotation matrix automatically

determines the third column (Euler angles). Let the vanishing point

observed along the X axis be located at ux ,vx . The first column of

the rotation matrix can be derived by substituting [1 0 0 0]T ,ux and,

vx in place of [X Y Z 1]T , u and, v respectively in equation 1 etc.

The translation matrix is then typically obtained using knowledge

of real-world length of some geometric fixture in the image.

The closest work to ours is [11] where authors assume straight

line of vehicle motion for computing the vanishing points and

use known average sizes of vehicles (width, height, and length)

to automatically calibrate the camera. [10, 25] assumes the height

of the camera. Other work such as [9, 23] assume lane marking

with known lane width while [8] uses known mean vehicle size

and known average vehicle speed, and [19] uses knowledge of road

lines.

While the vanishing points based approaches reduce the manual

labour of identifying points in the real-world and their relative

distances, they make several assumptions that make them less

robust when employed in diverse settings. First, identifying lane

markings or other geometric features automatically can be error-

prone. Second, assumptions such as straight line motion of vehicles

to derive vanishing points such as in [10, 11] may be violated. For

example, we observe that the derived vanishing points from [10, 11]

are not stable across different segments of a video as vehicles may

be changing lanes or at intersections where they may turn. Finally,

none of these papers provide an automatic algorithm for filtering

or aggregating calibrations.

4 DESIGN
Similar to prior work, AutoCalib looks for feature points with

known geometric shape. However, it does not rely on vanishing

points. Further, in contrast to prior work, AutoCalib deals with

errors in the calibration due to vehicle detection and classification

by filtering outliers and carefully fusing the remaining calibrations.

4.1 Challenges
We face the following key challenges in designing techniques for

automatic traffic camera calibration:

• Low-resolution images: Infrastructure cameras are typ-

ically a mixture of low and high-resolution cameras, de-

pending on many factors such as when they were installed,

budget and bandwidth considerations, etc. Even with high-

resolution cameras, the vehicle image forms only a small

portion of the overall image, resulting in poor vehicle resolu-

tion. Low-resolution images lead to errors in vehicle detection
and classification.

• Detecting and annotating key-points:We use points of

interest such as tail lamps, side mirrors, etc., which we refer
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to as key-points, to extract known geometric shape for cali-

bration. Automatically detecting and locating these points

of interest from an image is a challenging task since these

points of interest are not standardized across different ve-

hicles. The low resolution of images makes the detection

process further challenging.

• Consolidating a set of calibrations: AutoCalib calibrates
the infrastructure camera by utilizing the geometric shape of

key-points in the image of a vehicle. The video stream from

a traffic camera contains large number of vehicles and there-

fore can result in a large set of calibration values. Some of the

calibrations might be erroneous due to errors in classification

of vehicles, errors in extracted geometry, etc. Automatically

filtering outliers and consolidating the remaining calibration

values for deriving an accurate camera calibration values is

a challenge.

4.2 Overview
Our pipeline for automatic calibration of traffic cameras consists of

the following steps, as illustrated in Figure 1.

(1) The input video frames are analyzed to detect instances

of vehicles. AutoCalib combines traditional background-

subtraction based techniques and Deep Neural Networks

(DNN) based techniques to detect instances of vehicles, as

explained in §4.3.

(2) For every vehicle instance identified, AutoCalib crops the

detected vehicle and identifies a set of key-points such as

the centers of tail-lights, license plates etc. This vehicle key-

point detection module is also DNN-based and is described

further in §4.4.

(3) For each vehicle instance, the extracted key-points are used

along with their respective dimensions from ten popular car

models to obtain a set of ten calibrations of the camera using

SolvePnP in §4.5.

(4) The preceding steps produce a large set of calibrations. The

calibrations suffer from several sources of errors present in

the multiple steps of the pipeline.In the final stage, we apply

a set of filtering techniques to eliminate outliers and apply

averaging techniques to compute the final calibration in §4.6.

