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Abstract: Quantum computers will work by evolving a high tensor power of a small (e.g.
two) dimensional Hilbert space by local gates, which can be implemented by applying
a local HamiltonianH for a timet . In contrast to this quantum engineering, the most
abstract reaches of theoretical physics has spawned “topological models” having a finite
dimensional internal state space with no natural tensor product structure and in which
the evolution of the state is discrete,H ≡ 0. These are called topological quantum field
theories (TQFTs). These exotic physical systems are proved to be efficiently simulated
on a quantum computer. The conclusion is two-fold:

1. TQFTs cannot be used to define a model of computation stronger than the usual
quantum model “BQP”.

2. TQFTs provide a radically different way of looking at quantum computation. The
rich mathematical structure of TQFTs might suggest a new quantum algorithm.

1. Introduction

A topological quantum field theory (TQFT) is a mathematical abstraction, which codi-
fies topological themes in conformal field theory and Chern–Simons theory. The strictly
2-dimensional part of a TQFT is called atopological modular functor (TMF). It (essen-
tially) assigns a finite dimensional complex Hilbert spaceV (�) to each surface� and
to any (self)-diffeomorphismh of a surface a linear (auto)morphismV (h) : V (�) →
V (�′). We restrict attention to unitary topological modular functors (UTMF) and show
that a quantum computer can efficiently simulate transformations of any UTMF as a
transformation on its computational state space. We should emphasize that both sides
of our discussion are at present theoretical: the quantum computer which performs our
simulation is also a mathematical abstraction – thequantum circuit model (QCM) [D,Y].

� On leave from Landau Institute for Theoretical Physics, Moscow.
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Very serious proposals exist for realizing this model, perhaps in silicon, e.g. [Ka], but
we will not treat this aspect.

There is a marked analogy between the development of the QCM from 1982 Feynman
[Fey] to the present, and the development of recursive function theory in the 1930’s and
1940’s. At the close of the earlier period, “Church’s thesis” proclaimed the uniqueness
of all models of (classical) calculation: recursive function theory, Turing machine,λ-
calculus, etc.... This result was refined in the 1960s, by showing that most “natural”
models arepolynomially equivalent to the Turing machine. The present paper can be
viewed as supporting a similar status for QCM asthe inherently quantum mechanical
model of calculation. The modern reconsideration of computation is founded on the
distinction betweenpolynomial time and slower algorithms. Of course, all functions
computed in the QCM can be computed classically, but probably not in comparable
time. Assigning to an integer its factors, while polynomial time in QCM [Sh] is nearly
exponential time, exp(O(n1/3poly(logn))) (an emphiric bound, the proved one is even
worse) according to the most refined classical algorithms. The origin of this paper is
in thought [Fr] that since ordinary quantum mechanics appears to confer a substantial
speed up over classical calculations, that some principle borrowed from the early, string,
universe might go still further. Each TQFT is an instance of this question since their
discrete topological nature lends itself to translation into computer science. We answer
here in the negative by showing that for a unitary TQFT, the transformationsV (h) have a
hidden poly-local structure. Mathematically,V (h) can be realized as the restriction to an
invariant subspace of a transformation

∏
gi on the state space of a quantum computer

where eachgi is a gate and the length of the composition is linear in the length of
h as a word in the standard generators, “Dehn twists” of themapping class group =
diffeomorphisms(�)/identity component. Thus, we add evidence to the unicity of the
QCM. Several variants and antecedents of QCM, including quantum Turing machines,
have previously been shown equivalent (with and without environmental errors)[Y].

From a physical standpoint, the QCM derives from Schrödinger’s equation as de-
scribed by Feynman [Fey] and Lloyd [Ll]. Let us introduce the model. Given a decision
problem, the first orclassical phase of the QCM is a classical program, which designs
a quantum circuit to “solve” instances of the decision problem of lengthn. A quantum
circuit is a compositionUn of operators orgates gi ∈ U(2) or U(4) taken from some
fixed list of rapidly computable matrices1, e.g. having algebraic entries. The following
short list suffices to efficiently approximate any other choice of gates [Ki]:


∣∣∣∣0 1
1 0

∣∣∣∣ , ∣∣∣∣1 0
0 i

∣∣∣∣ , and

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

−1√
2

∣∣∣∣∣∣∣∣
 .

