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ABSTRACT
The ubiquitousmobile devices have led to the unprecedented grow-
ing of personal photo collections on the phone. One significant
pain point of today’s mobile users is instantly finding specific pho-
tos of what they want. Existing applications (e.g., Google Photo
and OneDrive) have predominantly focused on cloud-based solu-
tions, while leaving the client-side challenges (e.g., query formula-
tion, photo tagging and search, etc.) unsolved. This considerably
hinders user experience on the phone. In this paper, we present an
innovative personal photo search system on the phone, which en-
ables instant and accurate photo search by visual query suggestion
and joint text-image hashing. Specifically, the system is character-
ized by several distinctive properties: 1) visual query suggestion
(VQS) to facilitate the formulation of queries in a joint text-image
form, 2) light-weight convolutional and sequential deep neural net-
works to extract representations for both photos and queries, and
3) joint text-image hashing (with compact binary codes) to facili-
tate binary image search and VQS. It is worth noting that all the
components run on the phone with client optimization by deep
learning techniques. We have collected 270 photo albums taken
by 30 mobile users (corresponding to 37,000 personal photos) and
conducted a series of field studies. We show that our system signif-
icantly outperforms the existing client-based solutions by 10× in
terms of search efficiency, and 92.3% precision in terms of search
accuracy, leading to a remarkably better user experience of photo
discovery on the phone.
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• Computing methodologies → Visual content-based index-
ing and retrieval; Image representations;
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Figure 1: The procedure of image search with visual query
suggestion. User can (1) enter a few characters; (2) browse
the instantly suggested items; (3) select one suggestion to
specify search intent; (4) perform image search based on the
new query and the compact hashing technique. It is worth
noting that all these components run on the client.

1 INTRODUCTION
Recent years have witnessed the ubiquity of mobile devices (e.g.,
smart phones, digital cameras, tablets, etc.). This has led to an un-
precedented growth in the number of personal photos on the phone.
People are taking photos using their smart devices every day and
everywhere. One significant pain point of today’s mobile users
derives from the challenge of instantly finding specific photos of
what they want. Specifically, it is often not practical for a mobile
user to search a desired photo by browsing at least thousands of
photos, due to the limited screen size of mobile devices. Although
a great number of photo management systems on iOS and An-
droid platforms focus on using timestamp and GPS [2, 7, 16, 21]
to categorize personal photos for relieving the heavy user mem-
ory load, the search experience is far from satisfactory for photo
search. Because time and location are less representative than se-
mantic words which often used in Web search engines, and thus
considerably hinder friendly user experience on the phone.

Extensive research on both academic and industrial fields have
been made by proposing cloud-based solutions [5, 12–14, 39, 45],
which usually consists of image data transmitting from client to
cloud, image semantic tagging and online image search on cloud.
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Typical commercial products includeGoogle Photos1 andMicrosoft
OneDrive2, both enable effective photo indexing and search not
only by time and location, but also by face grouping and object/scene
understanding, and thus photos can be found by entering human-
friendly tags (e.g., “beach,” “sunset”) in the search box. However,
the cloud-based solution requires sending each photo to a remote
server on the cloud, which can hardly guarantee instant photo in-
dexing and search on the phone, due to network latency. With the
increasing computing capacity on mobile clients, designing effec-
tive client-based photo search systems on the phone becomes a
fundamental challenge for better user experience. Further improve-
ment has been observed from the recently-released photo manage-
ment system on iOS 10, which can provide efficient photo group-
ing by face, tag, time and location on the phone. Once photos have
been tagged and indexed on the phone, the system further sup-
ports semantic photo search by typing a single word from a pre-
defined vocabulary. However, the system usually suffers from low
recall due to the limited vocabulary of queries that can be searched.
Therefore, designing a system with the capability of instantly find-
ing arbitrary photos of what users want still remains largely unex-
plored.

In this paper, to solve the above challenges on the clients, we
propose to consider the following several challenges for develop-
ing a personal photo search system on the phone. 1) Query for-
mulation: due to the inconvenience for typing complete queries
on mobile screens, query auto-completion by visual query sugges-
tion is significantly crucial for mobile users, which can enable fast
search on the phone. 2) Photo indexing: as the limited number of
tags are inadequate to present the rich image appearances, exist-
ing systems are difficult to discover the desired photos to arbitrary
user queries. Therefore learning an embedding space across visual
and textual domains with rich semantics that can represent diverse
images are indispensable for client-side applications. 3) Computa-
tional cost: as the computational capacity (e.g., CPU and memory)
of mobile devices are not comparable with cloud servers, the state-
of-the-art image and query feature extraction models (e.g., VGG-
19 [38], ResNet-152 [17] for images or LSTM [15] for queries) with
large memory or heavy computational cost are not suitable for mo-
bile clients. 4) Instant response: since user experience should be
greatly emphasized for mobile user scenarios, the search process
is expected to be instant. Specifically, the query suggestions and
search results should be returned instantly or even progressively
during the user querying process.