4.3 Vehicle Detection
The goal of this step is to identify instances of vehicles (specifically,

cars) in the frames of the input video. Previously proposed tech-

niques for vehicle identification include (a) Background-subtraction

based techniques, (b) Haar-based classifiers, and (c) Deep neural

networks (DNN) based techniques. Given the need for robustness

across a wide-range of camera resolutions, we combine Faster R-

CNN [18], an efficient DNN-based approach for identifying objects,

with a background-subtraction based technique.

The background-subtraction based approach is used to elimi-

nate static bounding boxes (that do not change position across

successive frames). We then apply the DNN-based vehicle detection

algorithm to detect vehicles. Whenever a successful match is found,

we proceed to the next step in calibration computation. Further, we

skip 5 seconds of video to avoid processing multiple images of the

same vehicle and start looking for new vehicles.

4.4 Automatic Key-point Annotation
Once a vehicle is identified, the next step involves identifying and

locating key-points of the vehicle in the image. We built a custom-

trained DNN for this task by leveraging transfer learning [14] in

order to reduce the training data and DNN training time.

Designing a DNN for vehicular key-point detection from scratch

requires a large volume of annotated data. The idea behind transfer

learning is to reuse a DNN that has been trained on a large generic

dataset (e.g. ImageNet [13], which contains 1.2 million images with

1000 categories). The pre-trained DNN is used either as initialization

or as a fixed feature extractor for a more specific task of interest.This

is motivated by the observation that the earlier layers of a DNN

identify generic features of images (such as edges) that should

be useful to many tasks. The later layers of the DNN becomes

progressively more specific to the task of interest.

In our work, we reuse the CompCars DNN [24] for transfer

learning. The CompCars DNN was built for classifying car models

and was itself transfer learned from the imagenet dataset, with

further training on CompCars’ own dataset of 136,727 car images.

Data set for transfer learning: For our task of identifying the

key-points, we change the final layer of CompCars DNN from 431

Softmax outputs to 12 regression outputs, ranging from 0 to 1. These

12 outputs are 6 pairs of (x,y) coordinates for our 6 points - left

and right side mirrors, left and right tail lamps, center tail lamp

and license plate. We selected these six points as the key-points as

they are easily distinguishable in low resolution images and provide

points spread out in three dimensions (which is critical for SolvePnP).
Each regression output has a range from 0 to 1 representing the x

and y coordinates normalized with respect to the width and height

of the bounding box. For example, x= 0.3, y= 0.5 for a 300x500

car image indicates that the key-point is located at (90,250). For

training, we manually annotated 486 rear images of cars. From

each annotated image, we produces 24 images using the following

transformations: (0) The image; (1) 4 random crops in random aspect

ratios by scaling the image; (2) 2 random rotations by any angle

between 0 and 360; (3) 5 random moves (placing the car image at

random locations in a new image). Similarly, the same operations

can be performed on a horizontal mirror image to create a total

of 24 images per manually annotated image. This gave us a total

of 10,344 images for the transfer learning process. Figure 2 shows

example annotations performed by our annotation tool. Detailed

evaluation of the annotation tool is in § 6.

4.5 Vehicle Model-based Calibration
Once we locate the vehicle key-points, we need their real-world

3D coordinates (relative to each other and ground-level) so that we

can use SolvePnP to calibrate the camera.

One way to get this information is to identify the vehicle model

(e.g., Honda Civic) from the image. We studied the state of art

vehicle classifier (Compcars [24] ) for identifying vehicle models

from different traffic cameras. We observed, that Compcars classi-

fies vehicles accurately when high-resolution images are provided.

However, the classification accuracy was quite poor for the vehicle

images we obtained from the traffic cameras, possibly because of

the image resolution. This is not surprising since identifying the

car models from these images was futile even for the authors.
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Figure 1: AutoCalib pipeline for automatic calibration of traffic cameras.

Figure 2: Sample annotations from the DNN.