Thegates are applied on some tensor power space(C2)⊗k(n) of “k qubits” and models
a local transformation on a system ofk spin 1

2 particles. The gateg acts as the identity
on all but one or two tensor factors where it acts as a matrix as above. This is the middle
or quantum phase of the algorithm. The final phase is to perform a local von Neumann
measurement on a final stateψfinal = Un(ψinitial) (or a commuting family of the same)
to extract a probabilistic answer to the decision problem. (The initial states’ψinitial must
also be locally constructed.) In this phase, we could declare that observing a certain

1 Theith digit of each entry should be computable in poly(i) time.
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eigenvalue with probability≥ 2
3 means “yes”. We are interested only in the case where

the classical phase of circuit design and the length of the designed circuit are both smaller
than some polynomial inn. Decision problems which can be solved in this way are said
to be in the computational class BQP:bounded-error quantum polynomial. The use of
C2, the “qubit”, is merely a convenience, any decomposition into factors of bounded
dimension gives an equivalent theory. We sayU is a quantum circuit overCp if all tensor
factors have dimension =p.

Following Lloyd [Ll], note that if a finite dimensional quantum system, say(C2)⊗k,
evolves by a HamiltonianH , it is physically reasonable to assert thatH is poly-local,

H =
L∑
i=1

H�, where the sum has≤ poly(k) terms and eachH� = ∼
H� ⊗ id, where

∼
H�

acts nontrivially only on a bounded number (often just two) qubits and as the identity on
the remaining tensor factors. Now setting Plank’s constanth = 1, the time evolution is
given by Schrödinger’s equation:Ut = e2πitH whereas gates can rapidly approximate
[Ki] any local transformation of the forme2πitH� . Only the nonabelian nature of the

unitary group prevents us from approximatingUt directly from
L

�
i=1

e2πiH� . However, by

the Trotter formula: (
eA/n+B/n

)n = eA+B + O
(

1

n

)
,

where the errorO is measured in the operator norm. Thus, there is a good approximation
to Ut as a product of gates:

Ut = (
e2πi t

n
H1 . . . e2πi t

n
HL

)n + L2 · O
(

1

n

)
.

Because of the rapid approximation result of [Ki], in what follows, we will not discuss
quantum circuits restricted to any small generating set as in the example above, rather
we will permit a 2× 2 or 4× 4 unitary matrix with algebraic number entries to appear
as a gate.

In contrast to the systems considered by Lloyd, the Hamiltonian in a topological
theory vanishes identically,H = 0, a different argument - the substance of this paper - is
needed to construct a simulation. The reader may wonder how a theory with vanishing
H can exhibit nontrivial unitary transformations. The answer lies in the Feynman path-
integral approach to QFT. When the theory is constructed from a Lagrangian (functional
on the classical fields of the theory), which only involves first derivatives in time, the
Legendre transform is identically zero [At], but may nevertheless have nontrivial global
features as in the Aharonov-Bohm effect.

Before defining the mathematical notions, we would make two comments. First, the
converse to the theorem is also true. It has been shown recently [FLW] that a particular
UTMF allows efficient simulation of the universal quantum computer. Second, we would
like to suggest that the theorem may be viewed as a positive result for computation.
Modular functors, because of their rich mathematical structure, may serve as higher
order language for constructing a new quantum algorithm. In [Fr], it is observed that
the transformations of UTMF’s can readily produce state vectors whose coordinates are
computationally difficult evaluations of the Jones and Tutte polynomials. The same is
now known for the state vector of a quantum computer, but the question of whether
any useful part of this information can be made to survive the measurement phase of
quantum computation is open.
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2. Simulating Modular Functors

We adopt the axiomatization of [Wa] or [T] to which we refer for details.Also see,Atiyah
[At], Segal [Se], and Witten [Wi].

A surface is a compact oriented 2-manifold with parameterized boundaries. Each
boundary component has a label from a finite setL = {1, a, b, c, . . . } with involution
,̂ 1 = 1̂. In examples, labels might be representations of a quantum group up to a

given level or positive energy representations of a loop group, or some other algebraic
construct. Technically, to avoid projective ambiguities each surface� is provided with
a Lagrangian subspaceL ⊂ H1(�;Q) and each diffeomorphismf : � → �′ is
provided with an integer “framing/signature” so the dynamics of the theory is actually
given by a central extension of the mapping class group. Since these extended structures
are irrelevant to our development, we suppress them from the notation. We use the letter
� below to indicate a label set for all boundary components, or in some cases, those
boundary components without a specified letter as label.

Definition 1. A unitary topological modular functor (UTMF) is a functor V from the
category of (labeled surfaces with fixed boundary parameterizations, label preserving
diffeomorphisms which commute with boundary parameterizations) to (finite dimen-
sional complex Hilbert spaces, unitary transformations) which satisfies:

1. Disjoint union axiom: V (Y1 � Y2, �1 � �2) = V (Y1, �1)⊗ V (Y2, �2).
2. Gluing axiom: let Yg arise from Y by gluing together a pair of boundary circles with

dual labels, x glues to x̂, then

V (Yg, �) =
⊕
xεL

V (Y, (�, x, x̂)).