Motivated by the above observations, we have developed an in-
novative personal photo search system on the phone, which en-
ables instant and accurate photo search by client-based visual query
suggestion (VQS) and joint text-image hashing. The system con-
sists of offline image feature extraction with compact binary codes,
and online VQS and instant photo search. Specifically, image fea-
tures are offline extracted on the client by a light-weight convo-
lutional neural network (CNN) [26] and a novel joint text-image
hashing technique. The hash function is optimized in a text-image
embedding space by contrastive losses and orthogonal constrains,
which ensures powerful yet compact image representations over

1https://photos.google.com/
2https://onedrive.live.com/

rich semantic space. The learned hash codes are further indexed
into a concept hierarchical tree, from which different categories
are considered as diversified query suggestion phrases to clarify
the initial user input.

The online stage is composed of instant query understanding
by recurrent neural network (RNN) [44], query reformulation by
VQS, and fast photo retrieval by progressive binary search. In par-
ticularly, an initial user query is parsed into binary codes by a light-
weight Gated Recurrent Unit (GRU) [6] and the joint text-image
hashing. Once the initial query has been understood, an instant
search on hashing space is conducted to discover the top-N near-
est photos. To facilitate the reformulation of queries, we propose
the photos that belong to different categories in the concept tree
together with their corresponding categories as joint text-image
query suggestions. Once users select one of the suggestions, amore
precise photo search can be conducted progressively to rerank the
top-N photos by using the user-selected suggestion as query ex-
ample and binary image search. The screenshot of the proposed
system is shown in Figure. 1.

To the best of our knowledge, this work represents the one of
first attempts for developing an instant personal photo search sys-
tem with client-side integration by deep learning techniques. Our
contributions can be summarized as follows:

• We have designed a fully-client image search system to-
wards instant and progressive personal photo search by
leveraging light-weight computing capacity of mobile de-
vices, which is quite distinct from existing cloud-based so-
lutions.

• We propose a novel joint text-image hashing network that
can instantly and accurately produce visual query sugges-
tions and visual search results, and thus real-time query
suggestion and fast image search can be achieved.

• We conduct comprehensive field studies from a real user
collection of 30 mobile users, 270 albums and 37,000 pho-
tos, and show superior performance of the developed sys-
tem on both objective and subjective evaluation.

The rest of the paper is organized as follows. Section 2 describes the
related work. Section 3 introduces the proposed system. Section 4
provides the evaluation, followed by the conclusion in Section 5.

2 RELATEDWORK
2.1 Query Suggestion for Image Search
Query suggestion (QS) aims to help users formulate precise queries
to clearly express their search intents by suggesting a list of com-
plete queries based on users’ initial inputs. This technique has been
widely-used in commercial search engines, such as Google and
Bing.Most earlierworks focus on suggesting relevant querieswhile
ignoring the diversity in the suggestions, which potentially pro-
vide inferior experiences for users [8, 34]. Although promisingworks
have been further proposed to prevent semantically redundant sug-
gestions byMarkov randomwalk and hitting time analysis [20, 31],
which focus on text-only query suggestion. Significant progress
has been made by introducing VQS [52, 53], which can generate
joint text/image suggestions for initial queries. Because images
can carry more vivid information and help users better specify
their search intents, VQS provides users with friendly experiences.



