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Abstract

Approximate Bayesian Computation (ABC) is a framework for performing
likelihood-free posterior inference for simulation models. Stochastic Variational
inference (SVI) is an appealing alternative to the inefficient sampling approaches
commonly used in ABC. However, SVI is highly sensitive to the variance of
the gradient estimators, and this problem is exacerbated by approximating the
likelihood. We draw upon recent advances in variance reduction for SVI [6][13]
and likelihood-free inference using deterministic simulations [12] to produce low
variance gradient estimators of the variational lower-bound. By then exploiting
automatic differentiation libraries [8] we can avoid nearly all model-specific deriva-
tions. We demonstrate performance on three problems and compare to existing
SVI algorithms. Our results demonstrate the correctness and efficiency of our
algorithm.

1 Introduction

In many areas of science complex simulators are used as models of the underlying phenomena
of interest. For example, in computational biology, models could be simulations of embryonic
morphogenesis or cancer development; in environmental science, they could model earthquakes
or climate change. Further examples of simulation-based science can be found in computational
chemistry, physics, and neuroscience. The most fundamental ingredient and computational bottleneck
is the ability to match a (simulation) model to given observations. Bayesian methods provide an
elegant solution to this problem where posterior distributions provide insightful information about
the correlations and sensitivities of the parameters. However, current methods are based on sampling,
such as MCMC, which tends to converge slowly and requires many calls to the simulator. In this
work we introduce a variational Bayesian alternative.

In Bayesian inference, one wants to infer the posterior distribution p(θ|y) of some parameters θ,
given observations y.

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(1)

where p(y|θ) is the likelihood, p(θ) is a prior, and
∫
p(y|θ)p(θ)dθ is the normalizing constant. The

normalizing constant is often intractable, so that sampling methods or variational inference should
be used. However, both assume a tractable expression for the likelihood. For many problems, the
likelihood is intractable or extremely expensive to compute. Approximate Bayesian Computation
(ABC) deals with how to do Bayesian inference by approximating the likelihood using simulator
outputs. The simulator generates synthetic data x according to the parameters θ, i.e. we can simulate
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x ∼ p(x|θ). These are compared to the true data via an ε-kernel or ABC-kernel Kε(y, x), which
is an approximation to p(y|x) and is a density that measures the discrepancy between x and y,
where ε is the bandwidth. Often, Kε(y,x) = N (y|x, ε2), but one may take other distributions. The
likelihood, p(y|θ), is approximated by the ABC likelihood

pε(y|θ) =

∫
Kε(y,x)p(x|θ) dx (2)

≈ 1

S

S∑
s=1

Kε(y,x
(s)) (3)

The bias of pε(y|θ) goes to 0 as ε→ 0. With large and/or high-dimensional observations, it may be
beneficial to use summary statistics S(y) and S(x) instead of the entire data set, i.e. Kε(S(y), S(x))
instead of Kε(y,x). ε introduces a trade-off between bias with a large ε and variance with a small ε.
We will assume that y and x will, depending on the context, represent either raw data or statistics.

Sampling methods are widely used in the likelihood-free and ABC literature: rejection sampling
[17], Markov Chain Monte Carlo (MCMC) via a modified Metropolis Hastings algorithm [9], and
population-based sampling [2, 3, 16]. However, these have slow mixing rates and make many calls to
the simulator, making them ineffective for large-scale problems, although some recent methods have
been proposed to improve this, including [11][21]. Stochastic variational inference (SVI) typically
has a faster rate of convergence but might still suffer from a high variance in the estimated gradients,
as we will see.

2 Related Work

[6] [14] showed that for certain classes of continuous latent variables and variational posteriors, by
reparametrizing the parameters or latent variables to be estimated, one can obtain a lower variance
Monte Carlo approximation to the gradient of the lower bound. [18] found a more general variance
reduction method that is conceptually similar to Gibbs sampling, but tends to perform worse when
using the same variational posterior.