3. Duality axiom: reversing the orientation of Y and applyinĝto labels corresponds to
replacing V by V ∗. Evaluation must obey certain naturality conditions with respect
to gluing and the action of the various mapping class groups.

4. Empty surface axiom: V (φ) ∼= C.

5. Disk axiom: Va = V (D, a) ∼=
{

C, if a = 1
0, if a �= 1

.

6. Annulus axiom: Va,b = V
(
A, (a, b)

) ∼=
{

C, if a = b̂

0, if a �= b̂

7. Algebraic axiom: The basic data, the mapping class group actions and the maps F
and S explained in the proof (from which V may be reconstructed if the Moore and
Seiberg conditions are satisfied, see [MS] or [Wa] 6.4, 1–14) is algebraic over Q for
some bases in Va , Va,̂a , and Vabc, where Vabc denotes V

(
P, (a, b, c)

)
for a (compact)

3-punctured sphere P . 3-punctured spheres are also called pants.

Comments.

(1) From the gluing axiom,V may be extended via dissection from simple piecesD,
A, andP to general surfaces�. ButV (�) must be canonically defined: this looks
quite difficult to arrange and it is remarkable that any nontrivial examples of UTMFs
exist.
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(2) The algebraic axiom is usually omitted, but holds for all known examples. We
include it to avoid trivialities such as a UTMF where action by, say, a boundary
twist is multiplication by a real number whose binary expansion encodes a difficult
or even uncomputable function: e.g. theith bit is 0 iff the ith Turing machine halts.
If there are nontrivial parameter families of UTMF’s, such nonsensical examples
must arise – although they could not be algebraically specified. In the context of
bounded accuracy for the operation of diffeomorphismsV (h), Axiom 7 may be
dropped (and simulation by bounded accuracy quantum circuits still obtained), but
we prefer to work in the exact context since in a purely topological theory exactness
is not implausible.

(3) Axiom 2 will be particularly important in the context of apants decomposition of a
surface�. This is a division of� into a collection of compact surfacesP having the
topology of 3-punctured spheres and meeting only in their boundary components
which we call “cuffs”.

Definition 2. A quantum circuit U : (Cp)⊗k → (Cp)⊗k =: W is said to simulate
on W (exactly) a unitary transformation τ : S → S if there is a C-linear imbedding
i : S ⊂ (Cp)⊗k invariant under U so that U ◦ i = i ◦ τ . The imbedding is said to
intertwine τ and U. We also require that i be computable on a basis in poly(k) time.

Since we prove efficient simulation of the topological dynamics for UTMFsV , it
is redundant to dwell on “measurement” within V, but to complete the computational
model, we can posit von Neumann type measurement with respect to any efficiently
computable frameF in Vabc. The spaceCp above, later denotedX = Cp, is defined by
X := ⊕

(a,b,c)∈L3
Vabc and the computational spaceW := X⊗k. We have setS := V (�)

and assumed� is divided intok “pants”, i.e. Euler class(�) = −k. Any frameF
extends to a frame forV (�) via the gluing axiom once a pants decomposition of� is
specified. Thus, measurement inV becomes a restriction of measurement inW . It may
be physically more natural to restrict the allowable measurements onV (�) to cutting
along a simple closed curveγ and measuring the label which appears. Mathematically,
this amounts to transforming to a pants decomposition withγ as one of its decomposition
or “cuff” curves and then positing a Hermitian operator with eigenspaces equal to the
summands ofV (�) corresponding under the gluing axiom to labelsx on γ− andx̂ on
γ+, xεL.

A labeled surface(�, �) determines a mapping class groupM = M(�, �) =
“isotopy classes of orientation preserving diffeomorphisms of� preserving labels and
commuting with boundary parameterization”. For example, in the case of ann-punctured
sphere with all labels equal (distinct),M = SFB(n), the spherical framed braid group(M = PSFB(n), the pure spherical framed braid group

)
. To prove the theorem below,

we will need to describe a generating setS for the variousM’s and withinS chains
of elementary moves which will allow us to prepare to apply anys2 ∈ S subsequent to
having applieds1 ∈ S.

EachM is generated byDehn-twists andbraid-moves (See [B]). A Dehn-twistDγ

is specified by drawing a simple closed curve (s.c.c.)γ on�, cutting alongγ , twisting
2π to the right alongγ and then regluing. A braid-moveBδ will occur only when a s.c.c.
δ cobounds a pair of pants with two boundary components of�: If the labels of the
boundary components are equal thenBδ braids them by a rightπ -twist. In the case that
all labels are equal, there is a rather short list ofD andB generators indicated in Fig. 1
below. Also sketched in Fig. 1 is a pants decomposition of diameter= (O logb1(�)

)
,
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Fig. 1.

meaning the graph dual to the pants decomposition has diameter order log the first Betti
number of�.