𝐯"
CNN

GRU GRU GRU GRU

a

… 𝒔"

Hash

Hash

1

0

1

… …

sports

electronic

music
young boy tennis

1

0

1

A young boy in 
blue shorts 

playing tennis

person

game

tennis

piano

Lcts1: contrastive loss (cosine)
Lcts2: contrastive loss (hamming)
Lcls: classification

Model training (offline)

Query suggestion and search

GRU GRU Embed
Hash

Embed

Embed

tennis baseball game

sports electronic

phone

(f) image

(h) caption sentence

(g) CNN feature extraction

(i) RNN feature extraction

(j) embedding feature
learning

(k) hash code
learning

(l) multi label classification

Wcv

Wcs

Y(1)

Y(2)

(a) query

(b) hash code

(c) image ranking list

piano

music

Lcts1 Lcts2

Lcls(Y(s),Y*)

Hcv

Hcs

1

0

1

(d) visual query suggestion

concept tree

(e) progressive
photo search

lower layer

higher layer

Figure 2: The overview of the proposed innovative personal photo search system on the phone. The system consists of two
closely-related modules, i.e., online visual query suggestion and fast image search (a-e), and offline model training (f-l). Light-
weight CNN and RNNmodels are proposed to use in (g) and (i), and a novel joint text-image hashing network is designed in (j)
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prediction and ground truth labels. s can be {1, 2} and denotes two levels in the concept tree. [Best viewed in color]

However, existing approaches predominantly solve this problem
on predefined queries of single word, while neglecting the facts
that queries can be sequences of words with arbitrary length [18,
36, 42]. Due to the success of natural language understanding and
image captioning by using recurrent neural networks (RNN) [15,
30, 44, 48], some pioneer works have been proposed for under-
standing long queries on textual query suggestion [35, 42] and ob-
ject retrieval [18], whereas fewworks have discussed the accessibil-
ity on VQS. Besides, designing efficient VQS algorithms on clients
also remains largely unexplored.

2.2 Image Hashing
Joint text-image hashing, (i.e., cross-modal hashing), was a pop-
ular topic in machine learning [1] and multimedia retrieval [11,
29]. Cross-modal hashing can be divided into unsupervised and
supervisedmethods. Unsupervised hashingmethods usually adopt
the paradigm of minimizing construction/quantization errors and
preserving image similarity in Hamming space with unsupervised
training data [11, 41, 47]. As supervised hashing can leverage se-
mantic information to enhance the cross-modal correlation and
reduce the semantic gap, they can achieve superior performance
than unsupervised methods for cross-modal image retrieval [3, 19,
29, 46, 51]. Significant progress has been proposed by effectively ex-
ploiting deep learning networks, which unifies convolutional neu-
ral network (CNN) and recurrent neural network (RNN) for image
and text modeling, respectively. The most relevant work to ours

comes from Cao et.al. [3], which presents a deep visual-semantic
hashing model to generate compact representations of images and
sentences in an end-to-end deep learning architecture for cross-
modal image retrieval, as a result of the highly efficient hash codes.
However, how to implement an effective visual query suggestion
framework in terms of algorithm and application design by cross-
modal hashing is still unexplored. In this paper, we formulate VQS
as a joint cross-modal retrieval and classification problem, and gen-
erate relevant/diversified visual query suggestions by hash codes.
3 SYSTEM
To develop an instant and accurate photo search system on the
phone, we propose to leverage VQS and joint text-image hashing
techniques. VQS can help conduct instant user query formulation,
while the joint hashing can benefit fast cross-modality image search.
Specifically, the system is designed with two closely-related mod-
ules, i.e., online visual query suggestion, progressive photo search
(Figure 2 (a-e)), and offline model training (Figure 2 (f-l)).

In online stage, given an initial user input in (a), we embed and
quantize the query into semantic hash codes by the learned GRU
model and joint text-image hash functions from (i-k). Once initial
query has been projected to binary codes in (b), an instant search
on hashing space is conducted to discover the top-N nearest photos
in (c). Since photos have been indexed into a concept hierarchical
tree in (l), different categories (e.g., “tennis sports,” “piano music”)
from the concept tree can be instantly generated and associated to



the top-ranked images. Different categories with their correspond-
ing photos are further proposed as joint text-image query sugges-
tions to facilitate the reformulation of queries in (d), and thus rel-
evant yet diversified textual/visual query suggestions can be gen-
erated. Once users select a suggestion in (d), a progressive photo
search can be conducted to re-rank the top-N photos by using it
as a query example and binary image search. In offline stage, the
model is trained by taking a collection of images in (f) with cor-
responding descriptive sentences in (h), and learning the latent re-
lationship between visual representations in semantic embedding
and hashing spaces in (j) and (k). This cross-modal embedding can
benefit the deep understanding between queries and photos, and
thus enables accurate image search.

