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ABSTRACT
Bandwidth adaptation for real-time streaming applications is typi-
cally designed to be conservative, since pushing for higher band-
width could be counterproductive if it means an increased latency.
However, such bandwidth adaptation operates based on the "symp-
toms" of congestion (e.g., increased delay) without knowing the
underlying cause (self-congestion vs. cross-traffic). In this paper,
we consider this problem in the context of Wi-Fi networks and
introduce a novel technique, Ping-Pair, to measure and attribute
congestion. We have integrated Ping-Pair into the popular Skype
audio-video conferencing application to enable improved band-
width adaptation dubbed Kwikr, using which we have conducted
controlled experiments and also randomized A/B tests in a produc-
tion setting.
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1 INTRODUCTION
Real-time interactive streaming has been growing in importance,
spanning both traditional applications such as audio-video (AV)
conferencing (e.g., Skype, Google Hangouts) and newer ones such as
cloud-based app streaming (e.g., Amazon AppStream) and gaming
(e.g., Sony PlayStation Now). Such applications are highly sensitive
to network delay, jitter, and packet loss.

Fluctuation in the available network bandwidth is particularly
challenging. Unlike on-demand streaming, where a multi-second
playout buffer can be used to absorb and smooth out much of this
variation, the tight deadline for real-time interactive streaming (e.g.,
an RTT under 300 ms for VoIP and 60-100 ms for gaming) rules
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out a large playout buffer. Therefore, it becomes critical to estimate
network bandwidth and track its variation effectively.

Sophisticated bandwidth estimation schemes have been devel-
oped for real-time streaming applications. Unlike TCP, which pri-
marily cares about throughput, bandwidth estimation for real-time
streaming cares critically about latency too (see Section 2).

The challenge, however, is that bandwidth estimation for real-
time streaming, like TCP congestion control, operates end-to-end,
without direct knowledge of the internal state of the network. This
can lead to highly suboptimal behaviour. For instance, when con-
gestion is due to cross-traffic, not self-congestion, the overly conser-
vative strategy of decreasing the transmission rate sharply (more
so than TCP would) would likely hurt the real-time flow without
yielding any benefit in terms of reduced latency (see Figure 1).

In this paper, we present a new probing mechanism, Ping-
Pair, and an improved bandwidth adaptation scheme, Kwikr, de-
signed to address this challenge, specifically in the increasingly
common setting of Wi-Fi-connected clients. The Wi-Fi link is often,
though not always, the bottleneck link that determines the fate
of the end-to-end real-time flow [31]. Moreover, since the client
is directly connected to this link, it is in a position to make local
observations, which enables faster and more effective end-to-end
bandwidth adaptation.

In particular, when there is an increase in end-to-end delay, we
seek to determine whether the increase is due to congestion at the
Wi-Fi downlink and if so whether the congestion is self-induced
or due to cross-traffic. Note that cross-traffic could either be in the
sameWi-Fi network or in other, neighbouring co-channel networks
causing contention, and we wish to address both cases. To this end,
we have developed a novel technique called Ping-Pair 1 that en-
ables a client to determine the amount of delay on the Wi-Fi AP’s
downlink. Ping-Pair takes advantage of the 802.11e or Wireless
Multimedia Extensions (WMM) support in APs to send a pair of
pings (which, as we report in Section 5.5, is quite widespread), one
at high priority and the other at normal priority. The time difference
in the arrival of the two ping responses yields an estimate of the
Wi-Fi delay — due to queuing at the AP and due to contention with
co-channel cross-traffic. Furthermore, by counting the packets of
the flow of interest (e.g., Skype) sandwiched between the two ping
responses, we determine how much of the delay is self-induced
versus due to cross-traffic. Armed with this information, our im-
proved bandwidth adaptation scheme, Kwikr, modifies bandwidth
estimation to avoid backing off in an overly conservative manner
(i.e., more conservatively than TCP) when the congestion is due to
cross-traffic; instead, the backoff in such a case is performed in line

1Distinct from and not be be confused with the “packet-pair” technique from the
literature, as discussed in Section 5.2.
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with TCP, which yields performance gains relative to the overly
conservative approach, while ensuring safe behaviour.

We have implemented Kwikr in Skype, a popular AV confer-
encing application with hundreds of millions of users. Our imple-
mentation, which is presently on stock Android version 7.23.0.245
onwards and includes 1500 lines of code, spans multiple modules
in Skype, some platform-specific (e.g., invoking OS APIs to query
the Wi-Fi link) and others platform independent (e.g., bandwidth
adaptation). Separately, we have also implemented Kwikr as a stan-
dalone module on Microsoft Windows and Linux, which offers us
greater control (e.g., access to raw sockets) than is available on
(unrooted) Android.

We have evaluated Ping-Pair probing and Kwikr adaptation in
a range of Wi-Fi settings, including offices, coffee shops, airports,
conferences, etc. We have also conducted controlled experiments
in the lab. Our finding is that Ping-Pair accurately estimates the
congestion state of the Wi-Fi network and furthermore it enables
Kwikr to improve streaming performance safely, i.e., without caus-
ing significant negative side-effects, either to the flow itself or to
other traffic. For instance, in our controlled experiments, where
we introduced congestion during a call, Kwikr achieves 20% higher
throughput, while maintaining the same loss rate and round-trip
time.

Kwikr, with Ping-Pair probing built-in, is part of the production
Skype client for Android version 7.23.0.245 onwards and has been
A/B tested with actual users. Our results from about 120,000 video
calls show that there is significant downlink delay at Wi-Fi APs in
the wild, much of it due to cross-traffic. Furthermore, Kwikr results
in a 8.5% gain in the median bandwidth of a call, without causing
an increase in either the round-trip time or the packet loss rate.
Thus, Kwikr provides benefit (improved bandwidth) while being
safe (no negative impact on the network).

To summarize, our main contributions here are:

• The design of the Ping-Pair technique to estimate delay at
the Wi-Fi AP’s downlink and attribute the same.
• The design of Kwikr, which leverages Ping-Pair to enabled
informed bandwidth adaptation.
• The implementation of Ping-Pair and Kwikr in the popular
Skype application and results from A/B testing of these in
the wild.

2 RELATEDWORK
We briefly survey several strands of related work.
TCP congestion control: TCP congestion control [25] is based
on an additive-increase multiplicative-decrease (AIMD) policy [12].
With its focus on throughput, TCP tends to fill network buffers,
leading to increased delay. Variants of TCP react to delay as well [9,
38], though reducing delay has not been the primary impetus.

