
6  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUDVFP
A Virtual Switch Platform for Host SDN in the Public Cloud

D A N I E L F I R E S T O N E

Daniel Firestone is the Tech
Lead and Manager for the
Azure Host Networking group
at Microsoft. His team builds
the Azure virtual switch,

which serves as the datapath for Azure
virtual networks, as well as SmartNIC, the
Azure platform for offloading host network
functions to reconfigurable FPGA hardware
and Azure’s RDMA stack. Before Azure, Daniel
did his undergraduate studies at MIT. fstone@
microsoft.com

The Virtual Filtering Platform (VFP) is a cloud-scale programmable
virtual switch providing scalable SDN policy to one of the world’s
largest clouds, Microsoft Azure. It was designed from the ground up

to handle the programmability needs of Azure’s many SDN applications, the
scalability needs of deployments of millions of servers, and to deliver the
fastest virtual networks in the public cloud to Azure’s VMs through hard-
ware offloads.

We, the VFP team, describe here our goals and motivations in building VFP,
VFP’s design, and lessons we learned from production deployments. We also
compare our design with that of other popular host SDN technologies such
as OpenFlow [2] and Open vSwitch (OVS) [3] to show how our constraints
in the public cloud can differ from those of popular open source projects. We
believe these lessons can benefit the SDN community at large. More details
of our design can be found in our recent NSDI paper [1].

The rise of public cloud workloads, such as Amazon Web Services, Microsoft Azure, and
Google Cloud Platform, has created a new scale of datacenter computing, with vendors regu-
larly reporting server counts in the millions. These vendors not only have to provide scale
and high density of VMs to customers, but must provide rich network semantics, such as
private virtual networks with customer supplied address spaces, scalable L4 load balancers,
security groups and ACLs, virtual routing tables, bandwidth metering, QoS, and more. This
policy is sufficiently complex that it isn’t feasible to implement at scale in traditional switch
hardware.

Instead this is often implemented using Software-Defined Networking (SDN) on the VM
hosts, in the virtual switch (vswitch) connecting VMs to the network, which scales well
with the number of servers and allows the physical network to be simple, scalable, and very
fast. As a large public cloud provider, Azure has built its cloud network on host-based SDN
technologies. Much of the focus around SDN in recent years has been on building scalable
and flexible network controllers and services—however, the design of the programmable
vswitch is equally important. It has the dual and often conflicting requirements of a highly
programmable dataplane, with high performance and low overhead. VFP is our solution to
these problems.

Design Goals and Rationale
As a motivating example for VFP, we consider a simple scenario requiring four host policies
used for O(1M) VM hosts in a cloud. Each policy is programmed by its own SDN control-
ler and requires both high performance and SR-IOV offload support: the first is virtual
networking, allowing a customer to define their own private network with their own IP
addresses, despite running on shared multi-tenant infrastructure. Our virtual networks
(VNETs) are based on the design from VL2 [4]. Second is an L4 (TCP/UDP connection)
load balancer based on Ananta [5], which scales by running the load balancing NAT in the
vswitch on end hosts, leaving the in-network load balancers stateless and scalable. We also

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 7

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

include a stateful firewall and per-destination traffic metering
for billing.

Originally, we built independent networking drivers for each
of these host functions. As host networking became our main
tool for virtualization policy, we decided to create VFP in 2011
because this model wasn’t scaling. Instead, we created a single
platform based on the Match-Action Table (MAT) model popu-
larized by projects such as OpenFlow.

Original Goals
Our original goals for the VFP project were as follows:

1. Provide a programming model allowing for multiple simultane-
ous, independent network controllers to program network appli-
cations, minimizing cross-controller dependencies.

Implementations of OpenFlow and similar MAT models often
assume a single distributed network controller that owns pro-
gramming the switch. Our experience is that this model doesn’t
fit cloud development of SDN—instead, independent teams often
build new network controllers and agents for those applications.
This model reduces complex dependencies, scales better, and is
more serviceable than adding logic to existing controllers. We
needed a design that not only allows controllers to independently
create and program flow tables, but enforces good layering and
boundaries between them (e.g., disallows rules to have arbitrary
GOTOs to other tables) so that new controllers can be developed
to add functionality without old controllers needing to take their
behavior into account.

2. Provide a MAT programming model capable of using connections
as a base primitive, rather than just packets—stateful rules as
first-class objects.