3.1 Visual-Semantic Representation
Image representation: since CNN has been widely used for im-
age classification/captioning tasks with great success [10, 27], we
adopt CNN to extract deep image representations. Specifically, given
an image I, we compute its visual representation as follows:

V =Wv [CNN (I )] + bv , (1)

where CNN (I ) transforms an image into a 1024-dimensional vec-
tor. The matrixWv has dimensiondv ×1024, in whichdv is the size
of the embedding space. In our experiment, we deploy GoogLeNet
[43] as the CNN architecture on clients to extract image features,
due to its less memory consumption. We adopt dv = 512 as in [22],
and thus each image can be represented in adv -dimensional vector.
In order to further reduce the feature extraction time and battery
consumption for GoogLeNet on mobile devices, we compress the
CNN model using the methods in [23]. We apply Trucker Decom-
position on convolution kernel tensors and fine-tune the model to
recover the accumulated loss. The computational complexity can
be reduced by half, compared with un-compressed models [23].

Sentence representation: since the user queries often contain
phrases of two or more words, it is important to learn the word de-
pendency for catching the user intent. Therefore, we use Recurrent
Neural Networks (RNN) to learn a language model, due to its suc-
cess in sequence learning. Long-short time memory (LSTM) [15]
is the state-of-the-art RNN architecture, however it is not suitable
for mobile clients because of the heavy computational complexity
and time cost. Gated Recurrent Unit (GRU) [6] is a light-weight
RNN architecture proposed in recent years. The performance of
GRU is comparable with LSTM, while GRU has much lower com-
putational cost. Therefore, we adopt GRU for sentence represen-
tation, in which the computational complexity can be reduced by
half, compared with LSTM models.

Particularly, we consider the index t = {1 . . .N } as the position
of a word in a sentence. Given an index t , GRU receives inputs from
1) current input xt , 2) previous hidden state ht−1, given by:

xt =Ww1t ,

zt = σ (Wzxt +Uzht−1 + bz ),

rt = σ (Wrxt +Urht−1 + br ),

h̃ = tanh(Whxt + (Uhrt ⊙ ht−1) + bh ),

ht = zt h̃ + (1 − zt )ht−1,

(2)

where 1 is an indicator column vector that has a single one at the
index of t th word in a word vocabulary. The weightWw specifies
a word embedding matrix, which is initialized with pre-trained pa-
rameters.Wz ,Wr ,Wh ,Uz ,Ur ,Uh areweightmatrixes, andbz ,br ,bh
are bias vectors in GRU. σ is the sigmoid activation function with
the form of σ (x ) = 1/(1 + exp (−x )). ⊙ denotes the product with a
gate value, as defined in [6]. We further consider the bidirectional
framework to encode the state along timesteps from the past and
future. We rewrite the GRU in Eqn. (2) into a compact form:

(zt , rt , st , h̃,ht ) = GRU (xt ,ht−1;W ,U ,b), (3)

and the components of BiGRU can be written as:

(z
f
t , r

f
t , s

f
t , h̃

f ,h
f
t ) = GRU (xt ,h

f
t−1;W

f ,U f ,bf ),

(zbt , r
b
t , s

b
t , h̃

b ,hbt ) = GRU (xt ,h
b
t+1;W

b ,U b ,bb ),

ht = [hft ,h
b
(N−t+1)],

(4)

where the superscript f indicates the forward pass and b denotes
the backward pass. We consider S = [huniN ,h

bi
N ] as the represen-

tation of a sentence, where huniN and hbiN are the outputs from the
last cell in GRU and BiGRU. We set the dimensions of the hidden
layers of GRU and BiGRU are both ds/2, thus each sentence can
be represented in a ds -dimensional vector. To learn the joint em-
bedding spaces with images, we set ds = 1200 to make sure that
the model is able to learn the sentences representation well and is
small enough to run on mobile devices. Besides, we set the word
embedding size as 620 like [25].

3.2 Joint Text-Image Hashing
To support real time visual query suggestion and search, we pro-
pose to learn a joint cross-modal hashing embedding. In particular,
both image and sentence representations from CNN and RNN are
encoded into the sameHamming space with hash functions, where
the Hamming distance between aligned image-sentence pairs are
expected to be small. We first embed both images and sentences
representations intom-dimension, which is given by:

c (x ) =WT
c x + bc , (5)

where x denotes the input vector with the dimension of d , and
matrixsWc denotes weights in hash layer with the dimension of
d ×m, wherem denotes the number of hash bits. When c (x ) takes
images features as input,d = dv , and otherwised = ds for sentence
inputs. The hash function can be defined as as:

h(x ) = sign(c ), (6)

where sign(x ) is a sign function, where sign(xi ) = 1 if xi > 0 and
otherwise sign(xi ) = 0. Due to the discontinuous sign function,
we relax h(x ) to:

h(x ) = 2σ (c ) − 1, (7)
where σ (·) denotes the logistic function.