TCP congestion control operates end-to-end (as does, say, PCP [2]).
There has also been work, starting with the pioneering DECbit ef-
fort [35], where routers mark packets to provide explicit congestion
notifications (ECN) [17, 18, 30]. Outside of data centers [1], ECN
has not seen much deployment. In Kwikr, we go beyond the end-to-
end view by having clients probe the local Wi-Fi link, rather than
depending on explicit signals from the network.

Real-time streaming:Real-time streaming applications often have
a tight requirement on latency, and so typically operate over UDP
rather than TCP, with an application-layer congestion control
scheme such as TCP-Friendly Rate Control (TFRC) [21]. However,
TFRC, by itself, does not address the problem of delay, since queues
can still build up.

Several real-time applications have gone further in focusing on
low latency. The general approach is to measure delay and inter-
packet spacing, an increase in which is presumed to be a sign of
queues building up, causing the sender to back off. These appli-
cations tend to respond conservatively to congestion, compared
to TCP; see experimental verification for Skype [43] and Google
Congestion Control [13] (one of the schemes under consideration
for WebRTC [8]).

In Kwikr, the Ping-Pair technique exposes the queuing behav-
ior at the Wi-Fi link so we can avoid an unnecessarily conservative
reaction when it is not warranted.
Bandwidth estimation: There is a large body of work on band-
width estimation [15, 24], including in wireless networks [7, 33].
However, these techniques typically involve sending a specially-
crafted stream of measurement packets (e.g., a packet train), which
could impose significant overhead. Hence, TCP and real-time stream-
ing protocols rely instead on estimating bandwidth based on an
application’s data stream itself.

There has also been work on estimating link quality [3] and link
capacity [16] based on error rates. Sprout [42] and Performance-
Oriented Congestion Control (PCC) [14] use stochastic forecasting
and randomized controlled trials, respectively, for bandwidth esti-
mation and congestion control in wireless networks. The context
for these is different from Kwikr; e.g., Sprout focuses on cellular
networks with per-station queues (not Wi-Fi networks) and treats
the network as a block box (instead of peeking at the Wi-Fi link
to derive hints). With regards to hints, [36] also taps sensors such
as GPS and accelerometer for mobility-triggered MAC-layer rate
adaptation and AP selection, whereas Kwikr focuses on the impact
of delays introduced by congestion and contention on the Wi-Fi
downlink.
Wireless setting: There has been work on studying other wireless-
related issues such as the impact of random wireless errors on TCP
congestion control [4–6, 11, 19], the impact of wireless handoffs
on TCP performance [10, 20] and AP mechanisms to ensure low
latency [22]. Our focus on addressing Wi-Fi congestion and doing
so without AP modifications is orthogonal to this prior work.
Network diagnosis: There has also been work on network diag-
nosis, including on isolating Wi-Fi problems. For example, [39]
considers the problem of disambiguating between problems on the
Wi-Fi link, the access link, and the WAN path, while [28] employs
user-level active probing to detectWi-Fi pathologies such as conges-
tion and low SNR. However, both these approaches involve using
the Wi-Fi AP or a directly connected (wired) node as a vantage
point, which is a practical hindrance that we avoid in Kwikr. While
WiSlow [32] also avoids the requirement of such a vantage point, it
depends on potentially disruptive steps such as putting the client’s
Wi-Fi NIC in monitor mode. In contrast, Kwikr works with just
standard OS APIs.
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3 MOTIVATION
In this section, we show that existing real-time streaming applica-
tions do not respond well to congestion. We consider three popular
AV conferencing applications — Skype, FaceTime, and Hangouts.
For Skype, we have access to an instrumented client that provides
detailed logs of metrics pertaining to a call, including, through-
put and per-packet RTT. For FaceTime and Hangouts, we measure
throughput via Wireshark [40] packet captures.

Consider Figure 1(a), which shows the data rate of both a Skype
AV stream and of a foreground TCP flow. Congestion, in the form
of cross-traffic (generated by 6 devices, each performing a TCP bulk
transfer), is introduced and withdrawn on the Wi-Fi bottleneck link
at the points in time marked by the shaded area. At the onset of
congestion, the data rate of both Skype and TCP plummets, but
TCP soon recovers to about 1.5 Mbps while Skype remains stuck at
the much lower level of about 200 Kbps.

Skype adopts a conservative approach, presumably to limit queu-
ing delay and avoid packet loss. However, such an approach does
not help, with the RTT remaining high throughout the congestion
episode (Figure 1(d)) despite the sharp cutback in Skype’s data rate.
The reason is that the congestion is due to other traffic, not self-
congestion due to the Skype flow itself. So Skype is being needlessly
conservative, while deriving no benefit.

Similarly, even when the congestion episode has concluded,
Skype is slow to recover, as shown in Figure 1(a), because it is
unaware of the rapid change in the congestion state of the wireless
link.

The other two AV conferencing applications—FaceTime and
Hangouts—also show similar conservative behavior, as depicted
in Figures 1(b) and 1(c), taking 10s of seconds to recover after
congestion ends. 2

These experiments highlight a key problem in the state-of-the-
art bandwidth adaptation techniques used by real-time streaming
applications like Skype, FaceTime and Hangouts. These techniques
operate end-to-end, and so are oblivious to the cause of congestion,
leading to sub-optimal behaviour.

4 OVERVIEW OF KWIKR
We begin with an overview of Kwikr. Figure 2 shows the high-level
architecture. Kwikr sits in between the Wi-Fi network interface
and applications. It comprises a set of detectors that observe the
conditions over the Wi-Fi link and turn these into actionable hints
for applications.While we focus on just congestion in this paper, the
Wi-Fi-specific hints also pertain to link quality fluctuation, handoffs,
etc.

To demonstrate the utility of the congestion-related hints, in
particular, we focus on Skype, where we modify its bandwidth
adaptation strategy accordingly. Note that the bandwidth estima-
tion happens at the receiver, which then conveys its estimate to the
sender. So our interest is in the downlink direction on Wi-Fi.

The Wi-Fi last-hop is often the bottleneck link in the end-to-end
path. Therefore, the goal of Kwikr is to take advantage of the direct
attachment of the client to the Wi-Fi link to expose the congestion
and its cause, e.g., the contribution of the real-time application to it.

