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ABSTRACT
Low-cost lenses with magnifications of 150-200x are being
sold in the market today as accessories for mobile smart-
phones. Attaching these lenses to a smartphone camera cre-
ates low-cost, ultra-portable digital microscopes, with a po-
tential for significant impact on applications in a variety of
fields such as healthcare, agriculture, education etc.

In this paper, we consider a low-cost do-it-yourself Com-
plete Blood Count (CBC) application using a smartphone
microscope. We discuss several unique challenges that come
up in implementing this application that include preparing
the blood sample, correcting the small field of view and blur
of the lens, and automating the cell counting procedure. We
present our approach to overcome these challenges and re-
port early promising results on counting red blood cells.

CCS Concepts
•Applied computing → Health informatics;

1. INTRODUCTION
The number of smartphones worldwide is approaching 2

billion today [6]. The mobile accessory market, riding on
the coattails of the growth in smartphones, is expected to
grow to $100 billion by 2020 [5]. One such accessory, the
smartphone camera microscope lens, has made tremendous
progress recently in both cost and functionality. For ex-
ample, in the commerical market today, one can obtain
smartphone lens attachments with 150-200X magnification
for $15-$30 [4, 11]. Further, the Foldscope project promises
a lens with up to 2000X magnification for less than a dol-
lar [2].

These advances in smartphone microscopy can open up a
variety of applications with significant impact in healthcare,
agriculture, education, etc. In this paper, we focus on chal-
lenges in implementing one such application, namely, blood
cell counting using a smartphone microscope.

Human blood is composed of blood cells or corpuscles sus-
pended in blood plasma. Plasma constitutes about 55% of
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the volume and is mostly (up to 95% by volume) water.
There are three kinds of blood cells: (a) red blood cells
(RBCs) or erythrocytes, (b) white blood cells (WBCs) or
leukolytes, (c) platelets or thrombocytes.

Complete blood count (CBC) test is one of the most widely
ordered laboratory tests. A complete blood count (CBC)
test report helps confirm the diagnoses for several medical
conditions, for example, anemia (low RBC count), leukemia
(low RBC count), dehydration (high RBC count), renal cell
carcinoma (high RBC count), bone marrow failure (low WBC
count), lupus (low WBC count), stress (high WBC count),
infection (high WBC count), and dengue (low platelet count).

As we discuss in Section 2, CBC can be performed either
by manual count using a microscope or through an auto-
mated flow cytometry machine. However, the manual count
is tedious and can be error-prone. Thus, most diagnostic
labs today use the automated approach which increases cost
and also requires a visit to the diagnostic lab. In this paper,
we investigate the feasibility of a do-it-yourself blood test
that automates the manual count approach using a smart-
phone microscope. This allows the CBC test to be done
anywhere and at low cost, thereby addressing the needs of
users in both developed and developing nations.

While smartphone lens attachments are inexpensive and
provide good magnification, a key drawback of these lenses is
their small field-of-view. For example, the practical field-of-
view of one of the lenses [4] is only an area of about 0.2 mm×
0.2 mm while manual blood cell counting protocol requires
observation of an area of few square mm – an area that
is up to two orders of magnitude larger. This introduces a
number of challenges in blood sample imaging and the vision
algorithms used in their processing. We describe these and
other challenges that arise in handling blood in Section 4.

We discuss our approach for addressing these challenges
and our preliminary results in computing red blood cell
count in Sections 5 and 6. As part of future work, we plan
to enhance our processing to support other blood cell types
as well as scale our evaluation. If successful, we believe
that a low-cost do-it-yourself CBC test using a smartphone
microscope can complement conventional lab blood testing
in situations where convenience or cost considerations pre-
vent/delay users from visiting a conventional lab.

2. BACKGROUND
In this section, we describe the essential parameters mea-

sured by a CBC test and the laboratory procedure for it.
The complete blood count (CBC) test procedure starts

with a phlebotomist drawing approximately 0.5 ml of the
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patient’s blood by venipuncture into a test tube containing
an anticoagulant such as EDTA or sodium citrate. The cell
counting can be either manual or automated. The important
parameters measured in a CBC test and their normal ranges
are as follows [22].