For query suggestion, we aim to consider both semantical rel-
evance and diversity at the same time. We can easily ensure the
relevance by minimizing the Hamming distance between the ini-
tial and suggested queries. To maximize the diversity, we propose
to index the learned hash codes into a two-layered concept hierar-
chial tree, which is shown in Figure 2 (l).



We consider the problem as a multi-label classification task, and
the concept tree can be represented as two fully-connected layers,
which is given by:

[p (l ) ,p (h)] = д(x ), (8)

where the specific form of д(·) can be represented by two-stacked
fully-connected layers with sigmoid activation, and p (l ) ,p (h) de-
notes the outputs of the first (the lower) and second (the higher)
sigmoid activation layers. We consider the categories correspond-
ing to outputs of arдmax (p (l ) ) and arдmax (p (h) ) as the low-level
and high-level predictions in the concept tree. We combine the pre-
dicted categories from low (e.g., “tennis”) and high (e.g., “sports”)
layers to form the suggested phrases (e.g., “tennis, sports” ) for vi-
sual query suggestion. We think this concept tree can directly ben-
efit hash codes learning, so we concatenate it behind the hash layer
insead of CNN or RNN layers.

3.3 Loss Function
To learn the deep correspondence between aligned text and image
pairs, we propose to jointly optimize the semantic embedding and
hashing space by contrastive losses. Specifically, given an image
k and a sentence l , we adopt the dot product hi (Vk )T · hs (Sl ) to
approximate the similarity measurement in Hamming space [11].
This similarity is further normalized by the number of hash bits,
which is given by:

Hkl =
h(Vk )

T · h(Sl )
m

. (9)

To better enhance the semantic correlation between images and
sentences, we propose to take the non-quantized feature similar-
ity before hashing into consideration. Cosine distance is adopted
to measure this semantic correlation, due to its good performance
shown in previous research [4], which is given by:

Ckl =
c (Vk )

T · c (Sl )
∥c (Vk )∥2 · ∥c (Sl )∥2

. (10)

To learn the metric in embedding spaces, we encourage the aligned
image-sentence pairs in training set to have a higher similarity
score than misaligned pairs by a margin, and thus a contrastive
loss [54] is adopted. Particularly, the loss function is given by:

Lcts =
∑
k

[
∑
l

max (0,Hkl −Hkk + 0.1)

+
∑
l

max (0,Hlk − Hkk + 0.1)

+
∑
l

max (0,Ckl −Ckk + 0.1)

+
∑
l

max (0,Clk −Ckk + 0.1)],

(11)

where Lcts denotes the contrastive loss, 0.1 is empirically set to
be a margin, and k = l denotes a corresponding image and sen-
tence pair. The loss function is symmetric with respect to images
and sentences. As observed by [37], this formulation can benefit
the learning of predition by conditioning on both images and sen-
tences with superior performance than asymmetric models.

Algorithm 1 Query suggestion algorithm (detail in Sec. 3.4)
Input: Images ranking list L
Output: Candidate suggested images list C
1: Initialize set S = ∅, C = ∅
2: for each i ∈ [1,N ] do
3: y = arдmax (p (h) (Li ))
4: if |S | < k and y < S then
5: S = S

∪{y}; C = C∪{Li }
6: end if
7: end for
8: if |S | == 1 then
9: set S = ∅, C = ∅
10: for each i ∈ [1,N ] do
11: y = arдmax (p (l ) (Li ))
12: if |S | < k and y < S then
13: S = S

∪{y}; C = C∪{Li }
14: end if
15: end for
16: end if
17: return C

The classification task can be solved by minimizing the cross
entropy loss [32], which is given by:

Lcls =
∑
s
[Lcls (Y∗,Y(s) )], (12)

where Lcls denotes the classification loss, Y∗ indicates the ground
truth and Y(s) is the label prediction. s can be {1, 2} and denotes
two levels in the concept tree.

