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Abstract

Introduction Post-marketing drug surveillance is largely

based on signals found in spontaneous reports from patients

and healthcare providers. Rare adverse drug reactions and

adverse events (AEs) that may develop after long-term

exposure to a drug or from drug interactions may be mis-

sed. The US FDA and others have proposed that web-based

data could be mined as a resource to detect latent signals

associated with adverse drug reactions.

Methods Recently, a web-based search query method

called a query log reaction score (QLRS) was developed to

detect whether AEs associated with certain drugs could be

found from search engine query data. In this study, we

compare the performance of two other algorithms, the

proportional query ratio (PQR) and the proportional query

rate ratio (Q-PRR) against that of two reference signal-

detection algorithms (SDAs) commonly used with the FDA

AE Reporting System (FAERS) database.

Results In summary, the web query methods have mod-

erate sensitivity (80%) in detecting signals in web query

data compared with reference SDAs in FAERS when the

web query data are filtered, but the query metrics generate

many false-positives and have low specificity compared

with reference SDAs in FAERS.

Conclusion Future research is needed to find better

refinements of query data and/or the metrics to improve the

specificity of these web query log algorithms.

Key Points

Internet search query methods provide an additional

approach to examining a new and large data resource

of internet search query data for signal detection of

adverse events.

The best performance of the individual search query

metrics was found with the Q-PRR and PQR metrics

which had high sensitivity and moderate specificity

to detect signals in web query data compared to

metrics used for signal detection with FAERS

database.

These new query metrics provide the ability to get

faster results for the signal detection of adverse

events than the current standard spontaneous adverse

event reporting databases which have a long lag time

in data releases.
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1 Introduction

Multiple resources for signal detection exist. Commonly

used spontaneous adverse event (AE) reporting systems

such as the US FDA AE Reporting System (FAERS) and

the World Health Organization’s VigiBase include large

amounts of data, but these systems have their limitations

and may miss AEs [1]. It has been estimated that sponta-

neous AE reporting systems may under-report up to 98% of

adverse drug events that occur [2], so alternative data

resources have been considered [1, 3–6].

Signal-detection algorithms (SDAs), such as dispropor-

tionality and Empirical Bayes geometric mean (EBGM)

metrics, have been used as the primary tools to detect

signals in spontaneous AE reporting systems such as

FAERS. However, these metrics were developed for use in

spontaneous AE reporting systems and may not function

appropriately with other data sources. Internet search

engine logs and social media data have been proposed as

supplemental data resources to mine for drug safety sig-

nals; however, the methods with which to process and

analyze these large data sources are still under develop-

ment [5, 7, 8]. Recently, the US FDA provided some draft

guidance on how to utilize internet-based data sources for

drug safety signal detection in the general population

[1, 9, 10].

Internet search engine logs and social media data are

new data sources that provide a faster detection system

with a larger scope in which to capture health-related sig-

nals than traditional surveillance methods. While these

internet ‘big’ data sources are plentiful, they also have

limitations as the data are very noisy, they may produce

many false-positives, and their performance in detecting

signals has not been well validated. Some techniques that

have been implemented have been noise-reduction tech-

niques applied to the internet data (e.g., removing outliers,

timing between drug and event, setting high thresholds)

prior to analysis [5, 7] or restriction of data sources to

datasets of known associations and medical professionals

[11]. For example, a recent study by Odgers et al. [11]

showed that search logs from healthcare professionals in a

medical database can be used as a predictive data resource

for detecting adverse drug reactions (ADRs) of well-

established drug–event associations as well as a set of

recently established ADRs. However, there is interest in

examining all internet searches (as well as social media

posts) to represent both healthcare provider and consumer

input and capture a full picture of all potential ADRs.

The objective of this study was to assess the perfor-

mance of newly proposed query metrics in detecting sig-

nals from web query log data compared with the signals

detected with reference SDAs in the FAERS database.