1. Red blood cell (RBC) count: 4.7 to 6.1 million cells
per microliter1 in males and 4.2 to 5.4 million cells per
microliter in females,

2. White blood cell (WBC) count: 4,500 to 10,000 cells
per microliter,

3. Platelet (PLT) count: 150,000 to 450,000 cells per mi-
croliter,

4. Hematocrit (HCT) or the percentage volume of RBCs
in the blood: 40.7 to 50.3 % in males and 36.1 to 44.3
% in females,

5. Hemoglobin (Hgb): 13.8 to 17.2 grams per deciliter in
males and 12.1 to 15.1 grams per deciliter in females.

A typical CBC test report may also include additional in-
formation such as the following.

1. WBC differential count or the separate counts of dif-
ferent types of WBCs – neutrophils, band neutrophils,
lymphocytes, monocytes, eosinophils, and basophils,

2. Mean corpuscular volume (MCV) or the average vol-
ume of a red blood cell,

3. Mean corpuscular hemoglobin (MCH) or the average
mass of Hemoglobin per red blood cell.

For manual count, the blood sample is diluted (1:100 for
RBC count, 1:20 for WBC count), stained, and loaded into a
hemocytometer or a counting chamber using a micropipette.
Figure 1 shows a Neubauer hemocytometer [7], which is a
reusable, glass counting chamber of fixed depth (0.01 mm)
with a laser-etched 3 mm×3 mm grid. The middle 1 mm×
1 mm square is divided into a 5×5 grid, which has a further
sub-division into a 4× 4 grid. Thus, the smallest square in
the middle has dimensions 0.05 mm × 0.05 mm, and at 0.1
mm depth, it corresponds to 0.25 nanoliter (or equivalently,
0.00025 microliter) volume.

Figure 1 shows the regions used for RBC and WBC counts
marked by R and W, respectively. To get an idea of how
tedious a manual count is, the normal range for RBC count
at 1:100 dilution corresponds to an average count of 10-15
cells per each of the smallest 0.05 mm × 0.05 mm squares,
and one needs to count this over 5 × (4 × 4) = 80 such
squares. For statistical and laboratory studies on the error
of counting with a hemocytometer, see [20, 13].

Some automatic cell counters based on image cytometry
mimic the manual count procedure described above, and of-
tentimes provide image processing tools on a digital micro-
scope to assist lab technicians doing the manual count. How-
ever, majority of the automatic cell counters are based on
flow cytometry instead. The blood sample is passed through
a microfluidic channel and a fast but indirect count is ob-
tained by laser-based or impedance-based counters such as
Coulter counters. Flow cytometry is faster but cannot pro-
vide additional details about the cells that image cytometry
can. Recent research on imaging flow cytometry tries to
combine the best of both approaches [12, 14]. All of these
automated hematology analyzers have a steep price of more
than $1000, are far from portable, and have their coefficient
of variation of about 3-5% [24].

1One microliter is equal to one cubic millimeter volume.

Figure 1: Neubauer glass hemocytometer

3. RELATED WORK
There are three important directions related to our work

(a) mobile microscopy for digital pathology, (b) the reso-
lution vs. field of view tradeoff, and (c) the approaches to
build low-cost portable microscopes, in general.

Mobile microscopy can provide low-cost, portable digital
pathology solutions to improve healthcare accessibility in
underserved and low-resource areas. Breslauer et al. [15]
use a mobile phone-mounted light microscope and demon-
strate its potential for clinical use by imaging P. falciparum-
infected and sickle red blood cells in brightfield and M.
tuberculosis-infected sputum samples in fluorescence with
LED excitation.

Switz et al. [21] present a simple and low-cost mobile mi-
croscope by adding a reversed mobile phone camera lens to
a mobile phone camera, which enables high quality imag-
ing over a large field of view, and demonstrate its use in
imaging red and white blood cells in blood smears and soil-
transmitted helminth eggs in stool samples.

Skandarajah et al. [19] show that quantitative microscopy
with micron-scale spatial resolution can be carried out with
multiple phones and that image linearity, distortion, and
color can be corrected as needed. They observe that phones
with greater than 5 MP are capable of nearly diffraction-
limited resolution over a broad magnification range. They
find that automatic focus, exposure, and color gain stan-
dard on mobile phones can degrade image resolution and
reduce accuracy of color capture if uncorrected, and devise
procedures to circumvent them.

The tradeoff between resolution and field-of-view is inher-
ent to most optical systems but it becomes even more critical
in mobile phone microscopy for digital pathology applica-
tions. It is important to mention the following recent works
in this regard, even though their focus is not specifically
mobile microscopy or digital pathology.

