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ABSTRACT
Cloud research to date has lacked data on the characteris-

tics of the production virtual machine (VM) workloads of

large cloud providers. A thorough understanding of these

characteristics can inform the providers’ resource manage-

ment systems, e.g. VM scheduler, power manager, server

health manager. In this paper, we first introduce an exten-

sive characterization of Microsoft Azure’s VM workload,

including distributions of the VMs’ lifetime, deployment size,

and resource consumption. We then show that certain VM

behaviors are fairly consistent over multiple lifetimes, i.e.

history is an accurate predictor of future behavior. Based on

this observation, we next introduce Resource Central (RC),

a system that collects VM telemetry, learns these behaviors

offline, and provides predictions online to various resource

managers via a general client-side library. As an example of

RC’s online use, wemodify Azure’s VM scheduler to leverage

predictions in oversubscribing servers (with oversubscrib-

able VM types), while retaining high VM performance. Using

real VM traces, we then show that the prediction-informed

schedules increase utilization and prevent physical resource

exhaustion. We conclude that providers can exploit their

workloads’ characteristics and machine learning to improve

resource management substantially.
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1 INTRODUCTION
Motivation. Cloud computing has been expanding at a fast

pace, especially as enterprises continue to move their opera-

tions to large cloud providers such as Microsoft Azure, Ama-

zon Web Services (AWS), and Google Cloud Platform (GCP).

Due to heated marketplace competition, providers have been

under pressure to produce attractive features and services,

while controlling their datacenter costs. These factors com-

bine to expose providers to a wide variety of workloads (from

both external customers and their own internal services) that

must share a common datacenter infrastructure. Providing

good performance, availability, and reliability under these

conditions can be expensive without sophisticated (but prac-

tical and scalable) resource management.

Unfortunately, research on cloud resource management

to date has lacked a thorough understanding of the key char-

acteristics of the workloads of large commercial providers.

For example, no prior study has explored the lifetime (time

between creation and termination) or resource consumption

distributions of these providers’ production virtual machines

https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
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(VMs). Instead, the prior work has mostly used real but non-

VM workloads, synthetic VM workloads, and/or focused on

managing resources via general but often impractical tech-

niques for a large cloud provider. For example, many papers

explore (sometimes offline) workload profiling and aggres-

sive online resource reallocation, via dynamic monitoring,

scheduling, and/or live VM migration [2, 7, 20, 21, 24, 27]. In

practice, offline profiling is infeasible because the workloads’

inputs are often unavailable until VMs run in production.

Online profiling is challenging, as it is hard to determine

when an arbitrary VM has shown representative behavior.

Application-level performance (e.g., tail latency) monitoring

is usually not possible, as it requires help from applications.

Finally, live migration retains contended resources for a rela-

tively long time (e.g., it cannot free up memory pages before

successfully migrating them) and can cause widespread net-

work traffic bursts. Practical uses of these techniques require

extreme care.

We argue that resource management can become more ef-

fective and practical for large providers with a deeper under-

standing of their VM workloads’ key characteristics. More-

over, if these characteristics can be accurately predicted, im-

provements could be even greater. For example, accurately

predicting resource utilization at VM deployment time would

allow resource-contention-aware VM co-location (mitigat-

ing the need for VM migration). Similarly, run-time lifetime

predictions would allow the health management system to

estimate when all the VMs running on a misbehaving server

will likely terminate (facilitating server maintenance with-

out VM migration or downtime). We are unaware of prior

work showing that the characteristics of large providers’ pro-

duction VMs can be accurately predicted for better resource

management.

Thus, there is a need for software that can produce such

predictions and enable the providers’ resource management

systems (e.g., the VM scheduler, the server health manager)

to leverage them. Some prediction-serving systems [5, 6, 10]

have been proposed recently, but have not been studied in

the context of prediction-based resource management.

Our work. In this paper, we first introduce a characteri-

zation of Azure’s (first- and third-party) VM workload, in-

cluding distributions of the VMs’ size, lifetime, resource

consumption, utilization pattern, and deployment size. Re-

searchers can use these distributions to produce realistic

cloud workloads for their own work. Alternatively, they

can use the sanitized production traces we have placed at

https://github.com/Azure/AzurePublicDataset. The traces con-

tain a subset of our data, but exhibit roughly the same overall

trends as the full dataset.

Our characterization shows that many types of VM be-

havior are fairly consistent over multiple lifetimes, when

observed from the perspective of each cloud customer. This

observation suggests that prior history may be an accurate

predictor of the future behavior of the customers’ VMs, so

machine learning algorithms could be used online to produce

VM behavior predictions.

Based on this observation, we introduce Resource Central

(RC), a system that collects VM telemetry, periodically learns

these behaviors into prediction models offline, and provides

behavior predictions online to various resource management

systems. Unlike other systems, RC serves predictions from a

client-side library, which caches prediction results, models,

and feature data. The library API is simple yet general, so it

can be used with many types of resource managers, learning

algorithms, prediction models, and feature data. RC’s models

and feature data are currently in production, being used

manually by engineers and data scientists for analysis and

system design. The changes to the systems that will leverage

RC are still being productized.

As an example of RC’s online use, we describe our modi-

fications to Azure’s VM scheduler, which selects a physical

server for each new VM. Specifically, we modify the sched-

uler to collect high-percentile utilization predictions to use

in oversubscribing physical servers with “oversubscribable”

VM types (e.g., first-party VMs that run non-customer-facing

workloads), while retaining good VM performance.

Our evaluation starts by quantifying the accuracy of RC’s

predictions of six metrics, using our VM telemetry. The re-

sults show overall prediction accuracies between 79% and

90%, depending on the metric. For example, RC predicts the

average CPU utilization of a new VM with 81% accuracy.

We then quantify the performance of RC’s components, and

confirm that models and feature data are compact and fast

enough to be executed on the client-side. To evaluate the

benefit of predictions, we explore our modified VM scheduler

using real VM traces and simulation. Our results show that

prediction-informed VM schedules enable safe oversubscrip-

tion, while keeping VM deployment failures low.

Summary and conclusions. Our contributions are:
• We present a detailed characterization of several VMwork-

load behaviors from Microsoft Azure;

• We show that these behaviors can be accurately predicted;

• We describe Resource Central, a large-scale system for

producing, storing, and using such predictions;

• We describe modifications to Azure’s VM scheduler that

leverage predictions to improve server selection;

• We present extensive results evaluating Resource Central

and our modified VM scheduler; and

• We make a large VM dataset available to the community.

We conclude that cloud providers can exploit the charac-

teristics of their workloads and machine learning techniques

to improve resource management substantially.

https://github.com/Azure/AzurePublicDataset
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2 RELATEDWORK
Cloud VM workload characterization. We are unaware

of other characterizations of the VM workload of real public

cloud providers, except for [15] which focused solely on

resource demand volatility and pricing. Other works studied

cloud platform performance [16] and how users implement

their front-end services in the cloud [11].