2 Methods

2.1 Data Sources

We extracted all English language queries submitted to

the Microsoft Bing search engine by users in the USA for

the period 1 March 2013 to 30 September 2013. For each

query, we extracted the query text, time, date, and an

anonymized user identifier. To maintain user privacy,

identifiers were first anonymized by hashing before the

investigators gained access to them. They were then

aggregated prior to analysis, and no individual-level user

datum was examined by the experimenters. Data extrac-

tion and normalization processes were performed in a

manner similar to that described in a previous publication

[7].

Ten single-agent drugs marketed in the USA by Sanofi

were identified and used in this analysis. The selected

medications included drugs with different characteristics,

including those from different drug classes, from different

therapeutic areas (cardiovascular/diabetes, immunology,

oncology, and central nervous system agents), and drugs

with different administration routes (pills, injectables, etc.).

Several drugs were also new to the market in the last few

years, whereas others have been on the market for decades

and are available as over-the-counter medications. These

drugs were selected because Sanofi is the market autho-

rization holder for these specific drugs and the authors were

familiar with the drug’s safety profile from multiple

internal sources. The drugs’ indications were widespread to

ensure the metrics would capture signals over a widespread

number of indications and events.

Health event-related terms were taken from a list of 195

symptoms from the International Statistical Classification

of Diseases and Related Health Problems (ICD) and

expanded with synonyms to capture nonmedical terminol-

ogy used by patients in a web search (see Table S1 in the

Electronic Supplementary Material [ESM]) as described

previously [7]. These health-related terms were then

mapped to ICD, Ninth Revision, Clinical Modification

(ICD-9-CM) codes as described previously in a publication

that introduced the query log reaction score (QLRS)

method for signal detection. The ICD-9-CM terms were

then mapped manually by investigators between the med-

ical symptoms found in the query log data and the Medical

Dictionary for Regulatory Activities (MedDRA�, v.17)

preferred terms (PTs) listed in FAERS. The first step was to

group the medical terms or symptoms with the same

meaning or those with typographical errors (‘typos’), i.e.,

amnesia or can’t remember. They were then standardized

into the most relevant medical terms and encoded into the

MedDRA� PTs.
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Web search queries were filtered to include only those

that contained one of the above-mentioned health events

and one of the ten medicines identified by brand name. The

query data contained 1580 possible pairs. FAERS data

contained 22,103 drug–event pairs, of which 898 drug–

event pair combinations overlapped with the query data

(see Fig. 1).

For validation purposes, data from the FDA spontaneous

reporting database, FAERS, were used to assess whether

the same signals could be detected in both data sources

using SDAs. EmpiricaTM Signal 7.3 system (Oracle�) was

used to extract and clean the raw safety data from the

FAERS database. The AEs reported for the ten drugs of

interest were extracted from the FAERS database within

the time period 1 January 1968 to 30 September 2013; this

search retrieved 22,103 records of drug–event pairs for the

drugs of interest and reported health events coded by

MedDRA� PTs and standardized MedDRA� narrow and

algorithmic query terms. When compared with the 1580

drug–event pairs obtained from the query log data, some

FAERS records matched multiple times. Thus, 22,224

records from FAERS were included in the database for the

analysis. The MedDRA� terms captured in this database

were then mapped to ICD-9-CM terminology via a

MedDRA� to ICD-9-CM code dictionary.

2.2 Signal-Detection Algorithms

2.2.1 Metrics Applied to the US FDA Adverse Event

Reporting System (FAERS) for Signal Detection

The current standard SDAs used for disproportionality

analysis (DPA) in spontaneous AE reporting databases

include the multi-item Gamma Poisson shrinker (MGPS)

program providing the EBGM with the lower bound of the

90% confidence interval (CI) of EBGM (EB05), and the

proportional reporting ratio (PRR) [12, 13].