2We do not have access to detailed metrics for FaceTime or Hangouts, and hence
cannot plot RTT.

To avoid the practical difficulties of sniffing on the Wi-Fi channel,
Kwikr focuses on detecting the delay due to queuing and contention
at the downlink of the Wi-Fi AP as a sign of congestion. To this end,
we present a novel Ping-Pair technique, which takes advantage
of Wireless Multimedia Extensions (WMM) support in Wi-Fi APs
to estimate the delay at the AP’s downlink and the contribution of
the flow of interest.

Based on Ping-Pair, we estimate the contribution of the flow
of interest (e.g., Skype) to the delay at the Wi-Fi link and use this
information to modulate the bandwidth estimation of the flow. In
Skype, we do this by modulating the response of the Kalman filter
used for bandwidth estimation. Specifically, if there is an increase
in the delay, but Skype’s contribution to it is small, the increase in
delay is attributed to cross-traffic, whether in the same cell or in
other co-channel cells, and treated as noise rather than a sign of
self-induced congestion. Note that Skype would still be responsive
to such indications of congestion like any network flow should
but would avoid the overly-conservative response discussed in
Section 3, since such a response would do little to reduce delay
given that the congestion is due to other traffic.

Note that although our implementation focuses purely on Skype,
such modifications can be applied in any real-time streaming appli-
cation to improve its performance by allowing it to be “Wi-Fi-aware”
using the techniques we introduce in this paper.

5 DETECTINGWI-FI CONGESTION
A congested Wi-Fi network is one where the channel is constantly
busy because one or more nodes always has packets to send. These
transmissions could either be by nodes in the same network or by
nodes in other, co-channel networks causing interference. We de-
vise Ping-Pair, which enables aWi-Fi-connected client to measure
and attribute the delay on the Wi-Fi downlink at the AP, without
requiring any AP modification or disruptive steps such as monitor
mode for sniffing at the client. Ping-Pair leverages Wi-Fi packet
prioritization, which we provide background on next.

5.1 Packet Prioritization
The IEEE 802.11e standard proposes a set of QoS enhancements
to IEEE 802.11 through the Enhanced Distributed Channel Access
(EDCA) mechanism. EDCA supports four traffic classes (also called
as Access Categories): Background, Best Effort, Video, and Voice,
in increasing order of priority.

The Wi-Fi alliance’s Wi-Fi Multimedia (WMM) specification
contains a subset of the enhancements proposed by 802.11e. WMM
requires an AP to support EDCA and to maintain four queues in the
downlink direction—one for each access category. The AP always
schedules frames in a higher priority queue before those in a lower
priority one. Furthermore, EDCA adjusts the AIFS (Arbitration Inter-
Frame Spacing) and CWmin and CWmax (minimum and maximum
contention windows) parameters to ensure that high-priority traffic
(e.g., traffic marked as voice) experiences minimal contention delay.

The DiffServ Code Point (DSCP) field in the IP header [29] (for-
merly the Type of Service (TOS) bits) is mapped to the WMM
priority classes at a Wi-Fi AP. However, these bits are typically
honoured only within the administrative boundaries of networks
and are often reset when a packet crosses an inter-AS boundary.
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Figure 1: Congestion response of (a) Skype, (b) FaceTime, and (c) Hangouts vis-a-vis TCP. (d) depicts the RTT of Skype packets.
The shaded region in each plot depicts the period when Wi-Fi congestion was introduced in the form of TCP bulk transfers.
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Figure 2: A high-level architectural of Kwikr.

So virtually all of the Internet traffic arriving at a Wi-Fi AP has the
default, best-effort priority setting. We leverage this in our design
of Ping-Pair.

5.2 Ping-Pair
To estimate the delay on the Wi-Fi downlink, the client sends a pair
of back-to-back ping requests (ICMP Echo Request) destined to the
AP, the one with the TOS set to high priority (0xb8) and the other
one with normal priority (0x00). These priority values correspond
to the Best Effort and Voice traffic classes of 802.11e, respectively.
The corresponding ping responses (ICMP Echo Reply) also have
the TOS bits set to high priority and normal priority, respectively,
as required in the ICMP standard [34]. Therefore, the high-priority
ping response ends up at the head of the AP’s downlink queue
(since, as noted above, TOS remains set at the default, best-effort
level for virtually all traffic arriving at the AP over the Internet),
and moreover EDCA ensures that this packet experiences minimal
contention delay due to other traffic, whether in the same network
or other, co-channel networks.

On the other hand, the normal-priority ping packet gets en-
queued at the tail, as is the case usually, and experiences the same
delay due to queuing and contention that any normal packet would.
This is illustrated in Figure 3(a). (Note that the AP would typi-
cally implement multiple prioritized queues; however, the details of
the AP’s implementation are not relevant here, so we imagine the
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Figure 3: The downlink queue at the AP in various cases: (a)
for Ping-Pair-based queue estimation, and (b) for detection
of WMM prioritization. Note: P = ping requests/responses,
with the subscripts indicating the sequence of transmission
by the client; S = Skype packets; T = TCP or other cross-
traffic.

conceptually-simple model of a single queue from which packets
are served in priority order.)

When the ping responses are received at the client, the differ-
ence in their arrival times corresponds to the delay,Tq , at the Wi-Fi
downlink. In a setting where we are unable to measure the actual
arrival times (see Section 7), we approximate it as the difference in
the ping times. By applying a threshold on this queuing delay esti-
mate (see below for implementation details), we determine whether
there is congestion.

Note that to ensure a valid Ping-Pair measurement, the two
ping responses must be enqueued at the AP’s downlink concur-
rently. So the normal-priority ping is sent first, followed immedi-
ately by the high-priority one, and Ping-Pair measurements are
only made in cases where the high-priority response arrives be-
fore the normal-priority one. In our experiments, we find that such
valid measurements occur 98% of the time in cases where the Wi-Fi
downlink is congested.

Despite the similarity in names, our Ping-Pair technique is
novel and distinct from the “packet-pair” technique in the literature
in several ways: (a) the construction of Ping-Pair requires different
priority settings for the two ping packets unlike with packet-pair,
(b) Ping-Pair is used to estimate downlink delay whereas packet-
pair is used to estimate bandwidth, and (c) Ping-Pair can also help
attribute queuing delay to self-congestion vs. cross-traffic, which
we discuss next.