The s.c.c.γ ( δ) label Dehn (braid) generatorsDγ ( andBδ). Figure 1 contains a punc-
tured annulusA; note that the composition of oppositely oriented Dehn twists along the
two “long” components of∂A, γ andγ ′ yield a diffeomorphism which moves the punc-
tures about the loopγ . The figure implicitly contains such anA for each(γ, p), where
p is apreferred puncture. Theγ curves come in three types:

(1) The loops at the top of the handles which are curves (“cuffs”) of the pants decom-
position,

(2) loops dual to type 1, and
(3) loops running under adjacent pairs of handles (which cut through up toO(

log(b1�)
)

many cuffs). (See Fig. 1, where cuffs are marked by a “c”.)

Each punctured annulusA is determined as a neighborhood (of a s.c.c.γ union an
arcη from γ to p). To achieve general motions ofp around�, we require these arcs to
be “standard” so that for eachp, π1(�̂, p) is generated by{η · γ · η−1}, where�̂ = �

with punctures filled by disks, and the disk corresponding top serving as a base point.
This list of generators is only linear in the first Betti number of�.

In the presence of distinct labels, many of theBδ are illegal (they permute unequal
labels). In this case, quadratically many generators are required. Figure 2 displays the
replacements for theB ’s, and additionalA’s andD’s.

Figure 2 shows a collection ofB ’s sufficient to effect arbitrary braidingwithin each
commonly-labeled subset of punctures, a quadratically large collection of new Dehn
curves{ε} allowing a full twist between any pair of distinctly labeled punctures. (If
the punctures are arranged along a convex arc of the Euclidean cell in�, then each
ε will be the boundary of a narrow neighborhood of the straight line segment joining
pairs of dissimilarly labeled punctures.) Finally a collection of punctured annuli, which
enable one puncturepi from each label – constant subset to be carried around each free
homotopy class from{γ }(respecting the previous generation condition forπ1(�̂, pi).

Thus for distinct labels the generating sets are built from curves of typeγ, γ ′, ε and
δ by Dehn twists aroundγ, γ ′, andε, braid moves aroundδ. Denote byω, any such
curve:ω ∈ 1 = {{γ } ∪ {γ ′} ∪ {ε} ∪ {δ}}.
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Since variousω′s intersect, it is not possible to realize allω simultaneously as cuffs in
a pants decomposition. However, we can start with the “base point” pants decomposition
D indicated in Fig. 1 (noteγ of type(1) are cuffs inD, butγ of types (2) or (3) are not)
and for anyω find a short path of elementary moves:F andS (defined below) to a pants
decompositionDω containingω as a cuff.

Lemma 2.1. Assume� �= S2, disk, or annulus, and D the standard pants decomposition
sketched in Fig. 1. Any ω as above, can be deformed through O(

logb1(�)
)
F and S

moves to a pants decomposition Dω in which ω is a cuff.

We postpone the proof of the lemma and the definition of its terms until we are
partly into the proof of the theorem and have some experience passing between pants
decompositions.

Theorem 2.2. Suppose V is a UTMF and h : � → � is a diffeomorphism of length n in
the standard generators for the mapping class group of � described above (see Figs. 1
and 2). Then there are constants depending only on V , c = c(V ) and p = p(V ) such
that V (h) : V (�) → V (�) is simulated (exactly) by a quantum circuit operating on
“qupits” Cp of length ≤ c · n · logb1(�).

The collection{cuffs} refers to the circles along which the pants decomposition
decomposes; the “seams” are additional arcs, three per pant which cut the pant into
two hexagons. Technically, we will need each pant inD to be parameterized by a fixed
3-punctured sphere so these seams are part of the data inD; for simplicity, we choose
seams to minimize the number of intersections with{ω}.

The theorem may be extended to cover a more general form of input. The original
algorithm [L] which writes aDα, α a s.c.c., as a word in standard generatorsDγ is
super-exponential. We define the combinatorial length ofα, �(α), to be the minimum
number of intersections as we varyα by isotopy ofα with {cuffs} ∪ {seams}. The best
upper-bound (known to the authors) to the lengthL of Dα as a word in the mapping
class group spanned by a fixed generating set is of the formL(Dα) < super-exponential
function f (�). For this reason, we consider as inputV (h), whereh is a composition
of k Dehn twists onα1, . . . , αk and j braid moves alongβ1, . . . , βj in any order.
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ThenV (h) is costed as the sum of the combinatorial length of the simple closed curves
needed to writeh as Dehn twists and braid moves within the mapping class group,

�(h) :=
j

�
i=1

�(βi)+
k

�
i=1

�(αi). We obtain the following extension of the theorem.