Fourier Ptychographic Microscopy (FPM) introduced by
Zheng et al. [25] is a method that takes a number of low-
resolution images under variable-angle, coded illumination
using an LED array, and then iteratively stitches them in
the Fourier space to produce a wide-field, high-resolution
complex sample image. Adopting a wavefront correction,
it can also correct for aberrations and digitally extend a
microscope’s depth of focus beyond the physical limitations
of its optics. Horstmeyer et al. [18] discuss applications of
FPM to digital pathology.

Another important direction related to our work is ap-
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Figure 2: Do-it-yourself Blood Count Pipeline

proaches to built low-cost portable microscopes in science
and education using simple lenses. Foldscope by Cybulski
et al. [16] is a simple, origami-based, portable, ultra-low-cost
microscope with a spherical ball lens that is easy to manu-
facture at large scale. The diagnostic variants of Foldscopes
are more suited for manual detection of micro-organism.

It is important to note that unlike the blood cell count,
a smartphone application HemaApp by Wang et al. [23]
uses chromatic analysis to measure hemoglobin level with
a precision of 76.5% and compares favorably with an FDA-
approved noninvasive hemoglobin measurement device.

Zhu et al. [17] have looked at imaging cytometry attach-
ments for RBC and WBC counts on a smartphone but re-
quire many processing steps with large-sized attachments
(different ones for RBC, WBC etc.) meant for a lab tech-
nician. To our knowledge, ours is the first attempt at a
low-cost do-it-yourself smartphone-based blood counts us-
ing video scans and minimal processing steps.

4. CHALLENGES
A low cost do-it-yourself blood count pipeline is shown in

Figure 2. As shown in the figure, the challenges in analysing
blood can be divided up into three parts: (a) Sample han-
dling, (b) Sample imaging and (c) Image processing. We
now discuss each of these below.

4.1 Sample Handling
The challenges here pertain to dealing with blood, i.e.,

how to collect and prepare the blood sample so that analysis
can be performed using a smartphone.

Fortunately, these are well-known issues that have already
been addressed by the market today. A lancet (cost $0.06 [3])
can be used to prick the finger and extract a small amount
of blood. The blood is then loaded into a disposable device,
called a unopette. This device is simply a calibrated capil-
lary tube with a reservoir pre-filled with the right type and
amount of dilution, lysing and staining fluids. Unopettes are
available for WBC [10], RBC [9] and platelets [8] for about
$1.5 each. Finally, the diluted blood can be placed onto a
disposable hemoctyometer, which has 2 counting chambers
and costs less than $3 each [1] (a reusable hemocytometer
costs about $35). Thus, the materials required for a CBC
test is under $10, and the preparation for loading the pro-
cessed blood sample onto a hemocytometer is straightfor-
ward.

4.2 Sample Imaging
Small field of view. The challenge in imaging the blood
sample in the hemocytometer arises primarily due to the

Figure 3: Lens Edge Distortion

small field-of-view (FOV) of the smartphone microscope.
The inexpensive microscope lens attachment [4] has a signif-
icantly smaller FOV than a conventional microscrope. Fur-
thermore, as shown in Figure 3, there is severe distortion
around the edges of the image from the lens. Thus, the
practical FOV is only the central 4 × 4 grid in Figure 3 of
size 0.2 mm× 0.2 mm, which is at least an order of magni-
tude smaller area than a conventional microscope.
Multiple photos vs. video. A red blood cell count for the
hemocytometer (Section 2) requires counting cells from an
area of 1 mm× 1 mm or 25 frames (since the practical FOV
is only 0.2 mm× 0.2 mm), whereas a white blood cell count
requires counting cells from 4 such 1 mm × 1 mm squares
or 100 frames in total. If we require the user to manually
center and focus on each of the 100 such squares and capture
a photograph, it would be very tedious. A more practical
alternative is for the user to simply perform a (guided) video
scan of the region of interest and capture it in a single video.
XYZ stage accessory. The key challenge then is how
we can help the user to scan the smartphone over the entire
3 mm×3 mm region of interest in the hemocytometer. This
requires movement of the hemocytometer in small steps of
0.1 mm in the X and Y directions while capturing the video
and a one-time adjustment in the Z-direction so that the
hemocytometer image is in focus. Besides, a manual XYZ
stage is an essential part of every microscope. The adjust-
ment in XY direction is required to scan the slide whereas
the adjustment in Z direction is required to put the region
of interest in focus. Replicating this in a cost-effective man-
ner using origami was the key part of the Foldscope design
too [16]. However, the diagnostic variants of Foldscopes are
more suited for identification of micro-organisms and a man-
ually adjusted XYZ stage based origami does not provide a
smooth enough translation for a video scan. To address this
challenge, in Section 5, we describe a 3D-printed XYZ stage
that we developed as an accessory to the smartphone. This
accessory allows the user to easily scan the region of interest
in a hemocytometer by rotating a few dials and producing
a composite video.