[13] (BBVI) showed how to do stochastic variational inference in the non-conjugate case for both
discrete and continuous latent variables with minimal model-specific derivation. This involves taking
a Monte-Carlo approximation of the gradient of the expected lower bound, using ADAGRAD to
avoid taking derivatives by hand, and using Rao Blackwellization with a mean-field assumption and
control variates to reduce the variance of the gradients. [15] (O-BBVI) extended this work by adding
importance sampling to further reduce the variance of the gradient estimator. [19] (VBIL) builds
on the same naive estimator as BBVI, but uses natural gradient descent instead of ADAGRAD and
treats the ABC case. They show that despite a bias being introduced by taking the log of a likelihood
estimator, it is equivalent to using the true likelihood, and they apply this to several intractable
likelihood problems. See the supplementary material for the similarity between BBVI and VBIL.

[7] used automatic differentiation to fully automate variational inference, which we refer to as
AVI. AVI fits a Gaussian variational distribution in a transformed space, leading to a non-Gaussian
approximation in the original space when transformed back. This limits the range of variational
distributions. In the transformed space they make a fully-factorized mean-field assumption. AVI
requires rewriting the simulator in STAN. With complex simulators, this is unrealistic and negates
the main benefit: that it is automatic.

3 Automatic Variational ABC

3.1 The Variational Lower Bound

In this section we will derive the variational lower bound for our ABC problem and use a number of
methods to reduce the variance in estimating its gradients.

Consider a simulator model p(x|θ) for which we do not have an analytic expression available but
which is given to us as a (potentially complex) piece of computer code (otherwise known as a
“probabilistic program”). Here, x is the output of our simulator, or some summary statistics thereof
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(the computation of which we will assume to be a part of the simulator) and θ are parameters of the
model. The data’s marginal likelihood is given by

log p(y) = log

∫
p(y|θ)p(θ)dθ (4)

= log

∫
Qφ(θ)

p(y|θ)p(θ)

Qφ(θ)
dθ (5)

≥
∫
Qφ(θ) log

p(y|θ)p(θ)

Qφ(θ)
dθ by Jensen’s inequality (6)

this assumes a variational posterior Qφ(θ) over the variable θ. We denote the last term as L to
indicate a lower bound on the marginal probability. Maximizing L is equivalent to minimizing the
KL divergence between the variational posterior and the true posterior KL(Qφ(θ)||p(θ|y)). We then
have

L =

∫
Qφ(θ) log

p(y|θ)p(θ)

Qφ(θ)
dθ (7)

=

∫
Qφ(θ) log p(y|θ)dθ −KL(Qφ(θ)||p(θ)) (8)

= EQ(log p(y|θ))−KL(Qφ(θ)||p(θ)) (9)

We now replace the true likelihood with the ABC likelihood, giving

LABC =

∫
Qφ(θ) log

∫
pε(y|x)p(x|θ)dxdθ −KL(Qφ(θ)||p(θ)) (10)

=

∫
Qφ(θ) log

∫
pε(y|f(θ,u))p(u)dudθ −KL(Qφ(θ)||p(θ)) (11)

where pε(y|f(θ,u)) is the ε-kernel and we have used our first reparameterization [10, 12] where we
replace ∫

dx p(x|θ)H[x] =

∫
du p(u)H [f(θ,u)] (12)

with H some arbitrary function of x. The simulator p(x|θ) is now written as a deterministic function
f(θ,u) where the randomness is now externalized into a variable u ∼ p(u). For example, if p(x|θ)
is normally distributed and θ contains the mean and variance, then x = µ+ Σu with u ∼ N(0, I).
Once again we will assume that the simulator output is either the raw data or a vector of statistics; in
both cases we will represent the deterministic version as x = f(θ,u). To reduce the variance of the
gradients, we apply a second reparametrization [6]:∫

dθ Qφ(θ)H[θ] =

∫
dν Q0(ν)H [g(φ,ν)] (13)