5.3 Self-Congestion vs. Cross-Traffic
To attribute congestion, i.e., identify its cause, we want to estimate
how much of the delay is due to packets from the particular flow
of interest. We do this in two steps. First, the client determines the

queue occupancy due to the flow of interest by counting the number
of packets, na , from that flow received in between (i.e., sandwiched
between) the high-priority ping response and the normal-priority
ping response. For instance, if the client is interested in estimat-
ing the queue occupancy due to the incoming packets of a Skype
flow, it would just have to count the Skype packets that are sand-
wiched between the ping responses, for instance, na = 3 packets in
Figure 3(a).

Second, to estimate the contribution, Ta , of the Skype packets
to the delay, we add up the transmission time of each packet (cal-
culated by dividing the packet’s size, sa , by the MAC layer data
rate, R, at which the packet was transmitted over the channel, both
of which are readily available) and the channel access delay, t , in-
curred by the packet (the estimation of which is discussed below).
So Ta = na (

sa
R + t) In turn, this allows us to estimate the delay,

Tc , due to cross-traffic as Tc = Tq − Ta . Thus, we can not only
estimate the total Wi-Fi downlink delay but also attribute it to
self-congestion vs. cross-traffic.

5.4 Estimating Channel Access Delay
To estimate the channel access delay, the client sends a pair of pings
to the AP, but both at normal priority. This ensures that the two
responses are also marked as normal priority (just like other traffic
for which we wish to estimate the channel access delay) and also
maximizes the chance that the responses are queued up one right
behind the other at the AP’s downlink. If the two ping responses
are, in fact, queued up one right behind the other (as we check in
the next paragraph below), the time gap between their reception at
the client minus the transmission time of the second ping response
would yield an estimate of the channel access time.

To filter out spurious measurements, the client only considers
instances where the two ping responses have consecutive 802.11
frame sequence numbers, which ensures that these packets were
transmitted by the AP one right after the other, with no interven-
ing packets in the AP’s local queue. (Of course, there could be
intervening transmissions from other contending nodes, which is
indeed what would contribute to the channel access delay.) Also,
if either ping response has the 802.11 retransmit bit set, we disre-
gard the measurement. However, given the challenges of accessing
low-level information such as 802.11 frame sequence numbers and
retransmit bit, we use a fixed value of channel access delay in our
implementation, as noted in Section 7.

5.5 Checking for Prioritization
We rely on WMM prioritization to be enabled on the wireless AP. A
client can check this by sending a triplet of back-to-back ping pack-
ets, as depicted in Figure 3(b): a large, high-priority ping followed
by two small pings, the first a normal-priority one and the second
an intermediate-priority one. If WMM prioritization is enabled, the
order of responses to the small pings would tend to get reversed.
On the other hand, if WMM prioritization is not enabled, the order
of responses would tend to be the same as the order of requests.

We tested this technique in six different Wi-Fi networks with
APs from various manufacturers. Checking for reversal in at least
3 of 5 runs led to accurate detection.
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We also conducted a measurement study where we recruited
users on Amazon Mechanical Turk to run a tool containing this
test. 3 We obtained data from 171 unique Wi-Fi access points from
166 users across 14 countries. We found that WMM prioritization
was enabled on 77% of these APs, which indicates that Ping-Pair
has wide applicability.

5.6 Robustness of the Ping-Pair Technique
A potential concern with the Ping-Pair technique is that one or
more packets in the ping-pair may be delayed due to a failed trans-
mission (e.g., due wireless errors), leading to a later retransmission.
This could cause the Ping-Pair estimate to be artificially inflated.

A conceptually straightforward way to avoid such inflation
would be to disregard any measurements where the 802.11 retrans-
mit flag is set on either or both of the received ping responses.
However, since a user-level application is unlikely to have access
to this low-level information, we introduce an alternative dual-
Ping-Pair technique.

In Dual-Ping-Pairs, two sets of ping-pair packets are sent si-
multaneously. If there is a gap between the two high-priority ping
responses or a gap between the two normal-priority packets, then
we can detect a retransmission problem and discard the entire mea-
surement.

The remaining problematic case is when the first of the two
normal-priority packet is delayed due to retransmissions, but the
second is not. Here there are two possibilities: the packet lossmay be
caused by some sustained event (e.g., a long period of interference)
that impacts many packets, or the packet losses are uncorrelated
and due to random noise. If there is some sustained event, then it
is likely that all the packets will be affected, and the problem will
be detected by the gaps described above. On the other hand, if the
packet loss is uncorrelated and random, then it is unlikely to occur
repeatedly and hence it will have little impact on the congestion
control mechanism. Since the congestion control mechanism only
responds to a sustained signal, and since the probability of long
retransmission delays decreases geometrically, the occasional ran-
dom misdetection will not have a significant impact. We can see
this both in practice and analytically.

To validate the effectiveness of the dual-Ping-Pair technique,
we ran an experiment where the client started close to the AP
(strong link), quickly moved away and stayed away for a while
(weak link), before moving back towards the AP (strong link). We
discard any dual-Ping-Pair measurement where the estimates
from the two pairs differs by more than 5 ms. In Figure 4, we report
the maximum number of link-level transmissions (i.e., # retrans-
missions + 1) undergone by any of the dual-Ping-Pair request or
response packets each second, and also the maximum value of the
ping-pair queuing delay estimate each second as well as an EWMA-
smoothed value of the queuing delay estimate (which is used in
Skype with Kwikr). We see that though the maximum number of
link-layer transmissions of a packet is as high as 6 (signifying a
poor link), the dual-Ping-Pair technique is able to filter out extra-
neous delay spikes. The filtered ping-pair estimates are all smaller
than 5 ms, and the smoothed value is even smaller. The absence of

3We obtained IRB approval for this study.
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filtering, on the other hand, resulted in spikes above 100ms in our
experiments.

Simplified Analysis: We can also analytically examine the
probability that retransmissions have a significant impact. The
following provides some intuition for such analysis. Consider, say,
the case where the probability of a packet loss (and hence retrans-
mission) is independent with probability p. (The correlated case is
easier, as it will be detected and filtered by the dual-Ping-Pair.)

The dual-Ping-Pair filtering fails if either the first low-priority
packet is itself delayed, or if the intervening packets (whether Skype
or cross-traffic) are delayed by a significant factor. Since the prob-
ability of a packet loss is p, we can readily bound the probability
that the first low-priority packet is retransmitted even once by p.