4.3 Image processing
Once the video of the blood sample in a hemocytometer is

acquired, one can use computer vision techniques to perform
cell counting. We now discuss a number of challenges that
arise in this context.
Panorama. We first tried to convert the video into a
panorama image by using standard photo-stitching software.



However, we discovered that the distortion caused by the
lens and the movement resulted in numerous artifacts (e.g.,
blurring, skipping) in the panorama image that rendered it
useless for our needs. Since our goal was to simply count
the cells and not the generation of a panorama image, we
decided to process the video directly.
Cell counting. The first challenge is given a frame of the
video, how do we count the number of cells in it? A num-
ber of vision algorithms for counting objects are available
such as countour detection, template matching, and Haar
cascade. Further, these algorithms have different character-
istics in terms of accuracy, speed, computational needs, etc.
Thus, we evaluate a suite of such algorithms in Section 5
to better understand the trade-offs and determine if they
provide sufficient accuracy for our needs.
Avoiding double counting. The second challenge is to
avoid double counting as we process multiple frames of the
video. In order to do this, we need to uniquely identify
squares that are shown in Figure 3 so that we count cells in
each square exactly once. This requires us to first identify
the squares and then uniquely label each square.

The identification of squares is fairly straightforward since
we know the existence and spacing of the various grid lines.
However, uniquely labeling each square turned out to be
a harder problem. While there are standard vision tech-
niques like SIFT (scale-invariant feature transform) to iden-
tify unique features of a cell, we found that simply applying
these techniques is not robust enough for our needs as it
resulted in a large number of double counts. Instead, in
Section 5, we find that using the location of cells (relative
to the grid) to create a unique feature for a square and fur-
ther applying special location and neighbor tracking filters
is necessary to avoid double counting of cells in a video.
Aggregating the final count. The third challenge is in
consolidating the count values and producing a final density
of the cells in blood. This requires making sure that the
user has performed a complete sweep of the required area in
the hemocytometer. Once all the unique squares have been
processed, the calculation of the final density of different
blood cells is straightforward since the volume of blood in
hemocytometer and dilution used is standardized.

5. OUR APPROACH
In this section, we describe our approach to overcome the

challenges mentioned in Section 4, mainly, the XYZ stage
needed for getting the video scan right and the computer
vision algorithms for an automated cell count.
3D-printed XYZ stage. Figure 4 shows a simple 3D-
printed XYZ stage accessory based on adjustment screws
that gives a smooth translation in X and Y directions in
steps smaller than 0.1 mm each and can also cover the en-
tire 3 mm × 3 mm grid on a hemocytometer. It attaches
to a smartphone (Samsung S6 or iPhone 6) and has a slot
for a disposable hemocytometer. We do not require the ex-
act precision of a commercially available XYZ stage for our
purpose, only small-step movements with a smooth enough
translation that we get a good video scan with overlapping
frames. Our XYZ stage is 3D-printed, so it can be replicated
easily and at a relatively lower cost.
Cell detection. Contour detection provides a simple ap-
proach for detecting and counting cells in microscope im-
ages. However, it cannot distinguish overlapping or adja-
cent cells, has too many parameters that need to be man-