The closest prior works [8, 19, 22] did not address public
cloud workloads. Rather, they characterized a month-long

trace of 12k bare-metal servers running first-party container-

based (i.e., non-VM)workloads at Google [25]. In contrast, we

characterize Azure’s entire VM workload over three months,

including third-party VMs. In fact, third-party VMs often

exhibit different characteristics than first-party ones, as we

show in Section 3.

More importantly, VM workloads fundamentally differ

from bare-metal container workloads. Mainly for security

reasons, public cloud providers must encapsulate their cus-

tomers’ workloads using VMs. Unfortunately, VMs impose

higher creation/termination overheads than containers run-

ning on bare metal, so they are likely to live longer, pro-

duce lower resource utilization, and be deployed in smaller

numbers. For example, a user who wants to run multiple

MapReduce jobs may create a set of VMs sized for the jobs’

maximum resource needs; she would only destroy/shutdown

the VMs when all jobs have completed. In a container-based

system, each map and reduce task of each job would likely

receive a different container, which can be more accurately

sized for its task. As another example, services that assign a

VM to each user (e.g., gaming) may pool and reuse VMs, so

that the overhead of VM creation becomes invisible to users.

Machine learning andprediction-serving systems. Prior
works have recently proposed several frameworks, such as

TensorFlow [1], Caffe [13], and MLLib [18], for producing

machine learning models. Our work is orthogonal to them,

as RC relies on TLC, a Microsoft-internal state-of-the-art

framework that implements many learning algorithms.

Instead, RC is comparable to recent prediction-serving

systems [5, 6, 10]. In contrast with these systems, RC caches

prediction results, models, and feature data on the client side.
This approach enables the system to operate even when the

data store or the connectivity to it is unavailable. In addition,

it provides higher performance by removing the interconnect

and store from the critical performance path.

Predicting cloud workloads. The literature on predicting

workload behaviors is extensive. These works predict re-

source demand, resource utilization, or job/task length for

provisioning or scheduling purposes [4, 9, 12, 14, 23]. In con-

trast, we predict a broader set of VM behaviors (including VM

lifetimes, maximum deployment sizes, and workload classes)

for a broader set of purposes (including health management

and power capping [26]). Most importantly, our prediction

results derive from a real cloud platform, its workload and

machine learning framework.

Prediction-based scheduling.The literature on task/conta-
iner/VM scheduling is also vast. Many of these works use

online predictions of resource usage or performance interfer-

ence [3, 7, 20, 27]. Unfortunately, they are often impractical

for a large provider, relying on (offline or online) workload

profiling, application-level performance monitoring, short-
term load predictions, and/or aggressive resource realloca-

tion (e.g., via live migration). Live migration is particularly

problematic, as it retains contended server resources andmay

produce traffic bursts; it is better to place VMs where they

can stay. Thus, as an example of RC’s online use, we propose

changes to Azure’s VM scheduler that leverage predictions

of long-term high-percentile resource usage to implement

oversubscription in a safe and practical manner.

To guarantee within-server performance isolation across

VMs, we also need mechanisms for interference detection

(e.g., hardware counters [20, 27]) and prevention (e.g., fine-

grained resource partitioning [17]), but they are orthogonal

to our work. For example, Heracles (fine) and RC (coarse) op-

erate at different granularities and time-scales. RC is needed

in first placing VMs on servers, so Heracles does not have

to overly punish whatever workloads are considered low-

priority on the chosen server.

3 CHARACTERIZING CLOUD VM
WORKLOADS

We now explore several aspects of Azure’s VM workload.

Understanding them enables many platform optimizations.

Context and terminology. Azure hosts both first- and

third-party workloads, split into Infrastructure as a Service

(IaaS) and Platform as a Service (PaaS) VMs. In Azure’s offer-

ing, PaaS defines functional roles for VMs, e.g. Web server

VM, worker VM.

The first-party workloads comprise internal VMs (e.g., re-

search/development, infrastructure management) and first-

party services (e.g., communication, gaming, data manage-

ment) offered to third-party customers. The third-party work-

loads are VMs created by external customers. Other than the

limited information contained in our dataset (details below),

we have no visibility into third-party uses of internal services

or third-party workloads. The dataset corresponds to many

tens of millions of VMs from many tens of thousands of first-

and third-party users.
1

Regardless of their first- or third-party status, customers

create one or more Azure subscriptions. After creating a

subscription, the customer can deploy VMs into a region

1
Due to confidentiality reasons, we omit certain exact numbers, instead

focusing on more relevant workload statistics and trends.
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(one or more datacenters) she selects. We refer to a “VM

deployment” as a set of VMs that the customer groups and

manages together. All VMs in a deployment execute in one

“cluster” in the chosen region, i.e. a large aggregation of

servers within which a deployment needs to fit. Each VM

belongs to a “role”, which refers to the type or functionality

performed by the VM (e.g., IaaS VM, PaaS Web server).

Dataset. Our dataset contains information about every VM

running on Azure from November 16, 2016 to February 16,

2017. The information includes (1) identification numbers

for the VM, and the deployment and subscription to which

it belongs; (2) the VM role name; (3) the VM size in terms of

its maximum core, memory, and disk allocations; and (4) the

minimum, average, and maximum VM resource utilizations

(reported every 5 minutes). A sanitized subset of these data

is available at https://github.com/Azure/AzurePublicDataset.

Focus. We focus on aspects of real cloud workloads that

have an impact on resource management. Thus, we next ex-

plore distributions of VM type (IaaS vs PaaS), virtual resource

(CPU) usage, VM size (CPU cores and memory space), maxi-

mum deployment size, VM lifetime, workload class (likely

interactive vs delay-insensitive), and VM inter-arrival times.

We present both full platform and per-subscription perspec-

tives. The subscription is a natural unit for us, as it is tied

to billing, naming, quotas, and access control. Thus, it typi-

cally represents users who (sometimes repeatedly) execute

logically related workloads (e.g., many load-balanced copies

of a Web server, or Web servers and databases for an ecom-

merce service), and users from the same organization (e.g.,

the ecommerce company). As such, the subscription embod-

ies commonalities that enable accurate predictions. At the

end of each subsection, we discuss the implications for cloud

resource management. To close the section, we explore cor-

relations between metrics.

3.1 VM type
Entire cloud platform perspective. The workload is al-

most exactly split between IaaS (52%) and PaaS (48%) in

terms of VM counts; first-party workloads have slightly more

IaaS VMs (53% vs 47%), whereas third-party workloads have

slightly more PaaS VMs (53% vs 47%). However, PaaS actually

dominates the resource consumption with roughly 61% of

the total core hours. Even more interestingly, third-party

IaaS VMs consume significantly more core hours than their

PaaS counterparts (85% vs 15%, respectively), whereas the

opposite is true of first-party workloads (23% vs 77%).

Per-subscription perspective.We find that VMs from the

same subscription are almost always of the same type; 96%

of the subscriptions create VMs of a single type.

Implications for resourcemanagement. Some PaaS VMs

reveal information that the cloud provider can use in resource
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Figure 1: Average and P95 of max CPU utilizations.

management. For example, a PaaS Web server VM is likely

to be customer-facing, and may serve as the front-end to

an interactive service. The provider must ensure the best

possible performance for such services. In contrast, IaaS

VMs reveal no information and must be treated carefully. In

Section 3.6, we describe an approach to inferring the class of

VM workload that works well for both IaaS and PaaS.