To calculate the probability of the intervening packets being de-
layed, assume there are n intervening packets. Assume that packets
are retransmitted using some form of exponential backoff scheme,
e.g., if a packet is retransmitted k times, then it takes time approx-
imately 2k times longer than if it had not been retransmitted at
all. We can estimate that if the intervening packets are delayed
in a way that triples the length of the gap, then this delay may
lead to a misattribution. Since the packet retransmissions rely on
exponential backoff, it will take at least log(2n) retransmissions (in
the worst-case) to increase the gap by 2n (i.e., yielding a gap of
size at least 3n). Thus the probability of the intervening packets
increasing sufficiently is at most nplog(2n) ≤ 2p. (The multiplicative
factor of n arises from the possibility that any one of the n packets
may be delayed this many times, which is the worst-case.)

Thus the probability of a given dual-Ping-Pair failing is at most
p + 2p = 3p (by a union bound). We observe that the congestion
control mechanism only responds to sustained signals, e.g., if 3
consecutive dual-Ping-Pair tests fail due to retransmissions. The
probability of t consecutive dual-Ping-Pair tests failing is at most
(3p)t . Assuming a (high) transmission failure rate of 10%, the prob-
ability of three consecutive bad tests is less than 3%. Thus, it is
unlikely for the congestion control mechanism to be impacted by
sustained Ping-Pair errors.
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5.7 Ping-Pair in Alternative Wi-Fi Setups
We evaluated the Ping-Pair technique in enterprise settings, in-
cluding an office and a university, where the Wi-Fi service uses thin
APs managed by central controllers. The Wi-Fi deployments at the
office and the university are based on gear from Aruba and Cisco,
respectively. In such thin AP settings, the default gateway IP that
the client pings does not belong to the AP as discussed above, but to
a middlebox in the network managed by the controller. Despite this,
in both settings, Ping-Pair provided accurate detections because
the TOS bits of the IP header were preserved in the network. This
suggests that Ping-Pair is effective in thin AP settings.

Wi-Fi range extenders are sometimes used in homes to extend
Wi-Fi coverage. We evaluated our Ping-Pair technique in such an
environment too. We used two TP-Link APs for this experiment;
one as a regular AP and the other as a range extender. We connected
a client to the range extender and conducted Ping-Pair trials. As
the range extender setup did not change the TOS bits of the IP
header and also supported WMM prioritazation, our Ping-Pair
technique provided accurate detections in this setting as well.

6 ADAPTATION BASED ON PING-PAIR
In this section, we outline how Ping-Pair measurements can be
leveraged for bandwidth control. As the Ping-Pair measurements
relate only to the AP downlink, they alone do not form a basis for
end-to-end bandwidth control. However, as we shall see, they pro-
vide useful guidance in improving existing end-to-end bandwidth
control mechanisms, such as the ones used by real-time streaming
applications like Skype. Conceptually, using Ping-Pair we can
modify the bandwidth control mechanism to take into account
whether delays at the Wi-Fi downlink is caused by the application
that the mechanism governs or not. If delays are due to other traf-
fic in the Wi-Fi network, being overly conservative in reducing
transmission load is unlikely to help; it would only have a negative
impact on the user experience in terms of audio and video quality
but not yield gains in terms of reduced delay.

Incorporating Ping-Pair to adjust existing end-to-end band-
width control mechanisms is highly implementation specific. Com-
monly, control mechanisms for real-time streaming applications
are based on one-way packet delay measurements, either as a con-
gestion signal or as input to a bandwidth estimation algorithm, see
e.g. [23, 26]. For such techniques, an obvious modification would be
to simply remove the cross-traffic contribution from the measured
end-to-end delays, that is, d ← d −Tc , whereTc is the delay due to
other sources (i.e., cross-traffic), as determined by the Ping-Pair
technique according to Section 5.3. However, this modification is
challenging in practice since the Ping-Pair measurements tend to
be much less frequent (twice per second in our implementation)
than the one-way delay samples (which are obtained for every
packet received, typically with an inter-packet spacing of 20 ms).

For our target application, Skype, we use a more subtle approach
to adjust its bandwidth control mechanism based on Ping-Pair
measurements. A full description of Skype’s bandwidth estimation
mechanism (which is prior work that we build on) is outside the
scope of this paper, but in short Skype estimates path bandwidth
by Kalman filtering, modeling the end-to-end delays as a function

f of the available bandwidth of the network path (see [37]):

d(k) = f (BW (k)) + e(k) (1)

where k is a packet index, BW (k) is the serving bandwidth, and
d(k) is the packet one-way delay, calculated from transmission and
reception timestamps and compensated for sen-
der/receiver clock offset and channel propagation delay thr-
ough a minimum tracking mechanism. e(k) is the Kalman filter
observation noise.

At a high level, a Kalman Filter estimates the state of a system,
combining a predictive model with ongoing noisy observations.
The idea is to integrate the Ping-Pair information by treating
congestion by other sources (i.e., a high Tc ) as an indication that
the observations d(k) are noisier than normal since the cross-traffic
is corrupting the measurements. In a Kalman filter framework,
that can be achieved by increasing the observation noise variance
parameter σ 2

e in accordance withTc ; the higher theTc is, the larger
the noise variance. The effect is that the bandwidth estimator makes
a smaller-than-usual reaction to the increased delay.

Skype uses an Unscented Kalman filtering (UKF) [27, 41] of the
leaky bucket state-space model (see [37]. UKF is based on the Un-
scented Transform, a method for computing the statistics of a ran-
dom variable that undergoes non-linear transformation; this is
because the function f in Equation 1 is non-linear. It operates by
sampling the state distribution at selected sigma points χ to ob-
tain a Gaussian representation, which is amenable for propagation
through a Kalman Filter. There are 1 + 2L such sigma points, one
central χ0 and two for each of the L random variables in the Kalman
filter. The observation noise is one such random variable and fol-
lowing the notation of [41], the two corresponding sigma points
are calculated according to:

χ
(+/−)
e = χ0 ±

√
α2Lσ 2

e (2)

where α = 1e − 3 is a typical parameter value. This equation is our
attack point: by increasing the observation noise variance parame-
ter σ 2

e , we make the Kalman filter less sensitive to congestion. As
an additional trick, we do this only for the ‘+’ sigma point, which
corresponds to modeling the observation noise as having non-zero
positive mean:

χ+e = χ0 +
√
α2L

(
σ 2
e + βT

2
c
)

(3)

where β is an empirically tuned “noise scaling” factor. The larger the
β is, the less the Kalman filter would respond to increased delay due
to cross-traffic; we found β = 4 to be adequate. Thus, by modeling
the delay observation noise as having non-zero positive mean, we
signal that not all delay is caused by Skype, making the estimator
converge towards a higher bandwidth. And by increasing the ob-
servation noise variance, we introduce greater uncertainty, causing
less weight to be given to the delay observation, thus slowing down
the bandwidth adaptation speed.