Extension.2 The maph∗ : V (�) −→ V (�) is exactly simulated by a quantum circuit
QC with length (QC)≤ 11�(h) composed of algebraic 1 and 2-qupitCp gates.

Pre-Proof. Some physical comments will motivate the proof.V (�) are quantized gauge
fields on� (with a boundary condition given by labels�) and can be regarded as a finite
dimensional space of internal symmetries. This is most clear when genus(�) = 0 , � is
a punctured sphere, the labeled punctures are “anyons” [Wil] and the relevant mapping
class group is thebraid group which moves the punctures around the surface of the
sphere. An internal stateψεV (�) is transformed toU(b)ψ ∈ V (�) under the functorial
representation of the braid group. ForU(b) to be defined the braiding must be “complete”
in the sense that the punctures (anyons) must return setwise to their initial position.
Infinitesimally, the braiding defines a HamiltonianH onV (�)⊗E, whereE is an infinite
dimensional Hilbert space which encodes the position of the anyons. The projection of
H into V (�) vanishes which is consistent with the general covariance of topological
theories. Nevertheless, when the braid is complete, the evolutionU ofH will leaveV (�)
invariant and it isU|V (�) = U which we will simulate.Anyons inherently reflect nonlocal
entanglement so it is not to be expected thatV (�)has any (natural) tensor decomposition
and none are observed in interesting examples. Thus, simulation ofU as an invariant
subspace of a tensor product(Cp)⊗k is the best result we can expect. The mathematical
proof will loosely follow the physical intuition of evolution in a super-space by defining,
in the braid case (identical labels and genus= 0), two distinct imbeddings “odd” and

“even”,V (�)
odd−→
even−→ (Cp)⊗k = W and constructing the local evolution by gates acting on

the target space. The imbeddings are named for the fact that in the usual presentation of
the braid group, the odd (even) numbered generators can be implemented by restricting
an action onW to image oddV (�)

(
evenV (�)

)
.

Proof. The case genus(�) = 0 with all boundary components carrying identical labels
(this contains the classical, uncolored Jones polynomial case [J,Wi]) is treated first. For
any numberq of punctures (q = 10 in the illustration) there are two systematic ways of

dividing� into pants (3-punctured spheres) along curves
⇀
α = {α1, . . . , αq−3} or along

⇀

β = {β1, . . . , βq−3} so that a sequence ofq F moves (6j -moves in physics notation)

transforms
⇀
α to

⇀

β .
Let X = ⊕

(a,b,c)εL3 Vabc be the orthogonalsum of all sectors of the pants Hilbert

space. Distributing
⊗

over
⊕

, the tensor powerX⊗(q−2) := W is the sum over all
labelings of the Hilbert space for

∐
(q − 2) pants. Choosing parameterizations,W is

identified with both the label sum space(�
cut

⇀
α
) and sum(�

cut
⇀
β
). Now� is assembled

from the disjoint union by gluing along
⇀
α or

⇀

β so the gluing axiom defines imbeddings

i(
⇀
α) andi(

⇀

β ) of V (�, �) as a direct summand ofX⊗(q−2) = W .

2 Lee Mosher has informed us that the existence of the linear boundf (�) (but without control of the
constants) follows at least for closed and single punctured surfaces from his two papers [M1] and [M2].
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4  6  j
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Fig. 3.

Consider the action of braid move about α. This acts algebraically as θ(αi) on a single

X factor of W and as the identity on other factors. This action leaves i(
⇀
α)

(
V (�, �)

)
invariant and can be thought of as a “qupit” gate:

θ(αi) = V (braidαi ) : X → X,

where dimension dim(X) = p. Similarly the action of V (braidβi ) leaves i(
⇀

β ) invariant.

It is well known [B] that the union of loops
⇀
α∪⇀

β determines a complete set of generators
of the braid group. The general element ω, which we must simulate by an action on W
is a word in braid moves on α’s and β ’s. Part of the basic data – implied by the gluing
axiom for a UTMF is a fixed identification between elementary gluings:

Fabcd :
⊕
xεL

Vxab ⊗ Vx̂cd −→
⊕
yεL

Vybc ⊗ Vŷda
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1
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3
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Fig. 4.

corresponding to the following two decompositions of the 4-punctured sphere into two
pairs of pants (the dotted lines are pant “seams” , the uncircled number indicate boundary
components, the letters label boundary components, and the circled numbers order the
pairs of pants.):

For each F , we choose an extension to a unitary map F ′ : X⊗
X −→ X

⊗
X.