3.2 Virtual resource usage
Entire cloud platform perspective.We illustrate the vir-

tual resource usage by quantifying CPU utilization per VM.

Figure 1 depicts the Cumulative Distribution Function (CDF)

of the average virtual CPU utilizations for each VM, and the

CDF of the 95
th
-percentile of the maximum virtual CPU uti-

lizations (P95 Max). Recall that the utilization measurements

correspond to 5-minute intervals. For example, the figure

shows that 60% of the VMs (Y-axis) have an average CPU

utilization (X-axis) lower than 20%. Similarly, 40% of them

have a 95
th
-percentile utilization lower than 50%.

We draw two key observations from this figure. First, a

large percentage of VMs exhibit low average CPU utiliza-

tions, especially for first-party workloads. However, average

utilizations do not reflect the VMs’ full needs, so we must

consider the 95
th

percentiles. Though more than one third of

VMs exhibit low CPU utilizations even at the 95
th

percentile,

a large percentage of them exhibit very high utilizations (>
80%), especially for third-party workloads.

Second, the first-party distributions tend to show lower

average and 95
th
-percentile utilizations than the third-party

distributions. At least two factors contribute to this observa-

tion: (1) many first-party services require consistently low

latency, which can be easily achieved by overprovisioning

VMs; and (2) our dataset includes a non-trivial percentage

(15%) of first-party VMs used for testing the performance and

scalability of VM creation (i.e., VMs get created and quickly

killed without doing any actual work).

https://github.com/Azure/AzurePublicDataset
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Figure 2: Number of virtual CPU cores per VM.

Per-subscription perspective.We find that VMs from the

same subscription tend to exhibit similar behaviors with re-

spect to utilization. Specifically, the coefficient of variation

(CoV = standard deviation divided by average) of the average

and 95
th
-percentile virtual CPU utilizations for each sub-

scription indicates low variance in these metrics for most

subscriptions. For example, 80% of subscriptions exhibit a

CoV of their average CPU utilizations that is smaller than 1.

Implications for resource management. Since at high

percentiles many VMs require nearly their entire resource

allocation, the provider must be careful when selecting phys-

ical servers for new VMs. Even when not oversubscribing

resources, the high resource usage may cause resource con-

tention. In this case, the provider has to resort to (expensive

and slow) live VM migration or accept potential workload

performance loss.

Nevertheless, a large percentage of VMs require many

fewer resources than their allocations. Thus, there is a sig-

nificant potential for oversubscribing physical resources, as

long as the provider can predict (at VM creation time) with

high confidence which VMs will require most of their alloca-

tions; these VMs can then be scheduled on different servers.

Focusing on individual subscriptions should simplify this

prediction task, as the space of high utilizations is more

consistent than across the entire population of VMs.

3.3 VM size
We now study the distribution of VM sizes. We define the

size of a VM as the amount of CPU and memory that the

VM’s owner requested for it.

Entire platform perspective. We illustrate the VM sizes

via the number of virtual CPU cores and amount of memory

per VM. Figures 2 and 3 present the corresponding break-

downs using stacked bars, one each for first-party, third-

party, and all workloads. The figures show that most VMs

require few virtual cores (almost 80% of VMs require 1-2

cores) and relatively little memory (70% of VMs require less
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Figure 3: Amount of memory per VM in GBytes.

than 4 GBytes). This reflects a scale-out design pattern where

one prefers more numerous small VMs over fewer large VMs.

The figures also show that first- and third-party customers

create VMs of comparable sizes, except that the latter users

create a larger percentage of 3.5-GByte and 0.75-GByte VMs,

and a smaller percentage of 1.75-GByte VMs.

Per-subscription perspective. Subscriptions are remark-

ably consistent in terms of their VM sizes; nearly all sub-

scriptions show CoVs of cores and memory lower than 1.

Implications for resource management. As small VMs

dominate, it is easier to fill holes in the server packing and

reduce fragmentation. Despite this, packing is complex as it

must consider multiple resource dimensions and constraints.

3.4 Maximum deployment size
Users do not always deploy their VMs to each region (a

cluster in the region) in one shot, so each deployment may

grow (and shrink) over time before it is terminated.

Entire platform perspective. Thus, we now consider the

deployment sizes across the platform. While studying this

data, we realized that some users are not using the concept

of deployment in the way it was intended, i.e. to cleanly

group and manage logically related VMs within a subscrip-

tion. In fact, at least one large first-party service creates many

single-VM deployments, instead of extending an existing de-

ployment each time. To approximate the original intent, we

redefine a deployment as the set of VMs from each subscrip-

tion that are deployed to a region during a day. Assuming

this definition, the CDFs of maximum deployment sizes ap-

pear in Figure 4. The figure shows that most deployments

are small: roughly 40% of them include a single VM, and 80%

have at most 5 VMs. Moreover, the figure shows that third-

party users deploy VMs in smaller groups than first-party

ones. These observations reflect patterns that favor smaller

VM groups; when users deploy multiple groups, they prefer

them to be spread across multiple regions.
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Figure 4: Max number of VMs in each deployment.

Looking at deployment sizes in terms of cores or memory

shows the expected trends. We do not depict these data to

keep deployment and VM sizes separate until Section 3.8.

Per-subscription perspective. Again, subscriptions show
remarkably consistent behavior with respect to their max-

imum deployment sizes; nearly all subscriptions exhibit a

CoV for this metric less than 1.

Implications for resourcemanagement.The clustermust

have enough capacity to host the maximum size of a deploy-

ment, and avoid eventual deployment failures (or long com-

munication delays across VMs of the same deployment). The

dominance of small deployments suggests that the provider

need not reserve large amounts of capacity within each clus-

ter for deployment growth, as long as it can predict (when

deployments are first created) with high confidence the few

deployments that could become large. The per-subscription

data shows that focusing on individual subscriptions may

increase prediction accuracy.

3.5 VM lifetime
Entire platform perspective. Figure 5 presents the CDFs
of VM lifetimes (how long VMs last from creation to ter-

mination) in our dataset, including only VMs that started

and completed in our observation period. As this group rep-

resents 94% of the VMs in our dataset, we can confidently

make statements about VM lifetimes. (There are 2% of VMs

that started before and completed after the period, and 4% of

VMs that either started before or completed after the period.)

The figure shows that a large percentage of first-party

VMs tend to live shorter (less than 15 minutes) than their

third-party counterparts. The main reason is the first-party

VM-creation testingworkloads wemention above. The figure

also shows a broad spectrum of lifetimes, but most lifetimes

are relatively short. The curves show a knee around 1 day

(more than 90% of lifetimes are shorter), and then almost

flatten out. This suggests that, if a VM runs for 1 day, it will

very likely run much longer. Perhaps most interestingly, the
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Figure 5: VM lifetime.

relatively small percentage of long-running VMs actually

account for >95% of the total core hours (not shown).

Per-subscription perspective. Many subscriptions show

consistent lifetime behavior. For example, roughly 75% of

them exhibit lifetime CoVs lower than 1.