To enhance the representative ability of hash bits, we enforce
an orthogonality constraint in the learning of hash functions. As
relaxed in [49], the loss of orthogonality constraint is given by:

Lotд =
1
m
(∥WT

ciWci − I ∥2F + ∥W
T
csWcs − I ∥2F ), (13)

where Lotд denotes the orthogonality constraint,Wci andWcs are
two types of Wc in Eqn. (5), and ∥·∥F represents the Frobenius
norm, and I is an identity matrix. The final optimization function
of the proposed joint text-image hashing is formulated as follows:

L = Lcts + λ1Lcls + λ2Lotд , (14)

where λ1 and λ2 are hyper parameters. To evaluate the effects, we
set the range of λ1 and λ2 from 0 to 1, and finally set λ1 = 1 and
λ2 = 0.1 since this setting can help achieve the best performance
in our experiment.

3.4 Visual Query Suggestion and Search
Once the joint hashing model has been optimized, we apply it to
instant query suggestion and photo search systems. Given a col-
lection of user photos on clients, we first calculate the hash codes
of each photo by using the learned hash functions. Note that these
hash codes can be used in both query suggestion and photo search.

Visual query suggestion: the designed procedure of the sys-
tem for VQS is shown as follows: given an initial query from users,
we first extract its hash code from Figure 2 (a,b). Based on Ham-
ming distance, we select the top-N closest images in a image rank-
ing list from Figure 2 (c), which is denoted as list L. We call this step



Table 1: The training/validation pairs, vocabulary size, and
node numbers in the concept tree.

Datasets # trn # val #vocab #nodes(low/high)
Flickr30K [50] 154k 5k 7.4k 200/12
MSCOCO [28] 414k 203k 8.8k 500/12

as “initial search.” We apply Algorithm 1 to obtain the candidate
suggested images list C . The images in C as well as their category
terms in the concept hierarchial tree are provided to users as the
joint text-visual suggestion results. In our experiment, we find that
the ranges from three to five can be the suitable values for k , i.e.,
the number of categories to be selected for VQS, and we usually
take N = 100.

Progressive photo search: for initial search, the retrieval list
of images is produced by sorting the Hamming distances of hash
codes between the query sentence and images in search pool. Once
users have selected one of the suggestions, we further propose
a progressive image search to rerank the images from top-N im-
age search list. Since the top-N images are retrieved by the initial
search and the number of N would not be large, the progressive
search can be accurate and efficient.

3.5 Training
Initialization: for the CNN model, we pre-train it by ImageNet
[9], and fine-tune by a concept vocabulary ci , i = {1, 2, · · ·C} in
MSCOCO dataset [28], where each concept ci is a single word. De-
tails of the mining of these highly-frequent concepts can be found
in Section 4.1. For the RNN model, we initialize the word embed-
ding matrixWw with skip-thought vector [25], which is trained on
a large book-collection corpus.

Optimization: in Eqn. (11), we need to calculate the similar-
ity between each pair of images and sentences, the computational
complexity is too high. To accelerate the training, we iterate the
aligned and misaligned pairs in a training batch, and the images
and sentences in each batch are randomly selected in each epoch.

4 EXPERIMENT
In this section, we conduct quantitative comparisons and extensive
user studies on both standard cross-modality image search datasets
and a collection of real-world photos frommobile users to evaluate
the usability for the proposed system.

4.1 Datasets and Baselines
To conduct quantitative evaluation for the proposed joint hashing
approach, we select MSCOCO [28] and Flickr30K [50] for both
training and testing. Because the two image captioning datasets
are so challenging that are widely-used for cross-modality embed-
ding and hashing evaluations. Detailed statistics can be found in
Table 1. To make a fair comparison, we follow the same settings as
[3, 22] to randomly select 5,000/1,000 images from validation set
as testing images for MSCOCO and Flickr30K, respectively.

To make comprehensive user study, we have collected a real-
world personal photo datasets of 270 photo albums (correspond-
ing to 37,000 personal photos) from 30 volunteers, including 20
students and 10 staffs. All of them are experienced image search
engines users with more than 500 photos on their phones. The age
distribution, career distribution, categories of searched key words,

Table 2: Search results of different variations of our model
with 128 hash bits on Flickr30K dataset.

Method Med r R@1 R@5 R@10
Lcts 13 17.2 41.1 53.9

Lcts + 0.1Lotд 13 17.9 41.1 53.2
Lcts + Lcls + 0.1Lotд 11 17.3 42.6 55.5

Table 3: Cross-modality image retrieval results by binary
search. R@K and Med r represents Recall@K (higher is bet-
ter) and median rank (lower is better).