OpenFlow’s original MAT model derives historically from pro-
gramming switching or routing ASICs, and assumes that packet
classification is stateless. However, we found our controllers
required policies for connections, not just packets—for example,
end users often found it more useful to secure their VMs using
stateful access control lists (ACLs) (e.g., allowing outbound
connections but not inbound ones) rather than stateless ACLs
used in commercial switches. Controllers also needed NAT (e.g.,
Ananta) and other stateful policies. Stateful policy is more trac-
table in soft switches than in ASIC ones, and we believe a MAT
model should take advantage of that.

3. Provide a programming model that allows controllers to define
their own policy and actions, rather than implementing fixed sets
of network policies for predefined scenarios.

Due to limitations of the MAT model provided by OpenFlow
(historically, a limited set of actions, limited rule scalability,
and no table typing), OpenFlow switches such as OVS have
added virtualization functionality outside of the MAT model.
For example, constructing virtual networks is accomplished

via a virtual tunnel endpoint (VTEP) schema in OVSDB, rather
than rules specifying which packets to encapsulate (encap) and
decapsulate (decap) and how to do so.

We prefer instead to base all functionality on the MAT model,
trying to push as much logic as possible into the controllers
while leaving the core dataplane in the vswitch. For instance,
rather than a schema that defines what a VNET is, a VNET can
be implemented using programmable encap and decap rules
matching appropriate conditions, leaving the definition of a
VNET in the controller. We’ve found this greatly reduces the
need to continuously extend the dataplane every time the defini-
tion of a VNET changes.

Later Goals Based on Production Lessons
Based on lessons from initial deployments of VFP, we added the
following goals for VFPv2, a major update in 2013-14, mostly
around serviceability and performance:

1. Provide a serviceability model allowing for frequent deployments
and updates without requiring reboots or interrupting VM con-
nectivity for stateful flows, and strong service monitoring.

As our scale grew dramatically to over O(1M) hosts, more con-
trollers built apps on top of VFP, more engineers joined us, and
we found more demand than ever for frequent updates, both fea-
tures and bug fixes. In Infrastructure as a Service (IaaS) models,
we also found customers were not tolerant of taking downtime
for individual VMs for updates.

2. Provide very high packet rates, even with a large number of
tables and rules, via extensive caching.

Over time we found more and more network controllers being
built as the host SDN model became more popular, and soon
we had deployments with large numbers of flow tables (10+),
each with many rules, reducing performance as packets had to
traverse each table. At the same time, VM density on hosts was
increasing, pushing us from 1G to 10G to 40G and even faster
NICs. We needed to find a way to scale to more policy without
impacting performance and concluded we needed to perform
compilation of flow actions across tables, and use extensive
flow caching such that packets on existing flows would match
precompiled actions without having to traverse tables.

3. Implement an efficient mechanism to offload flow policy to pro-
grammable NICs, without assuming complex rule processing.

As we scaled to 40G+ NICs, we wanted to offload policy to NICs
themselves to support SR-IOV, which lets NICs indicate packets
directly to VMs without going through the host. However, as
controllers created more flow tables with more rules, we con-
cluded that directly offloading those tables would require pro-
hibitively expensive hardware resources for server-class NICs.
Instead we wanted an offload model that would work well with

8  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

our precompiled exact-match flows, requiring hardware to only
support a large table of cached flows in DRAM and our associ-
ated action language.

VFP Overview
Figure 1 shows a model of the VFP design, which is described in
subsequent sections. VFP operates on top of Hyper-V’s exten-
sible switch as a packet filter. Its programming model is based
on layers, MATs that support a multi-controller model. VFP’s
packet processor includes a fastpath through Unified Flow
Tables and a classifier used to match rules in the MAT layers.

The core VFP model assumes a switch with multiple ports that
are connected to virtual NICs (VNICs). VFP filters traffic from
a VNIC to the switch, and from the switch to a VNIC. All VFP
policy is attached to a specific port. From the perspective of a
VM with a VNIC attached to a port, ingress traffic to the switch
is considered to be “outbound” traffic from the VM, and egress
traffic from the switch is considered to be “inbound” traffic to
the VM. VFP’s API and its policies are based on the inbound/
outbound model.

Programming Model
VFP’s core programming model is based on a hierarchy of VFP
objects that controllers can create and program to specify their
SDN policy, with ports containing layers of policy made up of
groups of rules.