Given the challenges in identifying the car model, we use a

simple heuristic of using the ten most popular sedans as the likely

candidate car models of the vehicle. Thus, every identified car

image produces ten different calibrations from these ten sedan

models: Chevrolet Cruze, Toyota Corolla, Toyota Camry, Toyota

Prius, Honda Accord, Honda Civic, Volkswagen Jetta, BMW 320i,

Audi A4 and Nissan Altima. Though vehicle distributions may

vary across countries, AutoCalib can be easily tailored to different

countries and their most popular vehicle models.

4.6 Filtering and Averaging Calibrations
The preceding steps produce a large number of calibrations, one

for each vehicle instance identified and candidate car-model. We

observed a wide variance between these calibrations. The following

factors contribute to errors in the calibration:

• Annotation errors: The DNN-based annotation tool that iden-

tifies keypoints in a vehicle image is quite precise, but can

still introduce an error of a few pixels. This is not surprising

since even human-annotation of these keypoints can vary

by a few pixels. Unfortunately, even one or two pixel errors

in keypoint annotation is magnified by the subsequent cali-

bration steps and result in significant errors in estimations

made using the calibration.

• Vehicle identification errors: AutoCalib uses the dimensions

of 10 popular vehicles to calibrate the camera. However, the

vehicle observed by the camera might not belong to one of

the models it uses. Even if the observed vehicle belongs to

these models, only one calibration out of 10 produced by

AutoCalib is accurate.

The Problem.We exploit various statistical filters to eliminate a

large fraction of the calibrations (including outliers) and compute

an average of the remaining calibrations. One of the key challenges

here is the fact that the calibrations produced from different vehicle

instances all use different ground coordinate systems (GCS)! This

makes it hard to compute an “average” of multiple calibrations.

Identifying the right attribute(s) to filter outliers is also a challenge.

Image Plane

Camera Plane

X

Y

Z

Figure 3: Using geometries extracted from a vehicle, Auto-
Calib calibrates the camera w.r.t the car specific GCS.
The Intuition. The GCS of the calibration produced from a vehicle

instance depend on the vehicle position and orientation. Specifically,

the 3 axes of this GCS correspond to the 3 axes of the 3D bounding

box of the vehicle, with the origin at the bottom left corner. We

exploit the following observations to deal with the set of calibrations

with differing GCS: (a) For our application, only the ground (X-Y)

plane of each calibration matters, and (b) Barring errors, the ground

plane of all generated calibrations must agree with each other (that

is, the X-Y plane must be the same even though the X and Y axes

may not be the same). These observations hold true provided the

road lies in a single plane.

Observation (a) follows from our explanation in §2.3: the calibra-

tion can be used to map a point pi in the image to a real-world point

pr only if we know some real-world coordinate of pr ; for vehicular
applications, we use the height of point pr above the road (ground

plane) as a known coordinate to determine its other coordinates.

As Figure 3 illustrates, any two calibrations with the same ground

plane (XY-plane) will be equivalent for mapping image-points with

known z-values.

Hence, we use the X-Y plane of the GCS of the different calibra-

tions to do filtering as well as averaging, as explained below.

Details. The pseudo-code is depicted in Algorithm 1. Each calibra-

tion is represented by the pair (R,T ) of a rotation and translation

matrix. (The camera matrix is the same for all calibrations and can

be ignored here.) The rotation matrix R is a 3 × 3 matrix and T is a

3 × 1 vector. The third column of the rotation-matrix R represents

the unit vector along the Z axis (of its GCS) and, hence, determines
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Algorithm 1: AutoCalib Filtering and Averaging

input :Set of all calibrations C = [(R1,T 1)..(Rn ,Tn )]
output :Calibration Estimate cest

1 Function Main(C):
2 p = ComputeFocusRegionMidPoint()
3 Cθ = OrientationFilter(C, 75)
4 Cθ,D = DisplacementFilter(Cθ , 50,p)
5 Cθ,D,θ = OrientationFilter(Cθ,D , 75)