(14)

where it is important to note that the distribution Q0 is constant w.r.t. any parameters of interest, and
all dependency on the parameters φ is transferred to the function g. This gives

LABC =

∫
Q0(ν) log

∫
pε(y|f(g(φ,ν),u))p(u)dudν −KL(Qφ(θ)||p(θ)) (15)

Assuming that KL(q(θ)||p(θ)) can be calculated analytically, we replace expectations by samples to
obtain

LABC ≈
1

S

S∑
s=1

log
1

L

L∑
l=1

pε(y|f(g(φ,ν(s)),u(l)))−KL(Qφ(θ)||p(θ)) (16)

where ν(s) ∼ Q0(ν) and u(l) ∼ p(u).

WhenKL(Qφ(θ)||p(θ)) cannot be calculated analytically, we can apply the second reparametrization
to it and approximate it via sampling.
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Algorithm 1 Automatic Variational ABC
Specify simulation code f(θ,u) and simulator randomness p(u)
Specify reparametrization Q(θ|φ) in terms of parameterless Q0(ν)
φ← initialize parameters
repeat
ν ← samples from Q0(ν)
u← samples from p(u)

g ← ∇L̃φ(φ,ν, u)
φ← run one step of an adaptive gradient algorithm using g.

until convergence
return φ

One issue is that even assuming that the ABC likelihood is an unbiased estimator of the true likelihood
(which it is not), taking the log introduces a bias, so that we now have a biased estimate of the lower
bound and thus biased gradients. We show in the appendix that the theory developed in VBIL applies
to our estimator, and thus taking the log of an estimator is not a problem. In the appendix we extend
this model to learning a variational distribution for latent variables per datapoint.

3.2 Automatic Differentiation and Averaged Gradients

We now wish to take derivatives w.r.t. φ to compute stochastic gradients and ascent on the bound
eq. 16. This requires differentiating through log pε(y|f(g(φ,ν(s)),u)), and via the chain rule,
also through the simulator function f(θ,u). Because we write our simulator code within an auto-
differentiation environment (in our case, Python, where we can apply Autograd [8]), this is handled
automatically by the optimization algorithm. This avoids the model specific derivation of taking
derivatives by hand, while allowing us to use a wider range of variational posteriors than [7]. A
strong requirement that will be discussed further in the experiments, is that the function g can
deterministically generate θ and u, which may not be possible for all distributions of interest.

In our experiments we use adaptive gradient algorithms which automatically tune the learning rates per
parameter according to the history of gradients and their variances. Two such algorithms are ADAM
[5] and ADAGRAD [4]: we used the latter in our experiments. As we will discuss later, using these
algorithms greatly reduces the effect of large variance gradients and is especially helpful for VBIL
experiments. Algorithm 1 describes the procedure for sampling from parameterless distributions,
differentiating the lower bound, and applying an adaptive gradient-step.

Another important challenge is choosing ε. As we increase ε, the bias of the likelihood and thus our
gradient estimator goes up, but as we decrease it, the variance goes up. Wilkinson [20] showed that
in the likelihood-free setting, ε could be interpreted as model or simulation noise. We can empirically
take advantage of this interpretation and set ε according to the standard deviation of the mean of the
raw simulation data, depending upon whether this is appropriate for the statistics used. For example,
if x is the length M vector of raw data from the simulator we can set ε = σ(x)/

√
M .

4 Experiments

We perform three experiments: 1) inferring the success probability from Bernoulli trials 2) inferring
the rate of an exponential distribution 3) inferring the parameters of a stochastic biological system of
blowfly populations. For each experiment, we use a Gaussian kernel for the ABC-likelihood, and
adaptively set ε depending on the simulation problem. We compare to BBVI, which as mentioned
before, is the same as VBIL but using ADAGRAD [4] instead of natural gradient descent. We use
ADAM for both our method and BBVI (in the original paper, they used ADAGRAD). Because of the
posterior limitations and requirement of rewriting a potentially complex simulator in STAN, we do
not compare to AVI. Due to higher variance, running BBVI occasionally leads to invalid parameter
values; when that happens, we reinitialize.
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4.1 Bernoulli Problem

We perform the first VBIL experiment. We have M Bernoulli samples, each with success probability
θ, and we infer a distribution for θ. Our observed data y, is a vector of 1’s and 0’s. Let k =

∑M
m=1 ym.