Layers
VFP divides a port’s policy into layers. Layers are the basic
Match Action Tables that controllers use to specify their policy.
They can be created and managed separately by different con-
trollers. Logically, packets into a VM go through each layer one
by one, matching rules in each based on the state of the packet
after the action performed in the previous layer, with returning
packets coming back in the opposite direction.

Figure 3 shows layers for our SDN deployment example. A VNET
layer creates a customer address (CA) / physical address (PA)
boundary by having encapsulation rules on the outbound path
and decapsulation rules on the inbound path. In addition, an
ACL layer for a stateful firewall sits above our Ananta NAT
layer. The security controller, having placed it here with respect
to those boundaries, knows that it can program policies match-
ing dynamic IP addresses (DIPs) of VMs in CA space. Finally, a
metering layer used for billing sits at the top next to the VM, where
it can meter traffic exactly as the customer in the VM sees it.

Figure 1: Overview of VFP design

Figure 2: VFP objects: layers, groups, and rules

Figure 3: Example VFP layers with boundaries

Figure 4: A layer with a stateful flow

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 9

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

Layering also gives us a good model on which to implement
stateful policy. We keep flow state on a layer with a hash table
tracking all TCP, UDP, or RDMA connections in either direction.
When a stateful rule is matched, it creates both an inbound and
outbound flow in the layer flow tables, with appropriate actions
in each direction (e.g., NAT or ACL).

Rules
Rules are the entities that perform actions on matching packets
in the MAT model. Per original goal 3, rules allow the controller
to be as expressive as possible while minimizing fixed policy in
the dataplane. Rules are made up of two parts: a condition list,
specified via a list of conditions, and an action. Example condi-
tions and actions are listed in Figure 5.

Rules can be organized into groups for purposes of doing
transactional update/replace operations, or to split a port into
sub-interfaces (e.g., allow creation of independent policies for
multiple Docker-style containers behind a single port).

Packet Processor and Flow Compiler
A primary innovation in VFPv2 was the introduction of a central
packet processor. We took inspiration from a common design
in network ASIC pipelines e.g.,—parse the relevant metadata
from the packet and act on the metadata rather than on the
packet, only touching the packet at the end of the pipeline once
all decisions have been made. We compile and store flows as we
see packets. Our just-in-time flow compiler includes a parser, an
action language, an engine for manipulating parsed metadata
and actions, and a flow cache.

Unified FlowIDs
VFP’s packet processor begins with parsing. One each of an L2/
L3/L4 header (as defined in Table 1) form a header group, and
the relevant fields of a header group form a single FlowID. The
tuple of all FlowIDs in a packet is a Unified FlowID (UFID)—the
output of the parser.

Header Transpositions
Our action primitives, Header Transpositions (HTs), so called
because they change or shift fields throughout a packet, are a list
of paramaterizable header actions, one for each header. Actions
(defined in Table 2) are to Push a header (add it to the header
stack), Modify a header (change fields within a given header), Pop
a header (remove it from the header stack), or Ignore a header
(pass over it). Table 3 shows examples of a NAT HT used by
Ananta, and encap/decap HTs used by VL2.

Figure 5: Example conditions and actions

Header Parameters

Ethernet (L2) Source MAC, Dest MAC

IP (L3)
Source IP, Dest IP, ToS
(DSCP+ EC)

Encapsulation (L4)
Encapsulation Type Tenant
ID, Entropy (Optional)

TCP/UDP (L4)
Source Port, Dest Port, TCP
Flags (note: does not support
Push/Pop)

Table 2: Header Transposition actions

Table 3: Example Header Transposition

Table 1: Valid parameters for each header type

Action Notes

Pop Remove this header.

Push
Push this header onto the packet. All header
parameters for creating the new header are
specified.

Modify
Modify this header. All header parameters
needed are optional, but at least one is
specified.

Ignore Leave this header as is.

Header NAT Encap Decap Encap+NAT

Outer
Ethernet

Ignore
Push

(SMAC,
DMAC)

Pop
Push (SMAC,

DMAC)

Outer IP
Modify

(SIP, DIP)
Push (SIP,

DIP)
Pop Push (SIP, DIP)

GRE
Not

Present
Push
(Key)

Pop Push (Key)

Inner
Ethernet

Not
Present

Modify
(DMAC)

Ignore Modify (DMAC)

Inner IP
Not

Present
Ignore Ignore

Modify (SIP,
DIP)

TCP/
UDP

Modify
(SPt, DPt)

Ignore Ignore
Modify (SPt,

DPt)

10  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

VFP creates an action for a UFID match by composing HTs from
matched rules in each layer. For example, a packet passing the
example Ananta NAT layer and the VL2 VNET encap layer may
end up with the composite Encap+NAT transposition in Table 3.