Implications for resourcemanagement.The healthman-

agement system can schedule non-urgent server mainte-

nance without producing VM unavailability or requiring live

migration, if it can predict lifetimes accurately. In addition,

with accurate lifetime predictions at VM creation time, the

provider can schedule VMs that will complete at roughly

the same time on the same servers. The per-subscription

data shows that considering subscriptions individually may

increase lifetime prediction accuracy.

3.6 Workload class
In considering tightly packing VMs onto physical servers,

the provider might consider the VMs’ resilience to resource

contention and interference; highly interactive, customer-

facing workloads require low tail response times (measured

in milliseconds), so they are typically less resilient than batch

or background (delay-insensitive) workloads. However, this

resilience is difficult to ascertain, because the provider has

little or no information about what is running on the VMs,

especially in third-party IaaS scenarios. Even if the provider

were to request this information in advance, users may be

unwilling or unable to provide it.

For these reasons, we perform an analysis of the (average)

CPU utilization time series to infer whether a VM’s work-

load is likely to be interactive. Since interactive workloads

tend to exhibit diurnal cycles (people are active during the

day and sleep at night), our analysis attempts to find peri-

odicity in the utilization time series over 3 days, using the

Fast Fourier Transform (FFT) algorithm. The FFT is ideal

because it can detect periodicity at multiple time scales. Our

algorithm categorizes VMs into two classes: potentially in-

teractive (those that exhibit periodic behavior at the diurnal
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Figure 6:Workload classes and their use of core hours.

scale) and delay-insensitive (e.g., batch workloads, develop-

ment and test workloads). Obviously, it is conceivable that

some background VMs could increase/decrease activity at

periodic intervals and appear periodic. We do not isolate

these cases, because our classification seeks to be conserva-

tive (i.e., it is fine to classify a delay-insensitive workload as

interactive, but not vice-versa). Moreover, some critical daily

batch jobs have strict deadlines, so classifying them as in-

teractive correctly reflects their performance needs. Finally,

note that the algorithm works well even when the dominant

resource is not the CPU, because the CPU is a good proxy

for periodicity (e.g., network-bound interactive workloads

exhibit more CPU activity during the day than at night).

Our periodicity analysis targets the VMs that run long

enough for us to detect a reliable pattern (at least 3 days).

We could have used other heuristics to classify VMs that

live shorter. However, since VMs running longer than 3 days

consume 94% of the core hours, our classification already

covers the vast majority of the used resources.

We have validated our classification algorithm with cus-

tomers accounting for more than 50% of the first-party VMs.

Entire platform perspective. Figure 6 depicts the percent-
age of total (left), first-party (middle), and third-party (right)

core hours in each class. The “Unknown” class represents the

VMs that do not last 3 consecutive days. The figure shows

that delay-insensitive VMs consume most (roughly 68%) of

the core hours, regardless of whether they are first-party or

not. Still, a significant percentage of VMs execute potentially

interactive workloads and consume roughly 28% of the core

hours; these VMs must be managed carefully.

Per-subscription perspective. Inspecting the classifica-

tion per subscription again shows that most subscriptions

behave consistently; 76% of subscriptions with long-running

VMs (at least one VM runs for 3 days) create VMs dominated

by a single (usually delay-insensitive) class.

Implications for resource management. Our classifica-
tion enables the provider to apportion resources according to

Mon Tue Wed Thu Fri Sat Sun

V
M

 a
rr

iv
al

s 
pe

r 
ho

ur

Total

1st Party + Services

3rd Party

Figure 7: Time series of arrivals per hour at one region.

performance constraints. For example, upon a power emer-

gency, the power capping system [26] can assign full power

to VMs running interactive workloads and a reduced bud-

get to delay-insensitive VMs. The VM scheduler can tightly

pack VMs that run delay-insensitive workloads onto physical

servers, while loosely packing VMs that run interactive ones.

Similarly, the provider can use the former classes of VMs to

oversubscribe physical servers, while avoiding oversubscrip-

tion of servers that run an interactive VM. In all scenarios,

the provider must be able to predict with high confidence

which VMs will run or are running delay-insensitive work-

loads. Even if such high confidence cannot be achieved, the

provider may leverage our classification to help users select

good VM and deployment sizes based on their workloads’

characteristics (e.g., tighter sizes for delay-insensitive work-

loads). Focusing on subscriptions should increase prediction

accuracy, as they behave consistently over time.

3.7 VM inter-arrival times
We now study the VM inter-arrival times at one of Azure’s

regions. Figure 7 depicts the arrival time series at hourly gran-

ularity over a random week. We can see that that arrivals

are very bursty and diurnal with lower load on weekends,

regardless of the type of workload. This pattern is represen-

tative of other regions as well. The burstiness is due to the

small percentage of large deployments. We verified that the

arrival times are heavy-tailed by fitting Weibull distributions

(nearly perfectly) to them.

Implications for resourcemanagement.Diurnal arrivals
suggest that the provider can schedule its internal batch com-

puting or infrastructure testing workloads for the night with-

out risking competition with customer workloads. Heavy-

tailed arrivals suggest that burstiness can be significant, so

the VM scheduler must be optimized for high throughput.

3.8 Correlations between metrics
Finally, we correlate the VM metrics we study using Spear-

man’s method. Figure 8 shows the pair-wise correlations for
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Figure 8: Spearman’s correlations between metrics.

the entire platform as a heat map; we include the workload

class by numbering the classes 1 (delay-insensitive) and 2

(interactive). A correlation factor near 1.0 reflects a positive
relationship (a higher value of one metric means a higher

value for the other), a factor near −1.0 reflects a negative re-
lationship, whereas a factor near 0.0 reflects no relationship.

Obviously, each metric is strongly positively correlated

with itself. In addition, the two utilizationmetrics are strongly

positively correlated, and so are numbers of cores and amount

of memory (the latter relationship derives from Azure’s VM

offerings). More interestingly, we see that the utilizations (es-

pecially 95
th
-percentile) show a lightly positive relationship

to lifetime and a slightly negative relationship to cores and

memory per VM, meaning that VMs with higher utilization

tend to be smaller and live longer. In contrast, lifetime has

no relationship with number of cores or amount of memory

per VM, whereas deployment size has a slightly negative

relationship with these metrics (larger deployments require

fewer resources per VM). Finally, the class shows a lightly

positive relationship to lifetime, meaning that interactive

VMs tend to live longer. The other metrics show no relation-

ship to workload class.

The correlations are different when considering only third-

party or only first-party workloads. Most strikingly, the uti-

lization metrics are moderately positively correlated with

deployment size in third-party workloads, whereas they are

lightly negatively correlated in first-party ones.

4 RESOURCE CENTRAL
The previous section discussed several VM behaviors and

metrics related to resource management, and the potential

benefits of predicting them accurately.

To produce these predictions, we introduce Resource Cen-

tral (RC), a system for ingesting VM telemetry, learning from

past VM behaviors, producing models that can predict these

behaviors, and executing the models (i.e., providing predic-

tions) when client systems request them. Though we focus

on predicting VM behaviors in this paper, RC is general and

can be used for learning/predicting server effects as well,

such as hardware failures. RC is in production, supporting

engineers and data scientists. The systems that will use it

are being productized and qualified within Azure.