6 ®zavд =
∑n
i=1 R

i
∗,3

n ,R ∈ Cθ,D,θ
7 Ravд = ComputeAverageRotationMatrix(®zavд)
8 foreach (Ri ,T i ) ∈ Cθ,D,θ do
9 Ri = Ravд

10 D = ComputeDisplacement(Cθ,D,θ , p)
11 cest = Sort Cθ,D,θ by D and pick the median element

12 return cest

13 Function OrientationFilter(C , n):

14 ®zavд =
∑n
i=1 R

i
∗,3

n
15 foreach (Ri ,T i ) ∈ C do
16 ®zi = Ri∗,3

17 θi = arccos

(
®zi ·®zavд®zavд ∥ ®zi ∥

)
18 Cθ = Sort C by θ and pick the lowest n% values

19 return Cθ

20 Function ComputeDisplacement(C , p):
21 foreach (Ri ,T i ) ∈ C do
22 pi = ReprojectToGround(p,Ri ,T i )
23 di = DistanceToCamera(pi ,Ri ,T i )
24 return D

25 Function DisplacementFilter(C , n, p):
26 D = ComputeDisplacement(C, p)
27 CD = Sort C by D and pick the middle n% values

28 return CD

the orientation of the X-Y plane. We will refer to this unit vector as

the orientation of the calibration.

Two calibrations with the same orientation have parallel X-Y

planes but not necessarily the same X-Y plane. We compute a met-

ric that is a measure of the distance between such (parallel) X-Y

planes as follows. We identify a region of the image as the “focus

region” (for our purpose, the road, defined as the regions where cars

are detected). Let p denote the center of this region. We use each

calibration ci to map the point p to the corresponding real-world

point pi in the ground plane and compute the distance di between
the camera and point pi . We define di as the displacement of the
calibration ci (line 1).

For two calibrations with the same orientation, the difference

in their displacements is a measure of the distance between their

(parallel) X-Y planes. In particular, they have the same X-Y plane if

and only if their displacements are the same.

Filtering. Our filtering heuristic for eliminating outliers uses both

orientation and displacement. Let ®zi denote the orientation of a

calibration ci . Let ®zavд denote the average of all ®zi . The angle

between ®zi and ®zavд is a measure of how much the orientation

of ci deviates from the average orientation. We retain only the

top 75% of calibrations with the smallest deviation from average

(line 2). Second, we compute the displacement of the remaining

calibrations, and retain only the middle 50% of calibrations (line 3).

Finally, we apply the orientation-based filtering again (to benefit

from the effects of displacement-based filtering) (line 4).

Averaging. Finally, we compute the “average” of the remaining

calibrations. We average the Z axis unit vector across all filtered

calibrations and compute twomutually orthogonal X and Y axis unit

vectors. We then compute the Rotation Matrix for these three unit

vectors, which forms our (averaged) final Rotation Matrix for the

calibration estimate (line 7–9). Using this average Rotation Matrix,

we re-compute the displacements for all filtered calibrations, and the

median value provides us the Translation Vector for our calibration

estimate (line 10–11). We use the median rather than the mean

because of the non-linear behavior of the SolvePnP procedure.

5 IMPLEMENTATION
The complete AutoCalib pipeline is implemented in about 6300

lines of python code. All vector algebra operations are sped up

using the NumPy library and OpenCV 3.2 is used for background

subtraction and calibration computations. The DNNs are trained

and deployed on the TensorFlow framework. To collect the human

annotated data for the DNN keypoint detector, we built our own

web based crowd-sourcing tool on the Django web framework.

AutoCalib is deployed on Microsoft Azure, running on a VM

powered by 24 logical CPU cores and 4 Tesla K80 GPUs, with a total

of 224 GB RAM. For a 1280x720 video frame, this deployment can

detect vehicles in the frame in about 400 milliseconds. For every

detected vehicle, detecting the keypoints takes about 50 millisec-

onds, and computing a calibration takes another 0.3 milliseconds

per model. With this setup, AutoCalib can process 24 hours of

720p traffic video and compute calibration estimates in about 144

minutes.