Unified Flow Tables and Caching
The intuition behind our flow compiler is that the action for a
UFID is relatively stable over the lifetime of a flow—so we can
cache the UFID with the resulting HT from the engine. The
resulting flow table where the compiler caches UFs is called the
Unified Flow Table (UFT).

With the UFT, we segment our datapath into a fastpath and a
slowpath. On the first packet of a TCP flow, we take a slowpath,
running the transposition engine and matching at each layer
against rules. On subsequent packets, VFP takes a fastpath,
matching a unified flow via UFID and applying a transposition
directly. This operation is independent of the layers or rules in
VFP.

Operationalizing VFP
As a production cloud service, VFP’s design must take into
account serviceability, monitoring, and diagnostics. During
update, we first pause the datapath, then detach VFP from the
stack, uninstall VFP (which acts as a loadable kernel driver),
install a new VFP, attach it to the stack, and restart the datapath.
This operation looks like a brief connectivity blip to VMs, while
the NIC stays up. To keep stateful flows alive across updates, we
support serialization and deserialization for all policy and state
in VFP on a port. VFP also supports live migration of VMs. Dur-
ing the blackout time of the migration, the port state is serialized
out of the original host and deserialized on the new host.

VFP implements hundreds of performance counters and flow
statistics, on per port, per layer, and per rule bases, as well as
extensive flow statistics. This information is continuously
uploaded to a central monitoring service, providing dashboards
on which we can monitor flow utilization, drops, connection

resets, and more, either on a VM or aggregated on a cluster/host/
VNET basis. VFP also supports remote debugging and tracing
for rules and policies as part of its diagnostics suite.

Hardware Offloads and Performance
VFP has long used standard stateless offloads (VXLAN/
NVGRE encapsulation, QoS bandwidth caps, and reservations
for ports, etc.) to achieve line rate with SDN policy. But to enable
added goal 3 of full SR-IOV offload and host bypass, we built
logic to directly offload our unified flows. These are exact-match
flows representing each connection on the system, so they can
be implemented in hardware via a large hash table, typically in
inexpensive DRAM. In this model, the first packet of a new flow
goes through software classification to determine the UF, which
is then offloaded.

We’ve used this mechanism to enable SR-IOV in our datacenters
with VFP policy offload on custom FPGA-based SmartNICs
we’ve deployed on all new Azure servers. As a result we’ve seen
bidirectional 32Gbps+ VNICs with near-zero host CPU and
<25μs end-to-end TCP latencies inside a VNET.

Experiences
We have deployed 22 major releases of VFP since 2012. VFP
runs on all Azure servers, powering millions of VMs, petabits
per second of traffic, and providing load balancing for exabytes
of storage, in hundreds of datacenters in over 30 regions across
the world. In addition, we are releasing VFP publicly as part of
Windows Server 2016 for on-premises workloads, as we have
seen it meet all of the major goals listed above in production.

Over six years of developing and supporting VFP, we learned a
number of lessons of value:

◆◆ L4 flow caching is sufficient. We didn’t find a use for mul-
titiered flow caching such as OVS megaflows. The two main
reasons: being entirely in the kernel allowed us to have a faster
slowpath, and our use of a stateful NAT created an action for
every L4 flow and reduced the usefulness of ternary flow cach-
ing.

◆◆ Design for statefulness from day 1. The above point is an
example of a larger lesson: support for stateful connections as
a first-class primitive in a MAT is fundamental and must be
considered in every aspect of a MAT design. It should not be
bolted on later.

◆◆ Layering is critical. Some of our policy could be implemented
as a special case of OpenFlow tables with GOTOs chaining
them together, with separate inbound and outbound tables. But
we found that our controllers needed clear layering semantics
or else they couldn’t reverse their policy correctly with respect
to other controllers.

Figure 6: VFP Unified Flow Table

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 11

CLOUD
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

◆◆ GOTO considered harmful. Controllers will implement
policy in the simplest way needed to solve a problem, but that
may not be compatible with future controllers adding policy.
We needed to be vigilant in not only providing layering but
enforcing it. We see this layering enforcement not as a limita-
tion compared to OpenFlow’s GOTO table model but, instead,
as the key feature that made multi-controller designs work for
multiple years running.