Then extend F ′ to F by tensoring with identity on the q − 4 factors unaffected by F .
The composition of q F ’s, extended to q F ’s, corresponding to the q moves illustrated
in the case q = 10 by Fig. 3. (For q > 10 imagine the drawings in Fig. 3 extended

periodically.) These define a unitary transformation T : W → W with T ◦ i(⇀α) = i(
⇀

β ).
The word ω in the braid group can be simulated by τ on W , where τ is written as a
composition of the unitary maps T , T −1, θ(αi), and θ(βj ). For example,

β5α1β
−1
2 α1α3

would be simulated as

τ = T −1 ◦ θ(β5) ◦ T ◦ θ(α1) ◦ T −1 ◦ θ(β−1
2 ) ◦ T ◦ θ(α1) ◦ θ(α3).

As described τ has length ≤ 2q length ω. The dependence on q can be removed by
dividing � into q

2 overlapping pieces �i , each �i a union of 6 consecutive pants. Every

loop of
⇀
α ∪⇀

β is contained well within some piece�i so instead of moving between two
fixed subspaces iα(V ) and iβ(V ) ⊂ W , when we encounter a βj , do constantly many F
operations to find a new pants decomposition modified locally to contain βj . Then θ(βj )
may be applied and the F operations reversed to return to the α pants decomposition.
The resulting simulation can be made to satisfy length τ ≤ 7 length ω. This completes
the braid case with all bounding labels equal - an important case corresponding to the
classical Jones polynomial [J]. ��
Proof of Lemma. We have described the F -move on the 4-punctured sphere both geo-
metrically and under the functor. The S-move is between two pants decompositions on
the punctured torus T −. (Filling in the puncture, a variant of S may act between two
distinct annular decomposition of T 2. We suppress this case since, without topological
parameter, there can be no computational complexity discussion over a single surface.)

By [Li] or [HT] that one may move between any two pants decompositions via a
finite sequence of moves of three types: F , S, and diffeomorphism M supported on the
interior of a single pair of pants (see the Appendix [HT]). To pass from D, our “base
point” decomposition, to Dω, F and S moves alone suffice and the logarithmic count is
a consequence of the log depth nest of cuff loops of D on the planar surface obtained by
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2
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Fig. 5. V (S):
⊕
x∈L

Vaxx̂ −→ ⊕
y∈L

Vayŷ

cutting � along type (1) γ curves. Below we draw examples of short paths of F and S

moves taking D to a particular Dω.
The logarithmic count is based on the proposition.

Proposition 2.3. Let K be a trivalent tree of diameter = d and f be a move, which

locally replaces { } and with { }, then any two leaves ofK can be made adjacent
by ≤ d moves of type f . (Here we consider abstract trees rather than ones imbedded in
the plane.)

Passing from K to a punctured sphere obtained by imbedding (K , univalent vertices)
into ( 1

2R
3, R2), thickening and deleting the boundary R2, the f move induces the

previously defined F move. ��
Some example of paths of F , S moves (Fig. 6).

Continuation of the proof of the theorem. For the general case, we compute on numerous
imbeddings of V (�) into W (rather than on two: iα

(
V (�)

)
and iβ

(
V (�)

)
as in the

braid case). Each imbedding is determined by a pants decomposition and the imbedding
changes (in principle) via the lemma every time we come to a new literal of the word
ω. Recall that ω ∈ M, the mapping class group, is now written as a word in the letters
(and their inverses) of type Dγ , D′

γ , Dε , and Bδ . Pick as a home base a fixed pants
decomposition D0 corresponding to i0

(
V (�)

) ⊂ W . If the first literal is a twist or
braid along the s.c.c. ω, then apply the lemma to pass through a sequence of F and
S moves from D0 to D1 containing ω as a “cuff” curve. As in the braid case, choose
extensions F and S to unitary automorphisms of W and applying V to the composition
gives a transformation T1 ofW such that i1 = T1 ◦ i0, i1 being the inclusion V (�) → W

associated with D1. Now execute the first literalω1 ofω as a transformation θ(ω1), which
leaves i1

(
V (�)

)
invariant and satisfies: θ(ωi) ◦ i1 = i1 ◦ V (ω1). Finally apply T −1

1 to
return to the base inclusion i0

(
V (�)

)
. The previous three steps can now be repeated for

the second literal of ω: follow T −1
1 ◦ θ(ω1) ◦ T1 by T −1

2 ◦ θ(ω2) ◦ T2. Continuing in this
way, we construct a composition τ which simulates ω on W :

τ = T −1
n ◦ θ(ωn) ◦ T −1

n

. . . ◦ T −1
1 ◦ θ(ω1) ◦ T1.
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F

F

F

F

S

F

γ'

ω

ω ω

ω

ω

ω

ω

Fig. 6.