Next, we discuss some RC use-cases and its design.

4.1 Example RC use-cases
We envision many uses for RC predictions of the metrics

from Section 3. The following is a non-exhaustive list that

expands on some examples from Section 3:

• Smart VM scheduling. Before selecting servers to run

a set of new VMs, the VM scheduler can contact RC for

predictions of the VMs’ expected resource utilizations. With

this information, the scheduler can select servers to balance

the disk IOPS load, or to reduce the likelihood of physical

resource exhaustion in oversubscribed servers.

• Smart cluster selection. Before selecting a cluster in

which to create a VM deployment, the cluster selection sys-

tem can query RC for a prediction of maximum deployment
size. With this information, this system can select a cluster

that will likely have enough resources.

• Smart power oversubscription and capping. During
a power emergency (when the power draw is about to ex-

ceed a circuit breaker limit), the power capping system can

query RC for predictions of VM workload interactivity, be-
fore apportioning the available power budget across servers.

Ideally, VMs executing interactive workloads should receive

all the power they may want, in detriment of VMs running

batch and background tasks. Alternatively, the VM sched-

uler can request interactivity predictions before selecting

servers, so that interactive and delay-insensitive workloads

are segregated in different sets of servers.

• Scheduling server maintenance.When a server starts

to misbehave, the health monitoring system can query RC

for the expected lifetime of the VMs running on the server. It

can thus determine whenmaintenance can be scheduled, and

whether VMs need to be live-migrated to enable maintenance

without unavailability. In addition, the VM scheduler can

use the lifetime predictions to co-locate VMs that are likely

to terminate roughly at the same time. This could facilitate

other types of maintenance, such as OS updates.

• Recommending VM and deployment sizes. The cloud
platform could provide a service to its customers that recom-

mends the appropriate VM size and number of VMs at the

time of each deployment. Using RC predictions of workload
class and resource utilization, the service could recommend

deployments where VMs predicted to be delay-insensitive

would be more tightly sized than interactive VMs. (Existing

rightsizing services from Azure, AWS, and GCP recommend

new sizes for currently running VMs after long observation

periods and do not account for the likely workload class.)
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Figure 9: RC architecture (pull version).

Exploring all these use-cases is beyond the scope of this

paper. As an example, Section 5 details the use of RC predic-

tions for smart VM scheduling with server oversubscription.

4.2 Design and implementation
Principles. Our design for RC follows a few principles:

(1) For performance and availability, RC should be an

independent and general system that is off the critical

performance and availability paths of the systems that

use it.

(2) For maintainability, it should be simple and rely on

any existing well-supported infrastructures.

(3) For usability, it should require minimal modifications

to the systems that use it, and provide an interface that

is general enough for many use-cases.

Overview. Based on these principles, we designed RC as in

Figure 9. As the figure illustrates, RC has offline and online

components. The offline workflow consists of several tasks:

data extraction, cleanup, aggregation, feature data genera-

tion, training, validation, and machine learning (ML) model

generation. RC performs these phases on a centralized mas-

sive data processing cluster that collects all the VM telemetry

from the cloud fabric. RC orchestrates these phases, sanity-

checks the models and feature data, and publishes them (with

version numbers) to an existing highly available store. The

store is present in each datacenter.

In our current design, RC does not automatically select

the appropriate ML modeling approach (e.g., regression tree,

random forest) for each metric, leaving this task for data

analysts who also (a) provide a “specification” describing the

inputs to each model and (b) record them in the store.

The online part of RC uses a single, general, and thread-

safe client dynamically linked library (DLL), within which

the ML models execute to produce predictions. This DLL

is the only view of RC for all external clients. The client

(e.g., VM scheduler, health monitoring system) calls the DLL

passing as input the model name and information about

the VM(s) for which it wants predictions. We refer to this

information as the client inputs to the models. Examples

of client inputs are subscription id, VM type and size, and

deployment size. Besides the client inputs, the model may

require historical feature data as additional inputs, which

RC fetches from the highly available store. For example, the

subscription id for a new VM deployment may be one of

the client inputs provided by the VM scheduler to a lifetime

model. As an example of feature data, the lifetime model

would also require information on historical lifetimes (e.g.,

percentage of short-lived and long-lived VMs to date) for the

same subscription from the store.

ML modeling approaches. RC is agnostic to the specific

modeling approach data analysts select; many approaches

fit the framework. In our current implementation, analysts

can select models from a large ML repository that runs on

the data processing cluster. The repository also provides a

library for executing the models at the clients.

The leftmost three columns of Table 1 list the modeling

approaches we currently use for the metrics of Section 3:

Random Forests and Extreme Gradient Boosting Trees as

classifiers, and Fast Fourier Transform (FFT) to detect peri-

odicity in the utilization timeseries. Each model takes many

features as inputs, deriving from a smaller number of at-

tributes (e.g., VM type, VM size, guest operating system).

Due to the predictive value of these features, RC can make

predictions about VMs it has not seen before.

For classifying numeric metrics, we divide the space of

possible predictions into a small number of buckets. Formu-

lating these models as classifiers with buckets rather than

regression algorithms, makes the metrics easier to predict.

For example, it is easier to predict that utilization will be in

the 50% to 75% bucket than predict that it will be exactly 53%.

When the prediction must be converted to a number, the

client can assume the highest value for the predicted bucket,

the middle value, or the lowest value.

Client DLL. It is configurable per client. Given a model

name, it finds out how to interpret the client inputs from the

specifications for the model. It caches the prediction results,

model, and feature data from the store in memory.

Table 2 lists the main DLL API methods. On a prediction

request (a call to the Predict method), the DLL looks up the

results cache first by hashing the model name and client

inputs. On a hit, it returns the cached result. On a miss, the

DLL looks up the other caches, and executes the model using

client inputs and feature data inputs. The DLL caches the

result of this execution. Each prediction result is typically a

predicted value and a score. The score reflects the model’s

confidence on the predicted value. The client may choose to

ignore a prediction when the confidence score is too low.
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Metrics Approach #features Model size Feature data size

Avg CPU utilization Random Forest 127 312 KB 376 MB

P95 max CPU utilization Random Forest 127 311 KB 376 MB

Deployment size in #VMs Extreme Gradient Boosting Tree 24 305 KB 368 MB

Deployment size in #cores Extreme Gradient Boosting Tree 24 305 KB 368 MB

Lifetime Extreme Gradient Boosting Tree 127 329 KB 376 MB

Workload class FFT, Extreme Gradient Boosting Tree 34 152 KB 311 MB

Table 1: Metrics, ML modeling approaches, model and full feature dataset sizes.

API method Parameters Return Description

initialize none boolean Initializes client DLL

get_available_models none char* Gets list of available models

predict_single model_name, struct Produces one prediction

client_inputs* prediction

predict_many model_name, struct Produces multiple predictions

client_inputs** prediction*

force_reload_cache none void Refreshes memory & disk caches

flush_cache none void Flushes memory & disk caches

Table 2: Main DLL API methods.