◆◆ IaaS cannot handle downtime. We found that customer IaaS
workloads cared deeply about uptime for each VM, not just their
service as a whole. We needed to design all updates to minimize
downtime and provide guarantees for low blackout times.

◆◆ Design for serviceability. Serialization is another design
point that turned out to pervade all of our logic—in order to
regularly update VFP without impact to VMs, we needed to
consider serviceability in any new VFP feature or action type.

◆◆ Decouple the wire protocol from the dataplane. We’ve
seen enough controllers/agents implement wire protocols
with different distributed systems models to support O(1M)
scale that we believe our decision to separate VFP’s API from
any wire protocol was a critical choice for VFP’s success. For
example, bandwidth metering rules are pushed by a controller,
but VNET required a VL2-style directory system (and an agent
that understands that policy comes from a different controller
than pulled mappings) to scale.

◆◆ Everything is an action. Modeling VL2-style encap/decap
as actions rather than tunnel interfaces was a good choice. It
enabled a single table lookup for all packets—no traversing a
tunnel interface with tables before and after. The resulting HT
language combining encap/decap with header modification
enabled single-table hardware offload.

◆◆ Design for end-to-end monitoring. Determining network
health of VMs despite not having direct access to them is a
challenge. We found many uses for in-band monitoring with
packet injectors and auto-responders implemented as VFP rule
actions. We used these to build monitoring that traces the E2E
path from the VM-host boundary. For example, we implement-
ed Pingmesh-like [6] monitoring for VL2 VNETs.

◆◆ Commercial NIC hardware isn’t ideal for SDN. Despite
years of interest from NIC vendors about offloading SDN policy
with SR-IOV, we have seen no success cases of NIC ASIC
vendors supporting our policy as a direct offload. Instead, large
multicore NPUs are often used. We used custom FPGA-based
hardware to ship SR-IOV in Azure, which we found was lower
latency and more efficient.

Conclusions and Future Work
We introduced the Virtual Filtering Platform (VFP), our cloud
scale vswitch for host SDN policy in Microsoft Azure. We dis-
cussed how our design achieved our dual goals of programmabil-
ity and scalability. We discussed concerns around serviceability,
monitoring, and diagnostics in production environments, and
provided performance results, data, and lessons from real use.
Future areas of investigation include new hardware models of
SDN and extending VFP’s offload language.

References
[1] D. Firestone, “VFP: A Virtual Switch Platform for Host
SDN in the Public Cloud,” in Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’17): https://www.usenix.org/system/files/conference
/nsdi17/nsdi17-firestone.pdf.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, J. Turner, “OpenFlow:
Enabling Innovation in Campus Networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2 (April 2008):
http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf.

[3] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Raja-
halme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, M.
Casado, “The Design and Implementation of Open vSwitch,”
in Proceedings of the 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’15): https://www
.usenix.org/system/files/conference/nsdi15/nsdi15-paper
-pfaff.pdf.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, S. Sengupta, “VL2: A Scalable
and Flexible Data Center Network,” in Proceedings of the ACM
Conference on Data Communication (SIGCOMM ’09), pp.
51–62: https://www.researchgate.net/publication/234805283
_VL2_A_Scalable_and_Flexible_Data_Center_Network.

[5] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, N. Karri,
“Ananta: Cloud Scale Load Balancing,” in Proceedings of the
ACM Conference on Data Communication (SIGCOMM ’13),
pp. 207–218: http://conferences.sigcomm.org/sigcomm/2013
/papers/sigcomm/p207.pdf.

[6] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z.
Liu, V. Wang, B. Pang, H. Chen, Z. Lin, V. Kurien, “Pingmesh:
A Large-Scale System for Data Center Network Latency Mea-
surement and Analysis,” in Proceedings of the ACM Confer-
ence on Data Communication (SIGCOMM ’15): https://www
.microsoft.com/en-us/research/wp-content/uploads/2016/11
/pingmesh_sigcomm2015.pdf.

https://www.usenix.org/system/files/conference/nsdi17/nsdi17-firestone.pdf
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-firestone.pdf
http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.researchgate.net/publication/234805283_VL2_A_Scalable_and_Flexible_Data_Center_Network
https://www.researchgate.net/publication/234805283_VL2_A_Scalable_and_Flexible_Data_Center_Network
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p207.pdf
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p207.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/pingmesh_sigcomm2015.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/pingmesh_sigcomm2015.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/pingmesh_sigcomm2015.pdf