With a Beta(1, 1) prior, the true posterior is Beta(k+ 1,M −k+ 1). Because we need to differentiate
with respect to the simulator, instead of simulating M Bernoulli trials, which gives discrete outputs,
we use the normal approximation to the binomial with M trials and success probability θ, and sample
from that. Thus S(x) is simply the output of the simulator. We set M = 100 and k = 70. For this
problem, we cannot calculate the sample variance as in the ε-selection method described. However,
we note that under the Gaussian approximation to the binomial, the simulator variance is M ·θ(1−θ),
so we set ε =

√
θ(1− θ).

For both AVABC and BBVI, we use a Kumaraswamy distribution as the variational posterior for
θ, since the Kumaraswamy distribution is similar to the Beta, but has a closed form inverse CDF,
allowing us to generate samples deterministically given samples from the uniform distribution. Thus,
Q0(ν) = U(0, 1). For the Gaussian approximation in the simulation, we use N (0, I). We initialize
by setting the Kumaraswamy parameters to be (1, 1).

Figure 1(a) shows the lower bound for the Beta problem. Both methods have their lower bounds
stabilize in under 100 iterations. 1(b) shows the posteriors: both are reasonable. 1(c) shows the naive
gradient distribution taking 100 samples at the convergence parameters. We see that for 10 samples
and simulations per sample, the gradients are approximately equal, but for 1 sample and simulation,
AVABC has far lower variance than BBVI. 1(d) shows the naive gradient distributions for a full run
of the algorithm. That is, we run each algorithm from start until convergence, store the gradients, and
plot the distributions. AVABC has far lower variance. ADAM drastically reduces the variance of both
methods so that they are almost equivalent, leading to the similar convergence.

4.2 Exponential Problem

We wish to infer a distribution for the rate λ of an exponential distribution. In this setting, with a
Gamma(α, β) prior and a data vector y of M samples from the exponential distribution, the true
posterior is Gamma(α+M,β+ ȳM). The simulator draws samples from the exponential distribution.
We use statistics S(x) = x̄ and S(y) = ȳ. We set the true λ = 1, and M = 15.

For both methods, we use a log-normal variational posterior model. At each iteration, we can take
samples ν(s) from Q0(ν) ∼ N (0, I) and then deterministically calculate

θ = g(φ,ν(s)) = exp(µ+ Σ · νs) (17)

We initialize both µ and σ by drawing from U(2, 3). The convergence parameters are approximately
µ = 0 and σ = 0.3, so given that we use the lognormal distribution, these parameters are fairly far
away. We use 10 samples and 10 particles/simulations per sample. That is, S = 10 and L = 10.

Figures 2(a) shows the lower bound plot for the exponential problem. AVABC, in blue, has much
lower variance and faster convergence. AVABC stabilizes at around 4, 000 iterations, while BBVI
takes over 30, 000 iterations to stabilize. 2(b) shows the posteriors against the true posterior (green).
Both have relatively good estimates. 2(c) shows the distribution of gradients for both a single sample
and 10 samples. For 10 samples, the AVABC gradient distribution has far lower variance and is thus
more peaked.