When the DLL cannot produce a prediction, it simply

returns a no-prediction flag to the client system, which must

be able to handle this situation.

Cache management. Result caching is configurable and

implements a hash table accessible by hashing the model

name and the client inputs. Thus, it works well when the

client does not provide any rapidly changing inputs in the

prediction calls. Each result cache entry stores only the cor-

responding prediction value and score.

The DLL caches model and feature data using either a

pull (fetch from the store on-demand) or push (update cache

when a change occurs at the store) approach. In one pull

configuration, the DLL returns a no-prediction on any re-

sult cache miss; accesses to the remote store and/or model

executions happen in the background. Clients can use this

configuration when the models or full feature dataset are too

large for their memory, and they never want remote accesses

or model executions on the critical path of predictions.

We have not needed pull-based caching however: as the

two rightmost columns of Table 1 show, all the model sizes

and feature datasets we have considered so far are small

enough to fit entirely in the client’s memory. Thus, we rely

on push-based caching, where RC periodically produces new

models and feature data for all subscriptions, and pushes

them in the background to the caches in the client DLL. In the

push approach, RC returns a no-prediction if it cannot find

a model or feature data in its caches. For example, this may

occur if the prediction request refers to a recently created

subscription; information about this subscription will appear

in the feature data cache after a future data push.

Regardless of the configured caching approach, RC also

stores the content of the model and feature data caches in

the local file system. It only looks up the local disk cache

in either of two cases: (1) there is an in-memory model or

feature data cache miss and the store is unavailable; or (2)

the client crashes and restarts and the store is unavailable.

In both cases, the DLL ignores the local disk cache, if it has

expired (the expiration time is also configurable).

Justification. Our DLL-based design follows the principles

listed above. First, our caches attain high hit rates and our

models are light enough to be instantiated/run at the client

(principle #1). Though high prediction performance is not

required for some RC use-cases, it can be critical when mod-

els are large or expensive to execute, or when the client

has a low time budget. Implementing RC as a service with

a REST API would have placed the interconnect and the

prediction-serving stack on the critical paths of all predic-

tions. Second, the DLL is simple and is backed by an existing

highly available store, so it does not require provisioning

additional servers/VMs for serving predictions (principle #2).

Finally, the interface the DLL provides makes requesting

predictions seem like a simple method call (principle #3).

5 CASE STUDY: RC-INFORMED VM
SCHEDULING

In this section, we describe how Azure’s production VM

scheduler can leverage the predictions from RC to enable

careful physical CPU oversubscription. Other VM schedulers

can use the same predictions in a similar way. Recall that a

complete description of the Azure scheduler is beyond the

scope of this paper. Instead, we overview the system and
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describe the changes we propose to it. We are productizing

our changes and expect to deploy them to production in the

next few months. In production, we will only oversubscribe

servers running first-party workloads.

VM scheduler.Azure executes one VM scheduler per server

cluster. The scheduler selects physical servers on which to

place each VM assigned to its cluster. This decision is com-

plex, because it must consider multiple resource dimensions,

as well as several constraints on the VM placements, at the

same time. For example, given a deployment defined by the

VMs’ maximum CPU, memory, and disk space requirements,

the scheduler must find servers with enough resources, while

spreading the VMs across multiple failure and update do-

mains. The system must also reserve resources for deploy-

ment growth and healing (re-starting) VMs affected by hard-

ware failures. Ultimately, the scheduler must maximize the

number of VMs that can be accepted, while minimizing the

number of VM scheduling failures.

Clearly, scheduling VMs fast and at scale under these con-

ditions is challenging. In fact, computing an optimal solution

for such a bin-packing problem is infeasible, so prior works

have used heuristics [2, 3, 24]. In a similar vein, our scheduler

sequentially applies a set of rules that progressively narrow

the choice of servers that are candidates for a placement.

Some rules represent hard constraints that cannot be vio-

lated (e.g., must have enough available resources), whereas

others can be violated if they would excessively restrict the

set of candidate servers (e.g., prefer servers that will be more

tightly packed). Despite its heuristic nature, our multi-year

experience with the scheduler shows that it can pack the

VMs’ requested resources tightly, producing little fragmen-

tation and few scheduling failures.

Leveraging RC predictions for oversubscription. Our
proposed changes seek to increase server utilization via CPU

oversubscription, while preventing scenarios where servers

would actually run out of physical CPUs.

Our new code appears in Algorithm 1, which includes a

hard rule (SELECTCANDIDATESERVERS) and two book-

keeping functions (PLACEVM and VMCOMPLETED). The

rule determines the servers where the new VM would “fit”;

it passes those eligible servers to the next rule in the chain.

Though our rule must check that the VM fits with respect

to all resources, for clarity, the algorithm only shows the

handling of the CPU resource (other resources are not over-

subscribed). Similarly, we elide the single lock that protects

the VM and server data structures in the three routines.

Our rule receives the existing production vs non-producti-

on annotation associated with first-party subscriptions as an

input (called VM type in Algorithm 1).We only oversubscribe

physical CPUs using non-production VMs. In fact, our code

logically splits the servers into two groups: (1) oversubscrib-

able, i.e. those that only host non-production workloads; and

Algorithm 1 CPU oversubscription rule and bookkeeping.

1: Given: VM V to schedule, current set of candidate servers C
2: Client inputs include V .subscription, V .type, V .alloc

3: function SelectCandidateServers(V , C )

4: if V .type == PROD then
5: for each non-oversubscribable or empty server c ∈ C do
6: if c .alloc+V .alloc <= SERVER_CAPACITY then
7: Mark c eligible

8: else
9: Pred = predict_single(VM_P95UTIL, client_inputs_list)

10: if Pred .score >= .6 then
11: V .util = Highest_Util_in_Bucket[Pred .value] * V .alloc

12: else
13: V .util = V .alloc

14: for each oversubscribable or empty server c ∈ C do
15: if c .alloc+V .alloc <=MAX_OVERSUB and

16: c .util+V .util <=MAX_UTIL then
17: Mark c eligible

18: return List of eligible servers

19: function PlaceVM(V , c )
20: if c is empty then ◃ i.e., if c .alloc == 0 then
21: if V .type == PROD then
22: Tag c as non-oversubscribable

23: else
24: Tag c as oversubscribable

25: c .alloc += V .alloc

26: if c is oversubscribable then
27: c .util += V .util

28: function VMCompleted(V , c )
29: c .alloc -= V .alloc

30: if c is oversubscribable then
31: c .util -= V .util

(2) non-oversubscribable, i.e. those that only host production

workloads. A later rule tries to fill up non-oversubscribable

servers before it places VMs in empty servers. For oversub-

scribable servers, the rule avoids oversubscribing a server

if another server can accommodate the new VM without

oversubscribing resources.