Two commonly used measures for signal detection based

on DPA in the FAERS database were selected as reference

measures for our analysis (Table 1) [13–15]. First, a fre-

quentist method commonly used is the PRR, which mea-

sures the proportion of reports of an event for drug A

relative to that for all other drugs. For the PRR, a commonly

used SDA consists of a PRR C 2, with the number of reports

(N) C 3, and a PRR v2 C 4 [15]. A Bayesian method, the

MGPS program, uses a stratified full independence model

and derives adjusted ratios of the observed versus expected

counts. The MGPS program estimates an EBGM that

approximates a v2 statistic: EBGM = (a/M1)/(N1/N), and the

most commonly used signal threshold for this statistic is

EB05 C 2 [13]. Thresholds of EBGM C 2 and EBGM C 4

were also considered as evidence of a signal of dispropor-

tionate reporting in this analysis. These aforementioned

SDAs and threshold cutoffs were considered the reference

metrics for which to compare the performance of the query

metrics as part of this validation exercise.

2.2.2 Metrics Applied to Search Engine Query Data

The search engine QLRS metric was the first metric

compared with the reference SDA metrics.

The QLRS is computed as the v2 score of a two-by-two
table (Table 2) comprising (1) the number of people who

asked about an event before versus after they first asked

about the drug and (2) the number of people who asked

about the same event before versus after an arbitrary date.

The latter are used as a normalization factor, e.g., for

Table 1 2 9 2 table for

detecting disproportionate

reporting of adverse events from

spontaneous reporting database

Event of interest All other events Total

Drug of interest a b a ? b = M1

All other drugs c d c ? d = M2

Total a ? c = N1 b ? d = N2 a ? b ? c ? d = N

Common signal-detection algorithms used to measure disproportionality:

Frequentist approach: proportional reporting ratio (PRR) = (a/M1)/(c/M2)

Bayesian method: Empirical Bayes Geometric Mean (EBGM) = models the distribution of observed/ex-

pected counts: (a/M1)/(N1/N)

FAERS
SEARCH ENGINE  

QUERY LOG

22,103 898 1,580

FAERS: Jan 1, 1968 - Sep 30, 2013

Search engine query log:
Mar 1, 2013 –Sep 30, 2013

Fig. 1 Time periods covered by the US FDA adverse event reporting

system (FAERS) database and search engine query log data and the

amount of overlap

Validation of New Signal Detection Methods for Web Query Log Data



seasonal events, etc. Since there are no established

thresholds for the QLRS metric, which equates a v2

statistic, this study examined two cutoffs: QLRS C 5

(median value for QLRS distribution) and QLRS C 10.

The QLRS test measures the statistical probability of a

drug and event association, but it does not measure the

strength of an association between the event and a drug, so

an alternative metric, called the proportional query ratio

(PQR) was developed. The PQR represents the proportion

of queries for an event on or after day 0 (the day when that

user first searched for the drug) in users searching for a

drug relative to the proportion of event queries in users not

searching for the drug (Table 2). For users who did not

search for the drug, day 0 is the midpoint between the first

and last day of their queries.

When the query log data were considered in a manner

similar to DPA PRR (see the 2 9 2 table in Table 3), a new

approach was created and named the query proportional

rate ratio (Q-PRR). The Q-PRR approach discards non-

drug search queries and does not count events occurring

before the first day of a drug name search. The Q-PRR

examines the number of queries for the drug of interest and

the number of queries for the event of interest compared

with the number of queries for all other events. From

Table 3, the Q-PRR = (a/N1)/(b/N2).

Additional factors were examined (e.g., sample size

[number of drug–event pairs], exclusions, and cutoff val-

ues) to see whether they would improve the metric’s per-

formance, and a combination logistic model of all these

factors was developed. Other measures examined included

the number of drug–event pairs for QLRS metric (N-

QLRS) and Q-PRR (N-Q-PRR), outliers, PQR[ 1, and the

v2 of Q-PRR. These measures were then used together in a

composite model for testing. The composite model was

created with a logistic regression model that included each

query test metric and the additional factors listed above

(e.g., outliers, sample sizes, etc.) for a total of 11 inde-

pendent variables to predict overall outcome (FAERS

metric outcome).