6 EVALUATION
In our evaluation, we analyze AutoCalib’s performance by measur-

ing the accuracy of the final calibration estimates. We also present

micro-benchmarks and comparisons at various points in the Auto-

Calib pipeline to motivate our design decisions.

The Dataset. To evaluate AutoCalib, we collect a total of 350+

hours of video data from 10 public traffic cameras in Seattle, WA [6].

Resolutions of these cameras vary from 640x360 to 1280x720 pix-

els. Intrinsic parameters of these cameras are derived from their

baseline calibrations as computed in § 6.2.

6.1 Key-point Annotation Accuracy
AutoCalib leverages DNNs to identify keypoints on cars and com-

putes calibrations by matching these key-points with their corre-

sponding real-world GCS coordinates. However, annotations from

the DNN are prone to errors, which may result in incorrect calibra-

tions. To analyze the DNN’s performance, we split our human anno-

tated cars dataset into train and test sets following standard practice

in DNN evaluation. Because of the computationally intensive nature
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Figure 4: a) CDF of normalized DNN annotation error for the six keypoints. The DNN can annotate more than 40% of the points
with less than 5% car-width normalized error. (b) Example of Ground Truth Keypoints (GTKPs) marked in a frame. These points
are used to compute the ground truth calibrations and the distance RMSE. (c) Effect of car key-point choice on calibration results.
Removing SWL and SWR keypoints has a severe effect on the calibration RMSE.

of DNN training, cross-validation is infeasible and not commonly

used in practice [13, 21]. However, we employ Dropout [20] regu-

larization on the fully connected layers in the network to prevent

over-fitting.

The dataset used for training and testing the DNN is a collec-

tion of 486 car images, with pose metadata and annotations for 6

keypoints crowdsourced from 10 humans. This dataset is split into

two parts: 90% of the images are used to train the DNN and the

remaining 10% are used to test its accuracy. In the testing phase,

we present the DNN with the test images and compute the normal-

ized prediction errors for each key-point. The normalized error is

defined as:

Enormk =

√
(xp,k − xh,k )2 + (yp,k − yh,k )2

wc
(3)

where Enormk is the normalized DNN error in annotating key-point

k , xp,k and yp,k represent the DNN predicted x and y coordinates

for key-point k , xh,k andyh,k represent the human annotated x and

y coordinates for key-point k , andwc is the width of the car, defined

as the distance in pixels between the human annotated left lamp

(LL) and right lamp (RL) key-points. This metric is chosen because

it represents the percentage of deviation in extracted geometry and

is independent of both the car size in the image as well as the image

resolution.

Figure 4(a) details the DNN performance as a CDF of normalized

error for the six keypoints described in §6.3. The y axis represents

the count as a fraction of total number of images, while the x axis

is the normalized error. It can be seen that the median error is only

6% of the car width. However, the bottom 20% of all key-points

have an error of more than 10%, which may affect the calibration

accuracy for those image samples. To discard these poor annota-

tions, AutoCalib utilizes filters and averaging techniques described

in §4.6.

6.2 Ground Truth for Evaluation
Once the DNN annotates the key-points on the car, AutoCalib starts

produces calibration estimates for each car detection. These cali-

brations are later filtered and averaged to produce one calibration

estimate.

Since these cameras are uncalibrated and no ground truth calibra-

tion is available to evaluate estimates from AutoCalib, we establish

ground truth by manually calibrating all ten cameras. In order to

do this, we visually identifying distinguishable key-points (for in-

stance, trees, poles and pedestrian crossings) in the camera image

and their corresponding real world coordinates in a common co-

ordinate system by visually inspecting the same location using

Google Earth [4]. These key-points, referred to as Ground Truth

Key-points (GTKP), provide us a correspondence between image

points and real world coordinates. This correspondence is used to

compute reference ground truth calibrations using SolvePnP. For
each camera, we collect 10 or more such GTKPs. Figure 4(b) shows

an example of some GTKPs.