7 IMPLEMENTATION
We implemented 4 a full-fledged Ping-Pair tool on Windows and
Linux, where we had access to low level APIs for creating raw
4For a standalone implementation of ping-pair, please visit
https://www.microsoft.com/en-us/research/project/pindrop/.
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sockets and obtaining precise time of send and arrival of packets.
However, in order to deploy it on Skype (specifically on Skype for
Android), we created a simpler implementation tailored for the
restrictive Android platform.

7.1 Ping-Pair Tool on Windows
We first implemented Ping-Pair as a standalone application on
Windows. Our implemention comprises 1̃200 lines of C# code. It
uses raw IP sockets to construct the necessary probes. (The User
Account Control (UAC) mechanism on Windows prompts the user
for the necessary privileges.) We used this standalone application
for testing and also for distribution via AmazonmTurk for the study
noted in Section 5.5 on checking the prevalence of WMM support
in the wild (users ran the tool on their Wi-Fi-connected Windows
PCs).

7.2 Ping-Pair Tool on Linux
We then implemented Ping-Pair as a standalone application on
Linux, which is the OS that underlies Android. This implementation,
again, uses raw IP sockets to construct the necessary ICMP packets
required for the probes. Our implementation consisted of around
500 lines of C code.

We also implemented our channel access delay estimator on
Linux, since it enabled us to send out back-to-back packets at a
very nominal delay of a few microseconds. Our implementation,
comprising 6̃00 lines of C code, consists of two components: a
probing tool and a packet capture tool. The probing tool sends out
a pair of normal priority (i.e., best-effort) pings back-to-back using
raw Linux sockets. The ping responses are then captured using a
packet capture interface from which we infer the channel access
delay. In order to accurately measure the channel access delay, we
filtered out probes where either of the frames were retransmitted
on the Wi-Fi link or if the IEEE 802.11 frame sequence numbers of
the two ping responses were not consecutive.

7.3 Kwikr for Skype on Android
Our main implementation effort centered on the popular Skype AV
conferencing application on Android. This application is largely
written in C, with a UI shell in Java that loads a C library using
the Java Native Interface (JNI). Our implementation spanned the
following three components (the lines of code (LOC) of our imple-
mentation are noted within parentheses):

(1) Platform Interface (PI) (50 LOC): this is a platform-specific
module responsible for interfacing with the OS to obtain the
MAC data rate information and invoke the ping utility on
Android.

(2) Probing Module (PM) (1400 LOC): this is also plat-
form-specific and orchestrates the Ping-Pairmeasurements.

(3) BandwidthEstimator (BE) (50 LOC): thismodule is platform-
independent and the only component that lies in the data
path, i.e., actually receives the stream packets. BE imple-
ments Kwikr’s modifications to the Unscented Kalman Filter
based bandwidth estimator.

The operation starts by invoking PM at the beginning of a call.
PM then obtains information about the default gateway (the Wi-Fi
AP), which it probes regularly to obtain estimates of the Wi-Fi

downlink delay. Each probe records the start/stop time (to deter-
mine the number of packets sandwiched between the ping-pair),
the Wi-Fi downlink delay estimate, and the instantaneous MAC
data rate (to infer the transmission speed). This information is then
passed to BE, which counts the number of Skype packets between
the start and stop times, and computes the contribution of Skype
to the Wi-Fi downlink delay. Finally, this information is used to
adjust the UKF, as discussed in Section 6.

One practical difficulty was our inability to use raw sockets on
Android without rooting the device. To get around this limitation,
our implementation uses the built-in ping utility on Android, which
supports the setting of the TOS bits. However, we lack precise con-
trol over the timing of the ping packets and moreover only obtain
the ping times, not the interarrival time between the ping responses.
Nevertheless, our estimation of the Wi-Fi downlink delay did not
suffer much relative to a raw sockets based implementation. We
tested a raw-socket based implementation a ping-based implemen-
tation on Android, both in an uncongested setting and found that
the average ping estimates were 1 ms and 0 ms respectively, i.e.
close to each other. Likewise, in a congested setting these were
180 ms and 183 ms respectively, again close to each other.

The inability to use raw sockets also meant that we were not
in a position to perform the WMM detection from Section 5.5 on
Android. However, this was still acceptable; lack of WMM support
only means that Ping-Pair would under-estimate the Wi-Fi down-
link delay and, consequently, also the contribution of cross-traffic
(c in Equation 3). The net result is that Skype would fall back to its
default, non-Kwikr behaviour, which is still safe, even if it is overly
conservative.

The restrictive Android platform also prevented us from imple-
menting the channel access delay estimator, as access to low level
information such as IEEE 802.11 frame sequence numbers and re-
transmit bits were not available. Hence, we used a fixed channel
access delay of 0.125 ms in our implementation, although we realize
that such a fixed value is necessarily an approximation.

8 EVALUATION
We first evaluate the Ping-Pair technique, and then present results
from experiments we conducted using Skype with Kwikr, which
uses Ping-Pair to enable informed bandwidth adaptation.

8.1 Validating Ping-Pair
As discussed earlier, delays in a Wi-Fi downlink can occur due
to congestion and contention introduced by traffic in the same
network as well as by traffic in other co-channel networks through
interference. We first evaluate Ping-Pair in settings where delays
are caused by traffic in the same network and then discuss its
effectiveness in co-channel interference settings.

Congestion. To obtain the ground truth on whether the Wi-
Fi link is congested, i.e., whether there is a queue build-up at the
AP, we instrumented OpenWRT (Chaos Calmer 15.05) to log the
number of frames in the downlink queue continuously and installed
it on a NetgearWNDR3800Wi-Fi access point. If over 90% of the log
samples show a non-empty queue, we deem it to be a “persistent”
queue, otherwise a “non-persistent” queue.
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Table 1: Confusion matrix for congestion detection using
Ping-Pair in 2.4 GHz band (a) and 5 GHz band (b).