2.3 Statistical Analysis

The sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) of the query metrics

were calculated to validate the method against the refer-

ence SDAs used with the FAERS database. Receiver

operating characteristic (ROC) curves [16] were performed

to measure the performance of the query metrics, and the

area under the curve (AUC) was estimated to show how

well a test discriminates between positive and negative

signals. C statistics were used to calculate an AUC that

reflected the probability of concordance. The C statistic is a

critical and equivalent parameter to measure the area under

the ROC curve (AUC), which estimates the predictive

accuracy of a logistic regression model [17].

Sensitivity testing regarding the query data was

examined by excluding outliers and drug–event pairs with

small sample sizes (where fewer than 100 Bing users

searched for both drug and event) to see whether this

modification would improve the performance of the query

metrics. Outliers were defined, according to previous

work by Yom-Tov and Gabrilovich [7], as the five

symptoms found using a greedy selection process to most

reduce the value of the correlation between QLRS and

FAERS counts.

Next, a sensitivity analysis was also performed on

variations of the PRR reference SDA by increasing the

minimum number of drug–event pairs needed to be con-

sidered a signal to assess its concordance with the query

metrics.

3 Results

Figure 1 shows the time periods covered by both data-

bases and their period of overlap. There were 22,103

drug–event pairs in the FAERS database and 1580 drug–

event pairs in the search engine query log database. The

Table 2 2 9 2 table for estimating disproportionate queries from

web-based query log data

When user queried for the event User queried for the drug?

No Yes

Before day 0 N11 N12

Day 0 or after N21 N22

Total N1 N2

Query log-based metrics to measure disproportionality: query log

reactions score (QLRS) = v2 of table above

Proportional query ratio (PQR) = (N22/N2)/(N21/N1)

Table 3 New 2 9 2 table for query proportional rate ratio (Q-PRR)

metric for web-based query log data

Query for the event Query for the drug

Drug A Comparator: all other drugs

Event of interest a b

All others events c d

Total a ? c = M1 b ? d = M2

Additional query metrics for disproportionality defined:

Query proportional rate ratio (Q-PRR) = (a/M1)/(b/M2)

Query odds ratio = (a 9 d)/(b 9 c)

This approach discards non-drug search queries and does not count

events occurring prior to first day of drug name search

S. Colilla et al.



898 drug–event pairs found in the FAERS and the search

engine query log databases were used for comparison in

this analysis. Distributions of the web query metrics are

shown in Fig. S1 in the Electronic Supplementary

Material.

3.1 Sensitivity/Specificity Performance

The sensitivity and specificity of the query metrics on all

898 drug–event pairs were estimated with the reference

SDAs in FAERS data (Tables 4, 5, 6). When all drug–

Table 4 Query log reaction score metric sensitivity and specificity (%)

Reference SDA thresholds Query log cutoffa Sensitivity False-positive rate

(1-specificity)

PPV NPV

Based on all drug-event pairs (N = 898 pairs)

EB05 C 2 QLRS C 5.0 54.17 50.47 5.71 95.03

EBGM C 2 QLRS C 5.0 50.59 50.68 9.45 90.52

EBGM C 4 QLRS C 5.0 72.73 50.39 1.76 99.32

N C 3 and PRR C 2 and PRR_CHISQ C 4 QLRS C 5.0 46.55 51.28 11.87 86.00

Excluding pairs with small sample size (N = 606 pairs)

EB05 C 2 QLRS C 5.0 81.25 74.74 5.71 96.03

EBGM C 2 QLRS C 5.0 79.63 74.64 9.45 92.72

EBGM C 4 QLRS C 5.0 80.00 75.00 1.76 98.68

N C 3 and PRR C 2 and PRR_CHISQ C 4 QLRS C 5.0 72.97 75.38 11.87 86.76

Excluding pairs with small sample size and outliers (N = 571 pairs)

EB05 C 2 QLRS C 5.0 83.33 74.86 5.81 96.45

EBGM C 2 QLRS C 5.0 79.59 74.90 9.07 92.91

EBGM C 4 QLRS C 5.0 80.00 75.22 1.86 98.58

N C 3 and PRR C 2 and PRR_CHISQ C 4 QLRS C 5.0 72.86 75.64 11.86 86.52

EBGM empirical Bayes geometric mean, NPV negative predictive value, PPV positive predictive value, PRR proportional reporting ratio,