We can compute the error for any calibration estimate by cal-

culating the errors in the on-ground distance estimation. To do so,

we follow the approach presented in §2.3. We re-project the GTKPs’
2D image points to 3D coordinates by plugging the calibration’s

rotation and translation vectors, GTKP’s 2D image coordinates and

one of the GTKP’s x , y or z 3D coordinates in equation 1. Since we

are interested in measuring distances in the X-Y plane, we fix the

z value to the GTKP’s 3D z coordinate. This provides us with the

re-projected x and y coordinates in the calibration’s coordinate sys-

tem. However, these reprojected 3D coordinates cannot be directly

compared with the GTKP’s 3D coordinates since they are defined

in different coordinate systems. To compare them, we compute

euclidean distances between pairs of these reprojected 3D coor-

dinates in the calibration’s coordinate system and measure them

against respective pair-wise euclidean distances between GTKP 3D

coordinates in the ground coordinate system.

Thus, by analyzing errors in re-projected vs real distance mea-

surements, we canmeasure calibration accuracy. This idea forms the

basis for our calibration accuracy evaluation metric. Let Dr eproj
be

the set of distances between all possible pairs of GTKPs reprojected

from 2D image points. Similarly, let Dr eal
be the set of distances

between all possible pairs of actual GTKPs. For each GTKP pair

i , we can compute the normalized error in distance measurement
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Figure 5: Accuracy of AutoCalib vs ground truth calibration
estimates. The distance measurement errors for the ground
truth calibrations, which are indicative of the errors in GTKP
annotation, have an average RMS error of 4.62% across all
cameras. AutoCalib has an average error of 8.98%.

ϵnormi as:

ϵnormi =
d
r eproj
i − dr eali

dr eali

(4)

where d
r eproj
i and dr eali are the re-projected and real distances

respectively for the pair i . We now define Root Mean Square Error

(RMSE) for a calibration as:

RMSE =

√√√
1

N

N∑
i=1

(ϵnormi )2 (5)

where N is the number of possible pairs of GTKPs. This RMSE

metric provides us an estimate of the accuracy of the calibration.

However, the manual calibration that we performed for ground

truth estimation is also prone to two sources of errors: a) Human

annotation errors while visually matching points in camera image

and Google earth view, and b) Google Earth distance estimate errors.

The errors in manual ground truth calibrations can be estimated by

computing the RMSE for the ground truth calibrations. That is, had

the GTKPs been annotated with no errors, the manual calibration

computed using the GTKPs would re-project on to the exact same

points and the RMSE would be zero. However, since there are

errors in GTKP annotation, these errors are also reflected in the

RMSEs shown in Figure 5. Thus, the RMSEs for manual ground

truth calibrations can be treated as a benchmark for calibration

performance.

6.3 Calibration Accuracy
AutoCalibDistanceMeasurement Performance: Figure 5 high-
lights the end-to-end performance of AutoCalib. RMSEs across

cameras for calibration estimates from AutoCalib have an average

of 8.98%, with a maximum error of 12.27%. Note that AutoCalib’s

calibration errors is just a few percent higher than the errors intro-

duced during the manual ground truth calibration process (average

of 4.62%, maximum of 8.20%).

Effect ofCarKey-pointChoice:AutoCalib utilizes six key-points:
Left and Right Tail Lamp centers (LL and RL), License Plate center

(LIC), Center Lamp (CL), and Left and Right Side Mirrors (SWL and

SWR). These key-points are carefully chosen not only because of

their visual distinctness and ease of detection but also because they

improve calibration accuracy. To determine the best choice of key-

points, we conducted an experiment where we mounted a camera

at a known height in a constrained environment. In this scene, the

ground truth distances were accurately measured using a measur-

ing tape. We then added a car with known dimensions in the scene,

and manually labelled multiple visually distinct key-points on the

car. The camera was then calibrated using different combinations of

these key-points. We discovered that selecting non-planar and well

separated key-points improves calibration accuracy significantly.