4.3 Blowfly Problem

Performing well-founded statistical inference in biological dynamic models representing chaotic and
near-chaotic systems is difficult. We apply our method to a problem where the dynamic behavior of
adult blowfly populations is analyzed. We use the observed data of [22] where discretized differential
equations are used to model the blowfly population dynamics. Parameter settings resulting from this
modeling can have some chaotic behavior. We base our simulation on the following -equation (1) in
Section 1.2.3 of the supplementary material in [22]-:

Nt+1 = PNt−τ exp(
−Nt−τ
N0

)et +Nt exp(−δεt) (18)
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(a) lower bounds (b) posteriors

(c) gradient distribution, convergence param-
eters

(d) gradient distribution for an algorithm run,
from start until convergence

Figure 1: a) Lower bounds for the Bernoulli problem. Performance is similar between the two
methods. Both methods stabilize in about 100 iterations. b) posteriors for both methods compared to
the true posterior. Both achieve decent posteriors, despite using a different variational distribution
from the true posterior family. c) Gradients for the Bernoulli problem for µ (chosen because it has
higher variance gradients than σ) at convergence values. Our model with 10 samples is in blue, while
for BBVI it is in red. For 10 samples, they have similar gradient variance. However, our model with 1
sample is in green, while BBVI with 1 sample is turqoise, showing that for a single sample our model
has far lower variance. d) gradient distribution for the Bernoulli problem for µ across a full run of the
algorithm.

where et∼G(1/σ2
p, 1/σ

2
p) and et ∼ G(1/σ2

d, 1/σ
2
d) are noise sources, and τ is an integer. There are 5

parameters to estimate; θ = {logP, log δ, logN0, log σd, log σp}. Similar to [11, 10], priors of θ1···5
are Gaussian distributions. The vector of observations, y, consists of a time-series of daily counts of
a blowfly population. Generating data x, from a simulator based on parameters, θ, of a time-series, is
an intriguing task, since, in addition to their chaotic nature, small changes in the parameter prior(s)
might lead to degenerate x. There are 10 statistics in use (again similar to [11]): the mean values of
each of the 4 quartiles of the simulated samples, the mean values of the 4 quartiles of the first-order
differences of the simulated samples and the number of maximal peaks under 2 different thresholds.

Our prior and Q distribution are Gaussian:

p(θ) = N (µ,σ)

Q(θ|φ) = N (µφ,σφ) (19)

where N refers to a Gaussian distribution and therefore g is the transformation of standard normals.

For this experiment, we used control variates and ADAM as the only variance reduction for BBVI.
However, both our method and BBVI can be easily extended to use Rao Blackwellization as well.
For the 5 parameters, θ1···5, we obtain the posteriors shown in Figures 3(a)-3(f). In Figure 3(e), the
Blowfly lower bound plot is shown. As can be seen in Figure 3(e), the AVABC lower bound has a
lower variance and a faster convergence rate, i.e. number of required iterations for AVABC before it
stabilizes is about 175, whereas BBVI requires nearly 2750 iterations in order to stabilize to some
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(a) lower bounds (b) posteriors

(c) gradient distribution

Figure 2: a) Lower bounds for the exponential problem with 10 samples and 10 particles/simulations
per sample. BBVI (red) has drastically higher variance and takes substantially more iterations to
converge than AVABC (blue). b) posteriors for both methods compared to the true posterior c)
Gradients for the exponential problem at convergence values. Our model with 10 samples is in blue
and is the most peaked, showing that with 10 samples, our model has far lower variance close to a
local optimum.

extent. In fact as per the current set of experiments performed on blowfly, BBVI did not really reach
a high level of stability.

5 Discussion and Future Work

In this paper, we introduced Automatic Variational ABC, a low-variance variational likelihood-free
inference algorithm. With our approach, all simulation code, prior and Q distributions, and the
variational lower-bound are written within an autodifferentiation environment. Taking this route
towards Bayesian inference of simulation models requires a initial overhead of rewriting simulation
code, but reaps the benefits of allowing end-to-end optimization of the lower-bound in an automatic
fashion using stochastic gradient ascent.