PRR_CHISQ proportional reporting ratio chi-square, QLRS query log reaction score, SDA signal-detection algorithm
a Results were similar when using a QLRS cutoff threshold of 10

Table 5 Proportional query ratio metric sensitivity and specificity (%)

Reference SDA thresholds Query log cutoff Sensitivity False-positive rate

(1-specificity)

PPV NPV

Based on all drug-event pairs (N = 898 pairs)

EB05 C 2 PQR C 1.0 54.17 43.88 6.52 95.59

EBGM C 2 PQR C 1.0 47.06 44.16 10.03 90.98

EBGM C 4 PQR C 1.0 81.82 43.97 2.26 99.60

N C 3 and PRR C 2 and PRR_CHISQ C 4 PQR C 1.0 47.41 43.99 13.78 87.78

Excluding small sample size (N = 606 pairs)

EB05 C 2 PQR C 1.0 75.00 57.84 6.74 96.80

EBGM C 2 PQR C 1.0 64.81 58.15 9.83 92.40

EBGM C 4 PQR C 1.0 80.00 58.39 2.25 99.20

N C 3 and PRR C 2 and PRR_CHISQ C 4 PQR C 1.0 64.86 57.89 13.48 89.60

Excluding small sample size and outliers (N = 571 pairs)

EB05 C 2 PQR C 1.0 73.33 55.27 6.85 96.80

EBGM C 2 PQR C 1.0 61.22 55.75 9.35 92.40

EBGM C 4 PQR C 1.0 80.00 55.79 2.49 99.20

N C C 3 and PRR C 2 and PRR_CHISQ C 4 PQR C 1.0 62.86 55.29 13.71 89.60

EBGM empirical Bayes geometric mean, NPV negative predictive value, PPV positive predictive value, PQR proportional query ratio, PRR

proportional reporting ratio, PRR_CHISQ proportional reporting ratio chi-square, SDA signal-detection algorithm

Validation of New Signal Detection Methods for Web Query Log Data



event pairs were analyzed, the QLRS had a sensitivity

ranging from 46.6 to 72.7% and a high false-positive rate

(1-specificity), between 50.39 and 51.28% depending on

which of the four SDAs were used in the FAERS database

(Table 4). The sensitivity improved greatly for QLRS

when the drug–event pairs with small sample sizes

(n = 292 pairs) were excluded from analysis, but the false-

positive rate increased dramatically to around 75% for the

reference SDAs. The corresponding PPV was very poor,

never achieving higher than 11.87% with any of these

SDAs, but the NPV remained high, ranging from 86.00 to

99.32%. Removing outliers (N = 35) in addition to drug–

event pairs with small sample sizes from the data did not

measurably change the performance of the QLRS.

The sensitivity and false-positive rate were slightly better

when using the PQR than with QLRS, around 47.06–81.82

and 43.88–44.16%, respectively, when tested using all 898

drug–event pairs (Table 5). Again, the sensitivity improved

from 64.81 to 80.00% when drug–event pairs with small

sample sizes were excluded; however, the false-positive rate

remained moderately high (57.84–58.39%). The best PPV

was found for PQR against the combined metric using PRR

SDA, but the PPV was still quite low, below 14%.

Removing outliers also did not change the overall perfor-

mance of the PQR.

The Q-PRR metric showed a stronger specificity with

the reference for all drug–event pairs (66.29–67.77%;

false-positive rate 32.23–33.71%) but exhibited a lower

sensitivity (43.75–54.55%) than PQR (Table 6). Excluding

smaller sample sizes improved the sensitivity somewhat

(50.00–68.52%) but also increased the false-positive rate

(42.57–57.84%). Similar to PQR, the Q-PRR had the

strongest PPV and NPV values when tested with the ref-

erence combined SDA using the PRR, N, and v2 metric.

Overall, the best performance for the Q-PRR was found

with query data that excluded smaller samples where the

NPV was estimated at 92.52% and PPV at 18.01% when

tested against the reference PRR SDA.