Our rule uses RC predictions of 95
th
-percentile virtual

core utilization (line 9). If RC’s confidence in this prediction

is low, we conservatively assume that the VM will consume

all its allocated cores (lines 10-13). The rule then marks as

candidates any oversubscribable servers for which: the sum

of the VMs’ allocations is less than MAX_OVERSUB, and the

sum of the VMs’ predicted 95
th
-percentile utilizations is less

than MAX_UTIL (lines 15-17). MAX_OVERSUB is the maxi-

mum allowed CPU oversubscription (e.g., 15% more virtual

cores than physical cores), and MAX_UTIL is the maximum

allowed physical CPU utilization. We can set MAX_UTIL

to 100% (or another high value that provides some slack) to

prevent resource exhaustion.

Implementation as a soft rule. Implementing the utiliza-

tion check as part of the (hard) “fit” rule as above gives more

importance to preventing resource exhaustion than reducing

scheduling failures. An approach that inverts this tradeoff
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implements the utilization check as a soft rule after the fit

rule. In this version, the scheduler treats limiting the CPU

utilization as best effort, i.e. if enforcing the soft rule would

cause all servers that have the needed resources to be marked

ineligible, the rule is simply disregarded.

Mispredictions and lack of predictions. A prediction er-

ror for a VM is unlikely to cause problems, unless RC under-

predicts these values for many co-located VMs. Consistent

under-predictions would cause the target peak utilization

to be exceeded frequently. Utilization mispredictions would

be more prone to problems if we decided to limit the com-

bined predicted average utilizations, instead of the combined

predicted 95
th
-percentile utilizations. In case RC does not

produce a prediction (not shown), it is safest to assume that

the VM will exhibit 100% utilization.

Justification. As we seek to balance packing tightness and

the ability to eliminate resource exhaustion in oversubscribed

servers, our approach uses 95
th
-percentile instead of maxi-

mumutilization predictions. Thus, resource exhaustionmight

occur when higher percentile utilizations for multiple non-

production VMs happen to align in time, even when pre-

dictions are perfectly accurate. Our results show that these

events happen very rarely, so we can limit resource exhaus-

tion while achieving tight packing.

Finally, we do not consider network and disk bandwidth

in VM scheduling, because Azure’s interconnect is overpro-

visioned and persistent storage is remote to compute servers.

6 EVALUATION
We now evaluate the quality of RC’s predictions, its perfor-

mance, and the benefits of RC-informed VM scheduling.

6.1 RC prediction quality and performance
Prediction quality. As we suggest in Section 3, the cus-

tomers’ subscriptions are often a good unit upon which to

base predictions, as VMs from the same subscription tend to

exhibit similar behaviors. For this reason, we produce models

using features that exist in all subscriptions, but produce pre-

dictions using feature data from the input VMs’ subscription.

This approach nicely matches the uses of RC for resource

management, as we always know the subscription to which

the VMs we want to predict belong.

To evaluate RC’s prediction quality, we train our models

with two months of data and test them on the third month of

our dataset (Section 3). To improve quality, we experimented

with multiple techniques, including feature engineering and

normalization, feature selection and regularization.

We divide the space of possible predictions for each metric

into the buckets listed in Table 3. Given these buckets, Ta-

ble 4 summarizes our prediction results for every metric and

Metric Bucket 1 Bucket 2 Bucket 3 Bucket 4

Avg and P95 util 0-25% 25-50% 50-75% 75-100%

Deployment size 1 >1 & ≤10 >10 & ≤100 >100

(#VMs and #cores)

Lifetime ≤15 mins >15 & ≤60 mins >1 & ≤24 hs >24 hs

Workload class Delay- Interactive NA NA

insensitive

Table 3: Metrics and their bucket sizes.

bucket. The leftmost column lists the metric we are predict-

ing. The second column lists the accuracy of the full set of

predictions (i.e., the percentage of predictions that were cor-

rect), assuming the predicted bucket is that with the highest

confidence score. The next set of columns present the results

per bucket: they list the percentage of VMs that truly fall

in the bucket, the predictions’ precision for the bucket (i.e.,

the percentage of true positives in the set of predictions that

named this bucket), and the predictions’ recall (i.e., the per-
centage of true positives in the set of predictions that should

have named this bucket). The final two columns list the pre-

cision and recall, respectively, assuming that RC replies with

a no-prediction if the highest bucket score is lower than 0.6

(i.e., confidence is low).

Table 4 demonstrates RC’s high prediction accuracy, which

ranges between 79% (lifetime) and 90% (workload class) de-

pending on the metric. The prediction quality is even higher

when we discard predictions with low confidence: preci-

sion ranges between 85% (lifetime) and 94% (95
th
-percentile

CPU utilization) without substantially hurting recall, which

ranges between 73% (95
th
-percentile CPU utilization) and

98% (workload class). For all metrics, the most important

attributes in determining prediction accuracy are the per-

centage of VMs classified into each bucket to date in the

subscription. Other relevant attributes are the service name

(i.e., the name of a top first-party subscription or “unknown”

for the others), deployment time, operating system, and VM

size; their relative importance depends on the metric. VM

roles have little predictive value, e.g. all IaaS VMs have role

“IaaS” but may behave quite differently.

RC tends to achieve higher precision and recall for the

more popular buckets. This is expected since it has more

data to learn from in these cases. An interesting case is

workload class: bucket 1 shows that 99% of the VMs run

delay-insensitive workloads, and RC achieves 100% precision

(every delay-insensitive prediction is for a delay-insensitive

VM) and 90% recall (90% of the delay-insensitive VMs are

predicted as such). Bucket 2 shows that RC achieves 7% pre-

cision and 84% recall for the relatively few interactive VMs.

This low precision reflects our desire to maximize the recall

for this class, and means that many interactive predictions

are for delay-insensitive VMs; mistakes in this direction are

acceptable whereas those in the reverse direction (predicting

interactive VMs as delay-insensitive) are undesirable.
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Bucket 1 Bucket 2 Bucket 3 Bucket 4

Metric Acc. % P R % P R % P R % P R Pθ Rθ

Avg CPU utilization 0.81 74% 0.92 0.83 19% 0.73 0.78 6% 0.78 0.74 2% 0.74 0.71 0.87 0.78

P95 CPU utilization 0.83 25% 0.83 0.89 15% 0.72 0.74 14% 0.73 0.72 46% 0.91 0.86 0.94 0.73

Deploy size (#VMs) 0.83 49% 0.85 0.87 40% 0.79 0.79 10% 0.80 0.74 1% 0.87 0.75 0.88 0.90

Deploy size (#cores) 0.86 19% 0.81 0.84 60% 0.88 0.90 19% 0.81 0.76 3% 0.86 0.66 0.90 0.92

Lifetime 0.79 29% 0.78 0.81 32% 0.70 0.79 32% 0.71 0.77 7% 0.69 0.80 0.85 0.80

Workload class 0.90 99% 1.00 0.90 1% 0.07 0.84 NA NA NA NA NA NA 0.91 0.98

Table 4: RC’s prediction quality. Acc = accuracy; P = precision; R = recall.
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Figure 10: Latency ofmodel execution for ourmetrics.