Our algorithm also uses several reparameterizations of both the simulation–making it a deterministic
function of parameters and random latents–and the Q distributions. These reparameterizations not
only allow one to perform automatic inference, but also greatly reduce the variance of the gradients
of the lower-bound. This variance reduction makes variational inference for likelihood-free models
feasible. Further, by using adaptive gradient-step algorithms, such as Adagrad or Adam, learning
rates can automatically be adjusted to the variance of the gradients, which helps significantly for both
our algorithm and alternatives. For variational inference of simulation models, variance reduction is
the name of the game.

We demonstrated performance on three experiments and compared to alternatives BBVI and VBIL;
we found that AVABC achieves much lower variance and faster convergence for both toy and real
problems. Despite the positive preliminary results AVABC demonstrated, our algorithm in the current
form has clear limitations. First, it assumes that one can write the variational posterior distributions
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(a) logP (b) log δ (c) logN0

(d) log σd (e) log σp (f) Simulation Performance

(g) Lower bounds

Figure 3: a-e: Plots for the first 5 parameters of the blowfly experiment: Posterior probability,
p(θ|y), along with the corresponding prior probabilities and rejection samples produced by ε = 0.25.
For AVABC, 10 simulations per sample are used. f: Simulation performance, plot of simulated vs
observed data at each time step g: Lower bounds with 10 samples and 10 simulations per sample.
Variance of AVABC (blue) is considerably lower than BBVI (red). Convergence of AVABC requires
fewer iterations than BBVI.

as a deterministic function of its parameters and a set of parameterless variables. Some distributions,
such as the Beta or Gamma distribution, cannot be written this way since they involve rejection
steps (this could be overcome but it requires further thought). Alternative distributions such as the
Kumaraswamy for the Beta and the Weibull or log-normal for a Gamma must be used. Second,
because we must differentiate the simulator, the outputs must be differentiable, which is a restrictive
assumption. Often, we can approximate discrete outputs by a continuous distribution, as we did when
approximating the binomial distribution with a normal distribution, but this may not always be the
case. Most significantly, it requires writing possibly very complex simulation code within an auto-dif
environment, which may only be possible on a limited set of simulations.

In the future we would like to expand upon the allowable Q distributions by writing the random
number generators within an auto-dif environment. More challenging simulators, such as state-space
models should also be ported. Along the lines of [11][21], it would be possible add surrogate functions
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of the simulator and thus call the surrogate instead of the simulator when it has high confidence.
Another, as suggested in O-BBVI [15], is to combine importance sampling with the reparametrization
of the variational distribution for further variance reduction.
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6 Relationship between AVABC and VBIL

In VBIL, they show that minimizing an augmented parameter KL divergence is equivalent to minimizing the KL
divergence between the variational distribution and the true posterior. The KL divergence they minimize is given
by

KL(λ) =

∫
qλ(θ)gN (z|θ) log qλ(θ)

p(θ)pN (y|θ, z)dzdθ (20)

where qλ(θ) is the variational distribution in the original parameter space, pN (y|θ, z) is an estimator of the
likelihood (for example, in the ABC case pN (y|θ, z) = pε(y|θ), the ABC likelihood), z = log pN (y|θ,z)

p(y|θ) , and
gN (z|θ) is the density for z. The VBIL authors note that calculating pN (y|θ, z) implicitly generates z.

Now note

KL(λ) =

∫
qλ(θ)gN (z|θ) log qλ(θ)

p(θ)pN (y|θ, z)dzdθ (21)

=

∫
qλ(θ) log

qλ(θ)

p(θ)
dθ −

∫
qλ(θ)gN (z|θ) log pN (y|θ, z)dzdθ (22)

= KL(q(θ)||p(θ))−
∫
qλ(θ)gN (z|θ) log pN (y|θ, z)dzdθ (23)

= KL(q(θ))||p(θ))− Eθ∼q(θ),z∼gN (z|θ) (log pN (y|θ, z)) (24)
= −(Eθ∼q(θ),z∼gN (z|θ) (log pN (y|θ, z))−KL(q(θ))||p(θ))) (25)

Note the similarity to equation 9 in the main paper. The only differences are that they include the density for
z, and pN (y|θ, z) is any estimator of the likelihood. Since calculating pN (y|θ, z) implicitly generates z, our
estimator for LABC is an unbiased estimator of −KL(λ). Thus the theory they developed in VBIL holds for
our problem and the biased gradients due to taking the log of an estimator are not an issue. The bias introduced
by the choice of ε can in theory be an issue, but we find that in practice the choice we described in the main
paper gives good results.