From Lemma 2.1 the length of this simulation by one
(
corresponding to S and θ(ωi)

)
and two (corresponding to F moves) qupit gates is proportional to n =length ω and
log b1(�), where p = dim(X).

Proof of Extension. What is at issue is the number of preparatory moves to change the
base point decomposition D to Dγ containing γ = αi or βi as a cuff curve 1 ≤ i ≤ k or
j . We have defined the F and S moves rigidly, i.e. with specified action on the seams.
This was necessary to induce a well defined action on the functor V . Because of this
rigid choice, we must add one more move – an M move – to have a complete set of
moves capable of moving between any two pants decompositions of a surface (compare
[HT]). The M move is simply a Dehn twist supported in a pair of pants of the current
pants decomposition; it moves the seams (compare Chapter 5 [Wa]). Note that if M is a
+1 Dehn twisit in a s.c.c. ω then, under the functor, V (M) is a restriction of θ(ω) in the
notation above.

As in [HT], the cuff curves of D may be regarded as level curves of a Morse function
f : � → R+, constant on boundary components which we assume to have minimum
complexity (= total number of critial points) satisfying this constraint. Isotope α (we
drop the index) on � to have the smallest number of local maximums with respect to f
and is disjoint from critical points of f on �.

Now generically deform f in a thin annular neighborhood of γ so that γ becomes a
level curve. Consider the graphic G of the deformation ft , 0 ≤ t ≤ 1. For regular t the
Morse function ft determines a pants decomposition: let the 1- complex K consist of
�/ ∼ where x ∼ y if x and y belong to the same component of a level set of ft , and let
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1)

2)

−ε
cuff+ε

F-move
or

double critical level

moves: M
(as shown below)

−ε
+ε

F-move

double critical level

double critical level

FF

MF F

0 0

cuff cuff
cuff

moves: S

F M
2
0

2 M moves adjust
seams to

standard position

3)

(as shown below)

double critical level

F F

SS

MM

−ε

−ε

+ε +ε

0 00 0

Fig. 7.

L ⊂ K be the smallest complex to which K collapses relative to endpoints associated to
boundary components. For example in Fig. 8, the top tree does not collapse at all while
in the lower two trees the edge whose end is labeled, “ local max” is collapsed away. The
preimage of one point from each intrinsic 1-cell of L not containing a boundary point
constitutes a {cuffs} determining a pants decomposition Dt . For singular t0, let Dt0−ε
and Dt0+ε may differ or may agree up to isotopy. The only change in D occurs when t

is a crossing point for index= 1 handles where the two critical points are on the same
connected component of a level set f−1

t (r). There are essentially only three possible
“Cerf-transitions” and they are expressible as a product of 1, 2, or 3 F and S moves
together with braid moves whose number we will later bound from above. The Cerf
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γ

γ

γ

local max

local max

Fig. 8. Pulling γ down yields F ◦ F

γ '

pull γ' down,
cancel local max

yields o M oF F

Fig. 9.

transitions on D are shown in Fig. 7, together with their representation as compositions
of elementary moves.

Critical points of f |γ become critical points of ft of the same index once the de-
formation as passed an initial ε0 > 0, and before any saddle-crossings have occurred.
Let P be a pant from the composition induced by f and δ ⊂ γ ∩ P an arc. Applying
the connectivity criterion of the previous paragraph, we can see that flattening a local
maxima can effect at most the two cuff circles which δ meets, and these by elementary
Cerf transition shown in Fig. 8.

If γ crosses the seam arcs then the transitions are of the Cerf type, precomposed with
M-moves to remove these crossings as shown in Fig. 9. Dynamically seam crossings by
γ produce saddle connections in the Cerf diagram.

The total number of these twists is bounded by length (γ ). The number of flattening
moves as above is less than or equal |γ ∩ cuffs| ≤ length(γ ). The factor of 11 in the
statement allows up to 5 F , S, and M moves for expressing each Cerf singularity which
arises in passing from D◦ to Dγ and the same factor of 5 to pass back from Dγ to D◦
again, while saving at least one step to implement the twist or build move along γ . This
completes the proof of the extension. ��
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We should emphasize that although, we have adopted an “exact” model for the oper-
ation of the UTMF, faithful simulation as derived above does not depend on a perfectly
accurate quantum circuit. Several authors have proved a threshold theorem [Ki,AB],
and [KLZ]: If the rate of large errors acting on computational qubits (or qupits) is small
enough, the size of ubiquitous error small enough, and both are uncorrelated, then such
a computational space may be made to simulate with probability ≥ 2

3 an exact quan-
tum circuit of length = L. The simulating circuit must exceed the exact circuit in both
number of qubits and number of operations by a multiplicative factor ≤ poly (logL).