Model Med r R@1 R@5 R@10
Flickr30K

SDT-RNN [40] 16 8.9 29.8 41.1
LBL [24] 13 11.8 34.0 46.3

m-RNN [33] 16 12.6 31.2 41.5
BRNN [22] 13 18.5 42.1 56.8
DVSH [3] 9 17.1 39.9 51.9

Our Model (512-bit) 9 18.5 43.9 57.0
MSCOCO 1K test images

BRNN [22] 4 31.8 67.1 80.1
DVSH [3] 3 29.6 64.8 78.1

Our Model (512-bit) 3 32.7 67.1 81.0
MSCOCO 5K test images

BRNN [22] 11 14.1 38.1 50.9
DVSH [3] 11 13.3 35.6 48.6

Our Model (512-bit) 11 14.6 38.0 51.3

and exemplar search queries with results are shown in Figure 3
(a-d), respectively. We use the model trained on MSCOCO to con-
duct user studies for VQS and photo search, as MSCOCO has larger
vocabulary size. To obtain the concept tree, we select the top 500
nounwords (e.g., “tennis,” “piano”)with the highestword frequency
from MSCOCO as the lower level concepts, and use the 12 general
category terms (e.g., “sport,” “music”) provided by MSCOCO as the
higher level concepts. Each image can be annotated with one or
more concepts by the specific 500 nouns, if a noun occurs in its
caption. Images are also categorized by the 12 high-level terms by
the annotation from MSCOCO.

We compare with five approaches to evaluate the quantitative
binary search for cross-modality image retrieval. We also compare
with two VQS systems in research community, and two commer-
cial image search engines for user study. The seven baselines in
research community are listed as follows:

• SDT-RNN [40]: semanticdependency tree recursiveneural
networks uses words and the dependency tree as inputs to
train with contrastive loss.

• LBL [24]: log-bilinear language model proposes to use
lstm to encode sentences.

• m-RNN [33]:multimodalRecurrentNeuralNetwork pro-
poses to connect the language model and the deep CNN
together by a one-layer representation.

• BRNN [22]: use bidirection recurrent neural network to
compute the word representations.

• DVSH [3]: deep visual-semantichashing propose to learn
a joint hash embedding space of images and sentences.
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Figure 3: A dataset of real-world personal photos. The above figures show the age, career distribution of volunteers, and ex-
emplar query terms with corresponding results.

• VQS [53]: visual query suggestion provides the first at-
tempt to help users to precisely express their search in-
tents by joint text and image suggestions.

• CAQS [42]: context-aware query suggestion proposes a
hierarchical recurrent encoder-decoder generative network
for queries with arbitrary lengths.

4.2 Evaluation of Binary Search
To evaluate the proposed joint hashing approach, binary search
is conducted by taking the captions as queries, and searching the
corresponding images. We report the median rank of the closest
ground truth result in the image ranking list, and Recall@K which
measures the fraction of times a correct item was found among the
top K results. For MSCOCO dataset, we report the results on a sub-
set of 1,000 images and the full set of 5,000 test images, according
to the same setting with [22]. We can observe from Table 3 that our
hashing model with the same feature dimensions can achieve com-
parable results with the non-quantized approaches BRNN [22],
and obtain even better results than the state-of-the-art joint hash-
ing approaches DVSH [3]. Detailed comparison of different vari-
ations of our model and the performances of different hash bits
can be found in Table 2 and Figure 4. Considering most phones
can display 30 photos on average, we further calculate Recall@30
and obtain 92.3% accuracy on MSCOCO 1k test set, which ensures
satisfying results for mobile users.

4.3 Time and Memory Consumption
System Latency and memory cost play key roles for a mobile appli-
cation. We calculate the time and memory consumption for each
module in Table 5. We test different modules on two typical mobile
devices. Device I is iPhone 6Swith a 2GB RAMand 64GB ROM, and
device II is Samsung Galaxy S7 with a 4GB RAM and 64GB ROM.
We store 10,000 photos on the two devices, respectively, and test
the time cost on image and query embedding/hashing, query em-
bedding/hashing, initial and progressive search. Since image pro-
cessing can be conducted offline, we find that our system can act an
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Figure 4: Experiment result on Flickr30K and MSCOCO
datasets with different number of hash bits on 1K test im-
ages.
instant response to return the suggestion and search result around
0.1s for both the two devices, which is adequate for real-time appli-
cations and can ensure friendly user experience. The peakmemory
is about 73.0 MB, which is moderate for most mobile clients, due to
the light-weight GoogLeNet with model compression techniques
and the GRU architecture used in our system.