7 Similarity between VBIL and BBVI

In VBIL, we have ĥ(θ, z) = log(p(θ)p̂N (y|θ, z)), where p̂N (y|θ, z) is an estimator of the likelihood as
described above. Let qλ(θ) be the variational distribution in the original parameter space. Then, an estimator of
the KL divergence between qλ,z(θ, z) and πN (θ, z) in the augmented parameter space is

∇λKL(λ)naive =
1

S

S∑
s=1

∇λ[log qλ(θ(s))](log qλ(θ(s))− ĥ(θ(s), z(s))) (26)

Note that z is never dealt with explicitly. It is only handled implicitly via the unbiased estimator to the likelihood.
If the unbiased estimator equals the true likelihood, we get ĥ(θ, z) = log(p(θ)p(y|θ)) = log(p(y, θ)). We then
have

∇λiKL(λ)
naive =

1

S

S∑
s=1

∇λ[log qλ(θ(s))](log qλ(θ(s))− log p(y, θ(s))) (27)

(28)

The estimator for BBVI is

∇λL ≈
1

S

S∑
s=1

∇λ log qλ(θ(s))(log p(y, θ(s))− log qλ(θ
(s))) (29)

Note that the VBIL estimator under the true likelihood is the negative of the BBVI estimator. Building from this,
VBIL has one major difference: they use natural gradient descent [1] instead of ADAGRAD [4] or ADAM [5].
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8 Learning Latent Variables per Datapoint

We start with the marginal probability as before, but introduce latent variables z (no relationship with the
z described for VBIL) and assume a factorized variational posterior Q(θ, z|φ, ξ) = Qφ(θ)

∏
nQξ(zn) and

factorized prior p(θ, z) = p(θ)p(z).

log p(y) = log

∫
p(y|θ, z)p(θ)p(z)dθdz (30)

= log

∫
Qφ(θ)Qξ(z)

p(y|θ, z)p(θ)p(z)
Qφ(θ)Qξ(z)

dθdz (31)

= logEQφ(θ),Qξ(z)
(
p(y|θ, z)p(θ)p(z)
Qφ(θ)Qξ(z)

)
(32)

≥ E
(
log

p(y|θ, z)p(θ)p(z)
Qφ(θ)Qξ(z)

)
(33)

= E(log p(y|θ, z))−KL(Qφ(θ)||p(θ))−KL(Qξ(z)||p(z)) (34)
(35)

We again apply the ABC likelihood and the reparametrization to make the simulator deterministic

LABC = EQφ(θ)Qξ(z)(log pε(y|θ, z))−KL(Qφ(θ)||p(θ))−KL(Qξ(z)||p(z)) (36)

= E(log
∫
pε(y|f(θ, z, u))p(u)du)−KL(Qφ(θ)||p(θ))−KL(Qξ(z)||p(z)) (37)

= E(log
∫
pe(y|f(g(φ, ν), h(ξ, w), u)p(u)du)−KL(Qφ(θ)||p(θ))−KL(Qξ(z)||p(z)) (38)

We can again replace all expectations with samples to obtain

LABC ≈
1

S

1

K

∑
s

∑
k

log
1

L

∑
l

pε(y|f(g(φ, ν(s)), h(ξ, w(k)), u(l))−KL(Qφ(θ)||p(θ))

−KL(Qξ(z)||p(z)) (39)
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