(a) 2.4 GHz Band
Kwikr Classification

Queue Ground Truth Non-persistent Persistent
Non-persistent 116 107 (92.2%) 9 (7.8%)

Persistent 117 14 (12.0%) 103 (88.0%)

(b) 5 GHz Band
Kwikr Classification

Queue Ground Truth Non-persistent Persistent
Non-persistent 110 108 (98.2%) 2 (1.8%)

Persistent 140 16 (11.4%) 124 (88.6%)

We increased the number of (cross-traffic) TCP flows to otherWi-
Fi clients connected to the same AP, from 0 to 7, to create varying
amounts of congestion, and gathered 30 Ping-Pair measurements
at each step. We used both 2.4 GHz and 5 GHz bands as the Netgear
WNDR3800 access point supported dual-band operation. Next, we
trained a 10-fold cross-validation decision tree classifier on this data
and the ground truth, to obtain the thresholds of 5ms on the ping-
pair delay estimate for both bands, for classification of persistent
vs. non-persistent congestion.

Tables 1(a) and 1(b) show the confusion matrices of Ping-
Pair for the 2.4 GHz and 5 GHz bands, respectively. In both bands,
Kwikr’s congestion detection accuracy is over 90%.

This shows that the Ping-Pair technique, despite its simplicity,
is a reliable detector of Wi-Fi congestion.

Other AP models. Quantitative classification of congestion
requires the instrumentation of APs to get the ground-truth, as
done above. As this is not possible on every AP, we conducted
qualitative experiments on multiple APs (from LinkSys, TP-Link,
Cisco, and D-Link), where we introduced congestion in the form
of TCP bulk flows and tested the Ping-Pair classification model
we constructed above. In all the settings, the Ping-Pair technique
successfully detected the congested versus non-congested episodes.

Interference. To evaluate the effectiveness of the Ping-
Pair technique in interference settings, we set up two APs running
on the same channel. On the first AP, we connected a UDP client to
the Wi-Fi link and a UDP server to the wired link. We then initiated
a downlink stream of UDP packets (with an inter-packet interval
of 20 ms) from the server to the client in order to simulate a Skype
call and measured the one-way delay. On the Wi-Fi link of the same
AP, we conducted Ping-Pair trials every 200 ms. We connected
6 clients running 20 parallel TCP bulk transfers to the second AP
and congested it for 30 seconds during the experiment.

As Figure 5 shows, congestion in the neighbouring AP increases
the one-way-delays of the UDP stream because of co-channel inter-
ference. It also shows that our Ping-Pair detector’s delay estimates
increase during the time period the AP was experiencing interfer-
ence. Note that to combat clock offset, the one-way-delay shown
in the plot has been normalized by subtracting out the minimum
one-way-delay observed during the experiment. So the absolute
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Figure 5: The One-Way Delay of a UDP flow and the AP
downlink delay as observed by the Ping-Pair technique. The
shaded area depicts the time period in which the second AP
was congested causing interference in the first AP that the
UDP flow was using.

values of one-way delay are not comparable to the downlink de-
lay values estimated by Ping-Pair. Note also that interference
from contenders outside our control results in spikes. However,
the spikes are more prominent in the downlink delay time series
because the sampling frequency (5 measurements per second) is
much lower than for the one-way delay time series (50 samples
per second, given the 20 ms inter-packet spacing); an averaging
interval of 1 second is used for both time series.

Therefore, we conclude that the Ping-Pair technique is capable
of accurately detectingWi-Fi downlink delays caused by congestion
and contention from traffic in the same AP as well as neighbouring
APs via co-channel interference.

8.2 Channel Access Delay Estimation
Using our channel access delay estimator implementation in Linux,
we conducted extensive experiments to evaluate its effectiveness.
To create channel contention, we introduced additional channel
contenders one by one to the network. These clients uploaded UDP
packets to a server at the rate of one per millisecond. Another
client, connected to the same AP, conducted channel access delay
measurements. For each number of contenders, we gathered around
1500 channel access delay estimates. As expected, Figure 6 shows
that the average channel access delay increases with the number
of channel contenders in the network. The channel access delay
estimated is high even with zero contenders because of contention
from other nodes on the same channel whichwere not in our control.
However, as shown in Figure 7, the channel access delay estimated
for high-priority packets remains low (around 9 microseconds),
whether there are any contenders or not. This points to the accuracy
of our estimation technique.

8.3 Skype with Kwikr
We ran controlled experiments of Kwikr-enabled Skype to evaluate
the effectiveness of the improved bandwidth adaptation mechanism.
We also look at scenarios where Kwikr-enabled clients co-exist with
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non-Kwikr-enabled clients, showing that the improvement is not
coming at the expense of other users.

Note that the experiments here are performed with Skype run-
ning onAndroid phones, whereas those in Section 3were performed
on Windows laptops. So the bandwidth numbers are not directly
comparable because of differences in hardware and also in the
specifics of the Android vs. Windows implementations of Skype.

We first show that Kwikr enables a better response to congestion.
We ran 40 experiments, half with unmodified Skype clients and half
that were Kwikr-enabled. We initiated three minute calls in each
of these experiments. During the middle minute we introduced
congestion in the form of heavy TCP flows by having two clients
connected to theWi-Fi link download data (using 20 parallel threads
each) from a server connected to the wired link.

Figure 8(a) shows a representative execution; the shaded area
represents congestion. Skype with Kwikr maintains a higher data
rate during the congested period, as it has determined that Skype
is not a significant cause of congestion. It recovers quickly when
congestion ends.

Table 2: Kwikr flows co-existing with other flows. Table con-
tains data rate for the measured flow when running simul-
taneously with the specified background flow.

Background Flow
Measured Flow Skype Skype with Kwikr
Skype 641 ± 7 kbps 616 ± 10 kbps
Skype with Kwikr 647 ± 9 kbps 652 ± 6 kbps

Figure 8(b) shows a CDF of the average data rate for each of the
40 calls, and we see that overall Kwikr enables a higher data rate.
On average, the calls with Kwikr had a 20% higher data rate. We
also see in Figures 8(c) and 8(d) that the round-trip time and loss
are not hurt by Kwikr. (Instead of a CDF, for clarity here we simply
note a few percentiles.)