Performance. The key drivers of RC’s online performance

are the client DLL caches, model execution, and the data

store, so our experiments assess: (1) the hit rate and latency

of result cache accesses; (2) the latency of model execution

on the client; and (3) the latency of model and feature data

cache misses when using pull-based caching. For these exper-

iments, we create a dummy client that repeatedly requests

predictions for the VMs in our month-long test set. The client

and DLL run on a 2-core VM.

We find that the RC result cache achieves a high hit rate for

our dataset. On average, an entry is accessed between 18 and

68 times, depending on the metric, after the corresponding

model execution. Since the result cache is very small (at

most around 25 MB) for our dataset and could be allowed

to grow significantly, a longer VM trace would produce an

even higher average number of hits per model execution.

The 99
th
-percentile latency of a hit is only 1.3 µs, essentially

corresponding to preparing a key and accessing a hash table.

Figure 10 shows that latencies are low (and predictable)

even when RC executes models on-the-fly due to result cache

misses. Median latencies range from 95 to 147 µs, whereas
99

th
-percentile latencies range from 139 to 258 µs.

Finally, we find that accesses to the data store when using

pull-based caching take substantially longer. Specifically, the

store we use has median and 99
th
-percentile latencies of 2.9

and 5.6ms , respectively, for an 850-byte record (the size of

the feature data for each subscription).

6.2 Case study: RC-informed VM
scheduling

We now evaluate the impact of using 95
th
-percentile CPU

utilization predictions in server CPU oversubscription. Our

goal is not to fully evaluate the Azure VM scheduler. Rather,

we assess the potential benefits of RC’s resource utilization

predictions, using the Azure scheduler as an example.

Methodology. As our changes to the VM scheduler are not

yet in production, we rely on simulations of it using real

VM traces. The simulator is faithful to the real scheduler. In

fact, Azure evaluates all changes to the production scheduler

using the simulator. We have extended the simulator to (1)

associate real first-party utilization traces (from the dataset

of Section 3) with the VMs being scheduled, (2) implement

our changes to the scheduler, (3) consume RC predictions

for the real VMs, and (4) aggregate CPU utilization data

for all simulated servers. We aggregate utilization data in

the simulator by adding up the co-located VMs’ maximum
utilizations in each 5-minute period. This is pessimistic as

it assumes that the maximum utilizations last for the entire

period. Given this approach, simulated server utilizations may
actually exceed 100%.We assume that each VM’s virtual core

is pinned to a physical core, so exceeding 100% utilization in

a period means that more than one virtual core would have

shared a physical core (via timeslicing) for part of the period.

The simulator reports the server CPU utilizations over

time, and the number of scheduling “failures” (VMs that

could not be scheduled due to lack of resources or fragmen-

tation). Using these metrics, we compare schedules without

oversubscription or differentiation between production and

non-production VMs (Baseline), with RC-informed oversub-

scription as a soft rule (RC-informed-soft), with RC-informed

oversubscription as a hard rule (RC-informed-hard), and with
oversubscription but without RC’s predictions (Naive). We

also compare against schedules in which RC always predicts

the correct bucket (RC-soft-right) or always predicts an incor-

rect random bucket (RC-soft-wrong) for the 95th-percentile
CPU utilization. By default, we set MAX_OVERSUB and

MAX_UTIL in Algorithm 1 to 125% and 100% of the servers’

CPU capacity, respectively, but we also study the sensitivity

of the RC results to these parameters. Finally, we simulate
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336k VM arrivals to a cluster of 880 servers (each with 16

cores and 112 GBytes of RAM) over a period of 1 month. The

VMs exhibit the same size and lifetime distributions as in

Section 3, and their original tags (71% production VMs).

Comparing schedulers. Given our default settings, RC-

informed-soft produces no scheduling failures and only 77

individual server utilization readings above 100% over the

entire month and across all servers. RC-informed-hard pro-

duces the same results, as VMutilizations are not high enough

to cause deployment failures (our utilization analysis below

describes cases in which RC-informed-soft and RC-informed-

hard behave differently). Naive does not perform as well: it

also produces no failures, but shows 6× more server uti-

lizations higher than 100%. In contrast, the Baseline system

produces no server utilizations higher than 100% (since there

is no oversubscription) and 0.25% of failures. This percentage

of failures is 2.5× higher than what we consider acceptable.

These results show that RC-informed oversubscription pro-

duces more capacity from the same hardware, while control-

ling resource exhaustion for non-production workloads.

We also find that predicting utilization accurately is impor-

tant. RC-soft-right produces similar behavior to RC-informed-

soft, with some more utilization readings higher than 100%.

This is not surprising since (1) RC-informed-soft already

has high prediction accuracy (Table 4), and (2) RC-soft-right

assumes perfect predictions of 95
th
-percentile utilization,

whereas the simulator aggregates maximum utilizations. In

contrast, RC-soft-wrong does much worse, producing 3×

more above-100% utilization readings than RC-informed-soft

(while still producing no scheduling failures).

Sensitivity to amount of oversubscription (MAX_OVERSUB).
We now compare RC-informed-soft for allowable oversub-

scriptions of 125% (results above), 120%, and 115% of the

servers’ CPU capacity. Lowering this value progressively

increases the number of scheduling failures, as there is less

available capacity for non-production workloads. Even at

115% oversubscription however, the number of failures in

RC-informed is still 65% lower than in Baseline. At the same

time, each server receives fewer VMs as oversubscription

decreases, so the likelihood of multiple concurrent utiliza-

tion spikes decreases. This leads to even lower numbers of

utilization readings above 100%: at 115% allowable oversub-

scription, RC-informed-soft produces only 22 such readings.

Sensitivity to target max server utilization (MAX_UTIL).
Now, we investigate the impact of lowering the target maxi-

mum server utilization from 100% (results above) to 90% or

80%, while keeping the amount of allowable oversubscription

at 125%. Reducing the target effectively reduces the avail-

able server capacity for non-production workloads, leading

to a significant increase in scheduling failures for the same

VM arrivals. For example, for a target of 80%, the number of

scheduling failures increases to 903 or 0.27%, i.e. well beyond

the acceptable 0.1% failures. Nevertheless, lower target maxi-

mum utilizations can be used in more lightly loaded systems.

For instance, with 20% less load, an 80% target maximum

utilization leads to no failures.

Sensitivity to VM resource utilization. Finally, we study
the impact of higher virtual core utilization by artificially

adding 25% to all real utilization values, and adding 1 to all

utilization bucket predictions. As expected, higher utiliza-

tion causes RC-informed-hard to produce more scheduling

failures than RC-informed-soft. However, the difference is

just 4 failures, since our utilization predictions must be above

100% for all servers with enough available resources for the

hard rule to cause an extra failure.

7 CONCLUSION
In this paper, we detailed Azure’s VM workload, and dis-

cussed how the workload’s characteristics can be exploited

in improving resource management. We then introduced

Resource Central, a system for generating, storing, and ef-

ficiently using predictions of these characteristics. Finally,

we described changes to Azure’s production VM scheduler

that leverage such predictions. Our results show that Re-

source Central performs well, produces accurate predictions,

and enables safe CPU oversubscription. We conclude that

providers can exploit the characteristics of their workloads

in many management tasks, using machine learning and

efficient prediction-serving systems.
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