This is because picking only planar key-points does not provide

SolvePnP sufficient information about all three dimensions, causing

ambiguity in the unit vector for the dimension orthogonal to the

plane.

The importance of non-planar key-points is depicted in Fig-

ure 4(c), where we compare the RMS Error CDF of all calibrations

obtained from AutoCalib prior to filtering and averaging. On cali-

brating without SWL and SWR keypoints, the curve worsens sig-

nificantly, with 80% of the calibrations having more than 50% error.

Taking the width of the car to be the X axis, height to be the Z

axis and depth to be the Y axis, SWL and SWR are the only two

points which are sufficiently far in the Y-Z plane from the other

points. Most of the other points (LL, RL, LIC and CL) have very

little variance in their Y coordinates, thus SolvePnP is unable to

resolve the ambiguity in the Y axis unit vector. On the other hand,

removing CL and SWR keypoints has only a small effect on the

calibration accuracies, since the other side view mirror helps disam-

biguation. Thus, our choice of key-points helps SolvePnP to have

a reference point well separated in all 3 axes, and thus produce

consistent estimates for the Y axis unit vector.

Effect of Filtering Parameters: AutoCalib refines its set of cal-

ibrations by discarding potentially poor calibrations. Since Auto-

Calib has no information about the scene or the ground truth, it

uses the outlier filters as defined in §4.6. Because these filters rely

on the statistical properties of the calibration distribution, there

is a trade-off between aggressiveness and robustness - discarding

too many calibrations may also discard the "good" calibrations, but

being conservative in filtering might let the poor calibrations slip

through. In Figure 6, we compare the non-filtered set of calibra-

tions with our preferred conservative filtering approach and an

aggressive filtering approach. As described in §4.6, AutoCalib ap-

plies three filters, an orientation based filter, a displacement based

filter followed again by an orientation filter. Both filter types have

a percentile cutoff for filtering - changing this cutoff affects the

aggressiveness of the filter. For our notation, we name Orientation

Filter with top XX% cutoff as OrientXX and Displacement Filter

with middle XX% cutoff as DispXX. Here, we compare combinations

of Orient75 and Disp50 Filters (Filter Set 1) against Orient35 and

Disp30 Filters (Filter Set 2). Filter Set 2 is more aggressive, since it

cuts off 65-70% of the data.

As shown in the RMSE CDFs of Figure 6, Filter Set 1 is effective

at discarding the poor calibrations while retaining the good ones.

Filter Set 2, being more aggressive is able to discard a lot more poor

calibrations, but fails to preserve good calibrations in certain cam-

eras (e.g., C4, C5, C8). This hurts the subsequent averaging process,
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Figure 6: Comparing the effect of filtering parameters across different cameras. Aggressive filtering with lower cutoffs improves
performance in few cameras but misses good calibration in other cameras.

Detection Count vs Calibration Accuracy, C1

Figure 7: Number of detections required for precise calibra-
tion. Precision of the estimated calibration increases with de-
tections, but the effect diminishes after 2000 detections.

resulting in a poor final calibration estimate. Thus, AutoCalib uses

the conservative Filter Set 1 for the filtering process.

Finally, we also found that our conservative filtering was ro-

bust to small changes in the percentile used (for e.g., retaining 80

percentile or 70 percentile instead of 75 percentile did not mate-

rially change the final accuracy; results not shown due to space

constraints).

Number of Detections Required for Precise Calibration: Au-
toCalib refines the calibrations estimates using multiple frames to

derive more accurate calibration values. Figure 7 shows calibration

estimate RMSE using different number of vehicle detections for

camera C1 across 50 trials. Increasing the number of vehicle de-

tections allows for more calibration possibilities, while the filters

ensure that the poor calibrations from these added detections are

discarded. This results in a more precise calibration output from

AutoCalib after the filtering and averaging steps. From our empiri-

cal analysis, typical frames from traffic cameras can contain tens

of cars at peak hours, enabling AutoCalib to arrive at a precise

estimate of the calibration within an hour.