When excluding the smaller sample sizes and outliers,

the sensitivity of each of the metrics increased and, as

expected, the false-positive rate of these tests also

increased (specificity of tests decreased). In summary, of

the query metrics tested against the reference SDAs, the

Q-PRR metric had the lowest false-positive rate (32.2%;

Table 6) and the QLRS had the highest false-positive rate

(51.2%; Table 4) when compared with the reference PRR

SDA based on all drug–event pairs.

3.2 Area Under the Curve (AUC)

The performance of each query metric compared with a

reference measure was graphed and the AUC measured for

all 898 drug–event pairs. Table 7 shows the AUC value for

the performance of each of the query metrics against the

reference metrics. For the QLRS metric, the best concor-

dance was found with the reference of EBGM C 2, and this

AUC estimate did not deviate much from random expec-

tations at 0.536.

The PQR metric performed best with the EBGM SDA

(EBGM C 4) and resulted in a higher AUC estimate of

0.652 (Fig. 2). Lastly, the Q-PRR metric had an AUC value

(0.652) similar to the PQR with the EBGM C 4 cutoff

(Fig. 3). While there was no statistically significant dif-

ference between the PQR and Q-PRR AUCs, both of these

metrics were significantly different from QLRS AUC

(p = 0.05, two-tailed test) when compared with the signals

found with EBGM C 4 SDA.

When determining the performance of the metrics using

AUC curves, the Q-PRR (and PQR) had the highest value

(0.65) when using the full dataset of all drug–event pairs

Table 6 Query proportional rate ratio metric sensitivity and specificity (%)

Reference SDA thresholds Query log cutoff Sensitivity False-positive rate

(1-specificity)

PPV NPV

Based on all drug-event pairs (N = 898 pairs)

EB05 C 2 Q-PRR C 1.3 43.75 33.41 6.89 95.45

EBGM C 2 Q-PRR C 1.3 47.06 32.59 13.11 92.41

EBGM C 4 Q-PRR C 1.3 54.55 33.71 1.97 99.16

N C 3 and PRR C 2 and PRR_CHISQ C 4 Q-PRR C 1.3 45.69 32.23 17.38 89.38

Excluding small sample size (N = 606 pairs)

EB05 C 2 Q-PRR C 1.3 62.50 57.84 7.35 96.41

EBGM C 2 Q-PRR C 1.3 68.52 42.57 13.60 94.91

EBGM C 4 Q-PRR C 1.3 50.00 44.80 1.84 98.50

N C 3 and PRR C 2 and PRR_CHISQ C 4 Q-PRR C 1.3 66.22 41.92 18.01 92.52

EBGM empirical Bayes geometric mean, NPV negative predictive value, PPV positive predictive value, PRR proportional reporting ratio,

PRR_CHISQ proportional reporting ratio chi-square, Q-PRR query proportional rate ratio, SDA signal-detection algorithm

S. Colilla et al.



(EBGM C 4 cutoff). However, the metric with the highest

PPV and NPV is the Q-PRR query metric when using the

reference PRR SDA cutoff for FAERS data.

3.3 Additional Modifications to Maximize

Performance

Sensitivity testing with the reference PRR SDA was also

performed to assess its effect on the tested query metrics

ROC AUC. Because the reference PRR SDA had the

lowest false-positive rate for the query metrics, the AUC

values were evaluated by increasing the value of N (num-

ber of reports for a drug–event pair), basically varying the

threshold for the reference. The AUC results for the query

metrics against different N values of the reference PRR

SDA are shown in Table 8. Increasing the size of N in the

PRR gold standard variable increased the AUC value for

some of the query metrics. In particular, the Q-PRR metric

had the highest AUC value (0.614) when the PRR thresh-

old required that N be C 200 reports.

When all the metrics and measures were combined

into a composite model of metrics (CMM) to measure

performance, the AUC increased for most of the refer-

ence SDAs (Table 7). Again, the performance of the

CMM had strongest agreement with the EBGM C 4

SDA, with an AUC of 0.821 (Fig. 4). The performance of

the CMM improved from 0.558 to 0.758 when changing

the various reference threshold cutoffs for the PRR

metric (Table 8).