3. Simulating TQFT’s

We conclude with a discussion about the three dimensional extension, the TQFT of a
UTMF. In all known examples of TMF’s there is an extension to a TQFT meaning that

it is possible to assign a linear map V (�)
b∗→ V (�′) subject to several axioms [Wa]

and [T] whenever � and �′ cobounds a bordism b (with some additional structure).
The case of bordisms with a product structure is essentially the TMF part of the theory.
Unitarity is extended to mean that if the orientation of the bordism b is reversed to b,
we have b†∗ = (b)∗. It is known that a TMF has at most one extension to a TQFT and
conjectured that this extension always exists. Non-product bordisms correspond to some
loss of information of the state. This can be understood by factoring the bordism into
pieces consisting of a product union 2-handle: � × I ∪ h. The 2-handle h has the form
(D2 × I, ∂D2 × I ) and is attached along the subspace ∂D2 × I . The effect of attaching
the handle will be to “pinch” off an essential loop ω on � and so replace an annular
neighborhood of ω by two disks turning � into a simpler surface �′. It is an elementary
consequence of the axioms that if b = � × I ∪ h then b∗ is a projector as follows: Let
D be a pants decomposition containing ω as a dissection curve. There are two cases:

(1) ω appears as the first and second boundary components of a single pant called P0 or
(2) ω appears as the first boundary component on two distinct pants called P1 and P2.

V (�) =
= ⊕

cεL

((⊕
aεL

Vaâc

) ⊗
V

(
�\P0,with label c on ∂3P0

))
, case (1),

or

= ⊕
labels

(⊕
aεL

Vabc
⊗

Vâde

) ⊗
V

(
�\(P1 ∪ P2

)
, appropriate labels

)
, case (2).

In case (2), there may be a relation b = ĉ and/or d = ê depending on the topology of
D. The map b∗ is obtained by extending linearly from the projections onto summands:

⊕
a,cL

Vaâc −→ V111

canonically∼= V1, (case 1)

or⊕
a,b,c,d,e εL

Vabc
⊗

Vâde −→ V1bb̂

⊗
V1dd̂

canonically∼= V
bb̂

⊗
V
dd̂
. (case 2)
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If the orientation on b is reversed the unitarity condition implies that b determines
an injection onto a summand with a formula dual to the above. Thus, any bordism’s
morphism can be systematically calculated.

In quantum computation, as shown in [Ki], a projector corresponds to an intermediate
binary measurement within the quantum phase of the computation, one outcome of which
leads to cessation of the other continuation of the quantum circuits operation. Call such
a probabilistically abortive computation a partial computation on a partial quantum
circuit. Formally, if we write the identity as a sum of two projectors: idV = �0 + �1,
and let U0 and U1 be unitary operators on an ancillary space A with U0(|0〉) = |0〉
and U1|0〉 = |1〉. The unitary operator �0 ⊗ U0 + �1 ⊗ U1 on V ⊗ A when applied
to |v〉 ⊗ |0〉 is |�0v〉 ⊗ |0〉 + |�1v〉 ⊗ |1〉 so continuing the computation only if the
indicator |0〉 ∈ A is observed simulates the projection �0.

It is clear that the proof of the theorem can be modified to simulate 2-handle attach-
ments as well as Dehn twists and braid moves along s.c.c.’s ω to yield:

Scholium 3.1. Suppose b is an oriented bordism from �0 to �1, where �i is endowed
with a pants decomposition Di . Let complexity (b) be the total number of moves of
four types: F , S, M , and attachment of a 2-handle to a dissection curve of a current
pants decomposition that are necessary to reconstruct b from (�0,D0) to (�1,D1).
Then there is a constant c′(V ) depending on the choice of UTQFT and p(V ) as before
(for the TQFTs underlining TMF) so that b∗ : V (�0) → V (�1) is simulated (up to a
non-topological factor of the form νn2 , where n2 is the number of 2-hanles attached) by
a partial quantum circuit over Cp of length ≤ c′ complexity (b).

In general, the difference between topological objects (such asb∗ or closed 3-manifold
invariants) and quantum mechanical ones (the evolution and probability) is related to
critical points of a Morse function. A similar phenomenon for links in R3 has been
mentioned in [FKLW]. This subject will be addressed in detail in a forthcoming paper by
S. Bravyi andA. Kitaev, “Quantum invariants of 3-manifolds and quantum computation” .
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