Figure 4: 3D-printed XYZ stage with adjustment
screws and a hemocytometer slot

ually fine-tuned, and is not robust to changes in images.
Therefore, we opt for a more statistical and robust approach
such as template matching. The key idea is to look for
a certain template in an image or a frame by sliding the
template across the frame, compute correlation, and then
threshold to find contours. We manually crop 100 images
of 12× 12 pixels containing cells and generate the following
templates: (1) The mean template (2) The weighted eigen-
value template (3) The eigen cells (similar to the eigenfaces
used in face detection), and (4) An artificial template (disc-
shaped like an RBC).We also compare these against a Haar
feature cascade popularly used for face detection. A Haar
feature cascade is a cascade of classifiers trained to extract
a set of Haar features (such as edge features, line features,
rectangular features), and its final result is a weighted sum
of weak classifiers. We create training data using positive
samples of 100 manually cropped 12 × 12-pixel images of
RBCs. We generate negative images using frames from the
scan of an empty hemocytometer and positive images using
overlays of positive samples over negative images, and create
a 20-stage Haar cascade classifier. See Figure 5 for a visual
comparison of these cell detection algorithms on a few sam-
ple frame. A detailed comparison of their accuracy is given
in Section 6.
Square detection. Once the cells are detected accurately,
it is also important to detect the grid lines and squares of the
hemocytometer. The algorithmic pipeline for this is shown
in Figure 6. We first do grayscale and histogram equaliza-
tion followed by morphological opening, and use Hough line
detection algorithm to detect lines. As Figure 6 shows, this
also finds some slanted lines erroneously, which need to be
filtered out to get the horizontal and vertical lines of the
hemocytometer grid. The intersection points of these hori-
zontal and vertical lines define the squares we are interested
in.
Avoiding double counting. To get an accurate cell count
using a video scan, avoiding double counting in squares across
frames is as important as counting cells accurately in each
square or a frame. To match and detect similarity of two
squares in the hemocytometer grid, there are two types of
features that we could use. SIFT (Scale Invariant Feature
Transform) features are widely used in computer vision,
which detect and describe local features, and the similarity
of two squares can be measured using Euclidean distance
between their feature vectors. However, we find that SIFT
features lead to a lot of double counting and also many mis-
takes. A better approach is to exploit the fact that we al-
ready have a reasonably good cell detection algorithm for
detecting cells in each square at our disposal. Thus, we de-
fine cell location features that create features based on the



Figure 5: Cell detection

Figure 6: Square detection

locations of cells within each square. These features are sim-
ply the distances of each cell to all the four borders of the
square that contains it. Once we have these, we can match
two squares if their distance in this feature space is less than
a threshold. However, this is not sufficient on its own and
we apply two filters – (a) location match filter - Based on
the intuition that the location of a square should not change
drastically across consecutive frames, we design this filter to
match squares that are similar in features but have a large
separation across consecutive video frames and (b) neighbor
tracking filter - Given that squares having the same neigh-
bors in different frames must be the same, this filter matches
not just the squares but their neighbors as well. Upon us-
ing these two filters, we observed that we could uniquely
identify and track all squares in all frames of a video. We
then use the cell counts within these unique squares along
with the number of unique squares to determine the density
of blood cells. See Section 6 for a detailed discussion on
the performance of these feature matching algorithms and
filters.

6. PRELIMINARY RESULTS
Our preliminary set of experiments that we present here

were done on a blood sample that we diluted and loaded
into a reusable, improved Neubauer hemocytometer using
a micropipette. We obtained a video scan by mounting a
Samsung S6 phone on a manual stage of a microscope. The
phone camera had an acrylic lens [4] attached to it with a

magnification ratio of 150x. We wanted to automate the
manual counting procedure without making many drastic
changes for sanity check.

For RBC count, one needs to look at 5 × (4 × 4) = 80
smaller squares of the hemocytometer grid, as mentioned in
Section 2. Algorithmically one needs to find these 80 unique
squares from a video scan. Our feature based similarity
measures are not sufficient to find all the duplicates. In our
experiments, applying the location match filter brought the
number of unique squares down to 171 and applying the
neighbor tracking filter brought it further down to 79.

A visual comparison of various cell detection algorithms
described in Section 5 can be seen in Figure 5. We plot the
accuracy of these algorithms on our smartphone microscope
against a careful manual counting on an actual microscope
in Figure 7. The template matching algorithm using an
artificial template (white circle shaped like an RBC on a
black background) performs better than all other methods
with about 7% error and 5% standard deviation. The corre-
sponding RBC count we obtain is 5.36 million cells per mi-
croliter, compared to the ground truth of 5.22 million cells
per microliter. Our results are reasonable in comparison
with the clinically acceptable 5% coefficient of variation on
automated hematology analyzers [24].

7. DISCUSSION
Most of our algorithms are not computationally inten-

sive (except the Haar classifier) and can be implemented
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Figure 7: Accuracy of cell counts

on a smartphone. However, more complex classifiers for
WBC differential counts or micro-organism detection could
be computationally challenging open problems for the mo-
bile vs. cloud trade-off.

Similar to cameras and accelerometers, we expect the mag-
nifying lenses to get better with time or even get integrated
into the smartphone camera, making mobile microscopy a
promising area for future research.
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