Table 7 Performance area under the curve of the query metrics and reference for adverse event reporting system

Reference SDA thresholds Total number of positive

cases for reference

AUC-metrics for query log data

QLRS PQR Q-PRR Composite model

of 11 metrics

EB05 C 2 48 0.513 0.497 0.526 0.6575

EBGM C 2 85 0.536 0.511 0.539 0.6162

EBGM C 4 11 0.413 0.652 0.652 0.8211

N C 3 and PRR C 2 and v2 C 4 116 0.527 0.510 0.541 0.5583

AUC area under the curve, EBGM empirical Bayes geometric mean, PQR proportional query ratio, PRR proportional reporting ratio, QLRS query

log reaction score, Q-PRR query proportional rate ratio, SDA signal-detection algorithm

Fig. 2 Receiver operating characteristic curve for PQR metric with

EBGM C 4 signal-detection algorithm Fig. 3 Receiver operating characteristic curve for Q-PRR metric

with EBGM C 4 signal-detection algorithm

Validation of New Signal Detection Methods for Web Query Log Data



4 Discussion

The best performance of the individual search query met-

rics was found with the Q-PRR and PQR metrics when

testing against the EBGM C 4 as the SDA for FAERS. The

PQR test had the highest sensitivity and highest AUC value

for the internet search query metrics when using the

EBGM C 4 as the reference. The Q-PRR had the highest

specificity (lowest false-positive rate) as well as the highest

AUC value for the search query metrics. However, these

metrics were not very specific for any of the reference

metrics, as they still had many false-positives.

When all the query metrics were put together into a

composite model, the agreement with each of the reference

SDAs improved. The composite model had the strongest

agreement with the EBGM C 4 SDA, with an AUC of

0.82. This demonstrates that the addition of each metric to

a composite model improved the predictability with the

reference over each metric individually. It also suggests

that a surveillance system may require monitoring of

multiple metrics for optimal detection.

The high false-positive rate may represent false signals

(creating noise) or, alternatively, AEs that are under-re-

ported (or unreported) in the FAERS database. Yom-Tov

and Gabrilovich [7] suggested that under-reporting may be

the more prominent of the two, as late-appearing less acute

AEs can be detected using internet search query log data

while being under-reported in FAERS. Therefore, addi-

tional investigation is needed to form more encompassing

gold standards than FAERS.

Here, we focused on developing new measures to screen

the web query data for potential signals using the FAERS

database as the gold standard. While a spontaneous

reporting system such as FAERS is not a true gold stan-

dard, it is a standard used by health authorities and has very

practical applications in pharmacovigilance practices

commonly used within industry.

The Q-PRR test had the lowest false-positive rate, at

around 33%, across all the FAERS reference SDAs when

tested among all the drug–event pairs. The lowest Q-PRR

false-positive rate was obtained using the reference PRR

SDA (32.2%); this may be because the Q-PRR has an

algorithm design similar to that of the PRR measure used in

this reference. The PQR test had a higher false-positive

rate, at around 44%, suggesting that the best overall per-

forming individual metric for any of the reference SDAs

was the Q-PRR test. The CMM test exhibited the strongest

agreement with the EBGM metrics, particularly when

EBGM C 4 was the reference.

These query log methods appear to capture signals

similar to those captured by the reference PRR SDA and

yet may also find additional statistical signals that may or

may not be true safety signals. Limitations to these search

query methods for signal detection include that a drug and

event searched for by the same user does not necessarily

equate to an AE occurring in an individual. Media atten-

tion, patients reading drug labels, and numerous other

reasons may cause individuals to search a drug name and a

symptom/AE at the same time. Despite these limitations, a

Table 8 Sensitivity analysis of increasing the sample size threshold for proportional reporting ratio reference metric