Number of Vehicle Models: Since car models are difficult to

identify in these traffic cameras, AutoCalib uses the most popular
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Figure 8: Effect of number of calibration models used on the
RMS Error of the estimated calibration. Having more calibra-
tion models per detection results in higher accuracy of the es-
timated calibration.

car models to compute multiple calibrations and later filters out

the mismatches. Figure 8 compares the effect of number of vehicle

models used – top 1 vs top 5 vs top 10 models – using the RMS

distance measurement error of the estimated calibration. Having

more car models improves the accuracy in nearly all cameras. This

also quantifies the robustness of the calibration filters in picking

the correct calibrations - despite having more mismatches as the

number of calibration models increase, the filters are able to discard

the poor calibrations.

Comparison with Vanishing Point-based Approaches: Prior
work such as [10] assume straight line motion of the vehicles to

derive vanishing points for computing the rotation matrix. How-

ever, we observed that the derived vanishing points using such an

approach are not stable, i.e., their location varies over time. We

computed vanishing points using the techniques presented in [10]

over multiple 10 min video sequences from a Seattle city traffic

camera. From the experiments, we observe that identifying the

vanishing points is challenging when the vehicles are changing

lanes or making turns or the traffic is changing direction in places

such as intersections.
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Figure 9: Accuracy of distance estimates computed from van-
ishing points using [10] and manually provided ground
truth camera height vs AutoCalib. Despite providing the
ground truth cameraheight, estimates from [10] have amean
RMSE of 21.59%. AutoCalib assumes no prior information
about the camera height, and has a mean RMSE of 8.98%.

Authors in [10] use these vanishing points to estimate the rota-

tion matrix for the given calibration. Further, their approach does

not estimate a translation matrix. Instead, they assume that the dis-

tribution of car models (and their dimensions) are known and use

that information to compute a scale factor for measuring distances

on the road. However, it is not clear how to translate the computed

scale factor to a T matrix.

Nevertheless, in order to provide a point of comparison of errors

that can arise in using a vanishing point-based approach, we cal-

culate the T Matrix for the [10] approach by manually providing

the height of the camera based on our ground-truth calibration

of the camera. Recall that the R and T matrices for any camera

calibration define an affine transform for 3D coordinates from the

Ground Coordinate System (GCS) to the Camera Coordinate Sys-

tem (CCS, where the camera is at the origin). Given the height, the

3D coordinates of camera are known and thus we can compute a T
Matrix for the given R matrix.

Figure 9 compares the distance RMS error from the vanishing

point approach [10] with manually provided camera height and Au-

toCalib. AutoCalib estimates have lower RMS error across all cam-

eras with an average RMS error of 8.98%, while estimates from [10]

have an average RMS error of 21.59% even when one of the key

calibration parameters, camera height, has been provided based on

ground-truth calibration.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose AutoCalib, a system for scalable, automatic

calibration of traffic cameras. AutoCalib exploits deep learning to

extract selected key-point features from car images in the video and

uses a novel filtering and aggregation algorithm to automatically

produce a robust estimate of the camera calibration parameters

from just hundreds of samples. Using videos from real-world traffic

cameras, we show that AutoCalib is able to estimate real-world

distanceswith an error of less than 12% under a variety of conditions.

This allows a range of applications to be built on the AutoCalib

framework. One such demo application to measure vehicle speeds

is published at [1]

So far, we have trained our annotation tool to identify key-points

from only rear images of cars. While this works for many traffic

cameras, it will not work for cameras that are positioned such

that they do not view the car rear. We plan to address this as part

of future work by training our DNN to identify key-points from

side-facing and front-facing car images.
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