4.4 Relevance and Diversity for VQS
We use the model trained on MSCOCO dataset to build an image
search system, and ask 30 volunteers to try it. To evaluate the rel-
evance between the suggestions and the initial queries and the di-
versity of query suggestions, all volunteer were asked to search
ten times by different queries and report two scores from “0” to “3”
for every generated suggestions, in which one is relevance score
and another is diversity score. The relevance score indicates that
there are no, one, two and three closely-related suggested items,
and the diversity score denotes that all the related suggestion items
have zero, one, two and three different meanings. More informa-
tion could be found in Figure 6. We observe that long queries (con-
sists of at least three words) have higher relevance scores than
short queries, because long queries contain more user intentions,
from which our RNN model can well-understand. However, as the



Table 4: Query Suggestions Comparisons between different search engines

Query=“wood” Query=“man play”
ours VQS CAQS srh eng 1 srh eng 2 ours VQS CAQS srh eng 1 srh engss 2

funiture glass window texture woodone sports fling tennis guitar games
appliance plastic table floor wood job electronic meet gitar locals piano guitar
outdoor metal room background woodman music sex basketball violin golf

Query=“cake and party” Query=“two men at canteen”
ours VQS CAQS srh eng 1 srh eng 2 ours VQS CAQS srh eng 1 srh eng 2
food - birthday birthday pie person - sitting - -

kitchen - people cocktail candle food - bench - -
person - table song cafe kitchen - store - -

not 
found
8.7%

found
91.3%

(a)

0~10s
79.4%

10~20s
14.3%

>20s
6.3%

(b)

Figure 5: Accuracy and search time. a) the percent of the pho-
tos that can be searched; b) search time.
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Figure 6: The evaluation of relevance and diversity for visual
query suggestion results.

user intentions are clear, the diversity of query suggestions would
be limited, which can be observed from Figure 6 (b).

4.5 Search Time
Search time is an important evaluation criteria for an instant photo
search system. To obtain the practical search time, we design ten
tasks for each volunteer. For examples in Figure 3 (d) , we may ask
them to search “red flower,” “a girl with a cat,” and so on. Once vol-
unteers input a query to search for a photo, our system returns the
top 100 most related images in the backend (called “initial search”).
Volunteers can re-organize their queries based on query sugges-
tions to conduct the progressive search. we record the time dura-
tion from the beginning of entering queries to the moment of find-
ing the desired photos. From Figure 5, we can observe that 91.3%
photos could be found by using the proposed system, and about
80% photos could be retrieved in less than 10s. In our study, it usu-
ally costsmore than 100s to find a specific photo by browsing about
1,000 photos one by one on a mobile phone.

4.6 Evaluation of Usability
Volunteers are invited to try several query suggestion services by
using the same ten queries. For each query, they need to answer the
question “which can provide the best query suggestions and user
experience?” Table 4 shows some suggestions generated by differ-
ent systems, and Figure 7 shows the evaluation results.We find that
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22.7%
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35.5%

29.0%

19.4%

16.1%

long query

ours
VQS
CAQS
Search Engine 1
Search Engine 2

Figure 7: Comparisons between different query suggestion
systems and search engines. We omit VQS in the right, as it
cannot handle long queries.

Table 5: The computational time (ms) on each module and
peak memory cost (MB) of the proposed system on clients.

Device ID I II
Image Embedding/Hashing (per image) 152 183
Query Embedding/Hashing (per query) 52 60

Initial Search 40 45
Progressive Search 0.40 0.45
Peak Memory 73.0

the proposed VQS system outperforms existing image search en-
gines and research prototypes, on both short or long queries. The
superior results show the advantages of the effectiveness of query
understanding by GRU models, and semantic-preserved hashing
embedding learning, as well as the informative concept tree.

5 CONCLUSIONS
In this paper we investigated the possibility of designing fully-
client systems for instant visual query suggestion (VQS) and photo
search on the phone. We leverage VQS to significantly reduce user
efforts and help formulate queries with clarified search intents.
Then we use light-weight convolutional and sequential deep neu-
ral networks to extract representative features for both visual pho-
tos and arbitrary queries. Joint text-image binary search is used to
enable the instant VQS and photo discovery. Ultimately we con-
duct extensive experimental comparisons and user studies, which
prove a better user experience. In the future, we will conduct the
research on two directions. First, we plan to conduct further re-
search on deep model compression with client-side optimization
in terms of both system latency and memory cost. Second, we will
focus on highly-efficient hash code indexing and search algorithms
to further support the instant query suggestion and photo search.
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