Threshold cutoffs for reference

PRR metric

Total number of positive

cases for reference

AUC-metrics for query log data

QLRS PQR Q-PRR Composite model

of 11 metrics

N C 3 and PRR C 2 and v2 C 4 116 0.527 0.510 0.541 0.5583

N C 50 and PRR C 2 and v2 C 4 59 0.527 0.519 0.507 0.6019

N C 200 and PRR C 2 and v2 C 4 26 0.573 0.576 0.614 0.7583

N C 300 and PRR C 2 and v2 C 4 21 0.556 0.555 0.586 0.7489

AUC area under the curve, PQR proportional query ratio, PRR proportional reporting ratio, QLRS query log reaction score, Q-PRR query

proportional rate ratio

Fig. 4 Receiver operating characteristic curve for composite model

of 11 metrics by EBGM C 4 signal-detection algorithm
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good measure of signal detection with known reliability

and validity is needed to find true safety signals from

search engine data because a high volume of internet data

can be mined for safety signals when these data are used in

the appropriate context [16]. This analysis is one way to

enhance signal detection of AEs in a manner faster than is

currently available with the spontaneous AE reporting

system, FAERS. That said, query log data contain high

levels of noise, and the best methods to reduce the noise

and enhance searches for true safety signals are still being

explored [5, 8, 18]. Any signal identified by SDAs using

DPA requires further medical analysis for signal validation

to determine the true safety signals warranting a thorough

evaluation to assess whether they represent a risk for

patients receiving the drug (e.g., qualitative analysis of

case narratives). Further work is also needed to validate the

predictive ability of internet search query log-derived sig-

nals for safety events [5].

At least one study that compared the performance of the

reference SDAs in other healthcare databases with that in

spontaneous-reporting databases found a similarly poor

performance of the SDAs, suggesting these disproportion-

ality methods did not discriminate true positives from true

negatives in the observational healthcare databases and

simulated datasets as they reportedly do with spontaneous-

reporting data [19]. A recent study by Odgers et al. [11]

showed that web search logs from healthcare professionals

using a medical database can be used as a predictive data

resource to detect ADRs with well-established drug–event

associations as well as a set of recently established ADRs.

This work utilized two different reference standards to

validate the methods but was also limited to data provided

by healthcare professionals rather than searches conducted

by the general public.

Other limitations known to exist with spontaneous

event-reporting databases such as the FAERS database are

that these databases need extensive pre-processing prior to

analysis to remove duplicate reports, correct terminology

errors, collate event terms and drug names into relevant

categories, and remove or adjudicate cases with missing

data [20]. The performance of the current standard SDAs

for FAERS and other spontaneous-reporting databases has

been shown to vary by prevalence of AE, medical termi-

nology classifications, how long the drug has been mar-

keted, and the type of AE database being examined

[12, 14, 21].

It has been suggested that spontaneous-reporting data-

bases under-represent the true number of AEs that occur in

the population [2]. The web query log data may capture

additional AEs that are not reported to federal regulatory

bodies, and this data source could be considered an aug-

mented approach to FAERS database for signal detection.

Testing the performance of any new method when

compared with spontaneous-reporting databases such as

FAERS as the reference will remain a challenge. Alternate

gold standards may need to be identified. While the gen-

eralizability of these query metrics is limited, we think this

approach contributes significantly to the developing field of

web-based signal detection where reliable methodologies

have yet to be established.

5 Conclusions

Internet search query methods may provide an additional

approach to examining a new and large data resource for

signal detection of AEs. Of the three individual metrics

analyzed, the PQR and Q-PRR metrics performed the best;

however, they still generate a moderate level of false-

positives compared with the reference SDAs. A composite

model of the query metrics had the best performance

overall, yet further testing needs to be considered prior to

implementation in signal detection. These query-based

metrics were developed primarily for hypothesis genera-

tion and provide a supplemental method to examine

alternative data sources (e.g., web searches, social media)

in pharmacovigilance. It must also be remembered that

signals in social media and internet search data may not be

true safety signals, being instead due to circumstantial

events within the media (e.g., increased news media cov-

erage of a health risk). Further enhancements will be

needed to provide a validated and reliable tool for signal

detection in the future.
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