Thus, we see that Kwikr-enabled Skype avoids backing off sharply
in an overly conservative manner when congestion is due to cross-
traffic, and also recovers more quickly. Note, however, that even
with Kwikr enabled, Skype does back off. For example, this can be
seen in the blue Skype with Kwikr curve in Figure 8a at around
time T=65 seconds. It is just that Skypewith Kwikr is not needlessly
conservative.

We also consider the scenario where the congestion is self-
inflicted, i.e., where Skype really needs to back off sharply. We
ran experiments where, on a regular AP, bandwidth was artificially
throttledmid-stream using a token bucket filter during threeminute
calls with both regular and Kwikr-enabled Skype. Figure 9(a) shows
that Kwikr does not affect bandwidth adaptation when congestion
is self-inflicted.

One question is whether the apparent conservativeness of Skype
with Kwikr during in this situation is due to the limited throttled
capacity of the underlying link; in other words, it is that Skype
with Kwikr remains aggressive but the link will not allow it to go
any faster? If this were the case, the aggressive behaviour would
be reflected in increased packet loss. However, as Figure 9(b) clar-
ifies, the packet losses experienced with Kwikr is similar to that
without Kwikr. This indicates that Skype with Kwikr is appropri-
ately conservative since Ping-Pair allows it to correctly detect
self-congestion.

Finally, we looked at the performance of Kwikrwhen co-existing
with other clients. We ran 30 experiments where two clients made
simultaneous two-minute calls. For ten calls, both clients were
Kwikr-enabled; for another ten calls, one client was Kwikr-enabled
and the other was not; for the final ten calls, both were unmodi-
fied Skype clients. Table 2 shows that co-existence does not have
a significant impact on data rate. The non-Kwikr-enabled clients
are essentially unaffected by co-existing with Kwikr clients. Sim-
ilarly, Kwikr-enabled clients running together also appear to be
unaffected.

8.4 Results from Skype Production Release
Our implementation of congestion detection and bandwidth adap-
tation in Skype using Ping-Pair-based hints is part of the Android
client in production and has been enabled for a fraction of the calls
for limited periods to enable randomized A/B testing. (The goal
is to eventually enable it for all calls once the testing has been
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Figure 8: The Ping-Pair technique used to adapt to congestion. Figure (a) shows a representative execution showing how Kwikr
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Figure 9: When congestion is self-inflicted, Kwikr reduces the data rate as in regular Skype (a). The losses experienced by the
two flows are similar as well (b).
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Figure 10: Wi-Fi downlink delay in the wild.

Table 3: Bandwidth gains due to Kwikr in deployment (with
p-values showing statistical significance).

95%tile queuing % calls Avg. gain in Median gain
delay due to covered bandwidth in bandwidth

cross-traffic (ms) (p-value) (p-value)
75 7.1% 3.3% (0.04) 3.1% (0.09)
100 4.6% 4.1% (0.05) 4.1% (0.08)
150 2.7% 7.4% (0.01) 8.6% (0.01)

concluded.) This has allowed us to take a peek into the prevalence
of congestion in Wi-Fi networks in the wild (which, to our knowl-
edge, has not been measured so far, in the absence of a technique
such as Ping-Pair) and also report on the benefits to bandwidth
adaptation from using Ping-Pair-based hints. We analyze a set of
119,789 video calls from the period Dec 9-16, 2016.

Figure 10 shows the distribution of Wi-Fi downlink delay, as
measured by the Skype clients in production using Ping-Pair, due
to Skype traffic and that due to cross-traffic. For each call, we ex-
tract the 95th-percentile queuing delay measurement (representing
the worst 5% of the call) and plot the distribution of these 95th-
percentile delays across the set of 119,789 calls. We observe that
there is a significant amount of delay at the Wi-Fi downlink and
moreover the delay due to cross-traffic dominates that due to Skype.
For instance, for the worst 5% of calls, the queuing delay due to
cross-traffic, at the 95th percentile, is at least 98 ms, whereas for
the worst 1% of calls, it is at least 245 ms. To put these numbers
in perspective, the end-to-end round-trip delay budget for VoIP
is typically 300 ms, so for the worst calls, queuing at the Wi-Fi
downlink alone takes a significant bite out of this budget.

The significant delay at theWi-Fi downlink and the dominance of
cross-traffic means that Kwikr can provide benefit by helping avoid
unnecessarily conservative bandwidth adaptation. Table 3 presents
the average andmedian bandwidth of calls, with and without Kwikr,
for different degrees of cross-traffic-induced congestion at theWi-Fi
downlink. We see modest gains in average and median bandwidth
of about 8% using Kwikr, with the gains being greater the larger
the contribution of cross-traffic to queuing delay is.

Since we use the existing telemetry pipeline in Skype, we are un-
able to report bandwidth specifically from the congestion episodes.

So we report average and median bandwidth over entire calls whose
average duration is 967 seconds (just over 16 minutes), which re-
sults in the modest overall gains. However, to put these gains in
perspective, we considered Skype traces gathered by us in con-
trolled experiments and find that although the overall gains are
modest here too, the gains during a short but still noticeable conges-
tion episodes are high. For example, in one of our traces where we
introduced congestion for about 30 seconds during a 3 minute call,
the overall improvement in bandwidth was 9% whereas, during the
congestion period the bandwidth gain was 21%. This shows that
even though overall gains are modest there could be significant
gains in shorter but noticeable periods.

Finally, note that the above bandwidth gains come with no sta-
tistically significant degradation in RTT or packet loss. This shows
that Kwikr provides benefit while exhibiting safe behaviour towards
the network.

9 CONCLUSION
We have presented Kwikr, a practical approach to improving band-
width estimation for real-time streaming applications. Its center-
piece is a novel Ping-Pair technique to estimate delays at the
Wi-Fi AP’s downlink caused by congestion and contention, both
in the same AP as well as neighbouring APs via co-channel inter-
ference. Kwikr yields bandwidth gains (“benefit”) while remaining
responsive to self-congestion (“safety”). Randomized A/B testing
of Kwikr in the context of Skype, a popular AV conferencing appli-
cation, shows that delays at the Wi-Fi downlink is significant and
that bandwidth gains can be had without negatively impacting the
network.
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