
PerfOrator: eloquent performance models
for Resource Optimization

Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, Subru Krishnan
Microsoft

[krajan, dkakadia, ccurino, subru]@microsoft.com

Abstract
Query Optimization focuses on finding the best query exe-
cution plan, given fixed hardware resources. In BigData set-
tings, both pay-as-you-go clouds and on-prem shared clus-
ters, a complementary challenge emerges: Resource Opti-
mization: find the best hardware resources, given an execu-
tion plan. In this world, provisioning is almost instantaneous
and time-varying resources can be acquired on a per-query
basis. This allows us to optimize allocations for comple-
tion time, resource usage, dollar cost, etc. These optimiza-
tions have a huge impact on performance and cost, and pivot
around a core challenge: faithful resource-to-performance
models for arbitrary BigData queries. This task is challeng-
ing for users and tools alike due to lack of good statistics
(high-velocity, unstructured data), frequent use of UDFs, im-
pact on performance of different hardware types and a lack
of understanding of parallel execution at such a scale.

We address this with PerfOrator, a novel approach to
resource-to-performance modeling. PerfOrator employs non-
linear regression on profile runs to model arbitrary UDFs,
calibration queries to generalize across hardware platforms,
and analytical framework models to account for parallelism.
The resulting estimates are orders of magnitude more ac-
curate than existing approaches (e.g, Hive’s optimizer), and
have been successfully employed in two resource optimiza-
tion scenarios: 1) optimize provisioning of clusters in cloud
settings—with decisions within 1% of optimal, 2) reserve
skyline of resources for SLA jobs—with accuracies over
10× better than human experts.

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems—Distributed
databases

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4525-5/16/10. . . $15.00.
DOI: http://dx.doi.org/10.1145/2987550.2987566

1. Introduction
Query optimization has been central to much of database
literature and system building, due to its substantial impact
on query performance [14]. Slow provisioning cycles made
hardware a “constant” in the formulation of this problem—
which focuses on finding the best query plan, given fixed
hardware resources.

In the context of BigData, two recent trends (clouds and
large, on-prem clusters) are challenging this assumption.
The advent of cloud offerings, such as Azure and AWS, with
their pay-as-you-go model, drastically shortens the hardware
provisioning cycle from months to minutes, as well as the
typical horizon for ownership, from 3+ years to as little as 1
hour. This allows attentive users to purchase access to differ-
ent (and best fitting) hardware resources [3] for each query
of an analytics workload1. As an example, we show that
running the BigBench workload [15] at 10TB scale on an
optimal, fixed cluster of VMs is on average 45% more ex-
pensive than picking the best configuration for each query
individually. For on-premise shared clusters, we observe a
similar, yet even more dramatic trend. Resource managers
such as Hadoop/YARN [31], Cosmos [6], Borg [34], and
Mesos [19] effectively multiplex the access to massive clus-
ters (thousands of machines) across queries within seconds.
YARN [10] enables users to reserve resources ahead of job
execution. Reservations take the form of time-varying sky-
lines, that define how many containers2 a job will require
during every second of execution. They can range from few
seconds on a single core to hours on thousands of machines.
In this new world, properly selecting hardware can have a
dramatic impact on query performance and cost.

Moreover, users today lack basic system support to ex-
plore how resources affect query performance. Our hunch
is that users have a hard time picking among simple alter-
natives, and that deriving resource skylines is even harder.
We put this to the test with a simplified A-vs-B experi-

1 Note that in these settings persistent data (like an input table) is often
stored in a separate but collocated storage layer enabling compute VMs to
be spun up and shutdown quickly without having to migrate data.
2 A container in YARN is a collection of physical resources like memory,
CPU and disk.

415

User 1 User 2 User 3 User 4 User 5 User 6 User 7

Q1 on CA 299% 101% 134% 101% 12% 51% 8%

Q1 on CB 525% 88% 212% 105% 22% 53% 7%

Q3 on CA 227% 326% 140% 83% 13% 83% 9%

Q3 on CB 191% 273% 107% 44% 7% 33% 5%

1%

10%

100%

1000%
N

o
rm

al
iz

ee
d

 T
im

e
Es

ti
m

at
es

Figure 1. User estimates for execution time of BigBench query
Q1 and Q3 at 10TB scale on two Azure clusters: CA (128× VMs
of type D3) and CB (128× VMs of type D12).

ment. We asked seven BigData engineers and scientists to
choose between two Azure-based cluster configurations for
running query Q1 and Q3 from BigBench [15] (our running
examples throughout the paper). Users were given a HiveQL
query formulation, the execution plan, and the actual data-
sizes after each stage of the execution (to simulate extra
prepwork and potential prior knowledge), and were asked to
rank the two clusters options for each query as well as esti-
mate runtime (and thus cost) of each alternative. Figure 1
shows the results of their work. The relative errors range
from 20× under- to 5× over- estimations of the runtime and
cost. Even worse, only 1 user (User 2) would have correctly
selected cluster CB for query Q1 and cluster CA for query
Q3, all others made at least one mistake. If expert users con-
fronted with a simplified version of the modeling task find
it so challenging: How bad would normal users do? How
hard is it to derive complete skylines? We answer these ques-
tions further in our evaluation in § 7, and by analyzing users’
behaviors on production clusters. The results are consistent
with our worst fears, users systematically mis-provision the
majority of jobs, frequently by 10× or more. We conclude
that, in BigData settings, assuming hardware as a constant or
that users can easily answer provisioning questions is sim-
ply unacceptable, and the emerging Resource Optimization
problem deserves attention.

Our Proposal In this paper we formalize the resource op-
timization problem (§ 2) and present a novel solution to it.
In addressing this problem we make a basic observation: the
range of possible optimizations is broad and scenario spe-
cific (e.g., minimize execution time, or dollar cost, maxi-
mize cluster utilization, ensure job completion by a deadline,
etc.), but all these optimizations pivot around one common
challenge: model the resource-to-performance behavior of
queries. To address this we design PerfOrator an “eloquent”
performance model that, given a hypothetical hardware con-
figuration, produces a resource consumption skyline.

Resource-to-performance modeling of BigData queries is
hard for two reasons. First, the performance of a multi-stage
query is governed by the volume of data processed and trans-
ferred by each stage (processing more data requires more re-
sources, takes longer). Estimating data-sizes for a BigData

query that uses arbitrary UDFs/UDAs, and processes data
that lacks statistics is hard (See § 2 for details). Second the
time to process data depends on the performance character-
istics of hardware resources and how the execution frame-
work exploits parallelism to overlap the access to different
resources. Scalable and accurate models are needed for esti-
mation in such a massively parallel setting.

PerfOrator uses two estimators. 1) The Data-size Esti-
mator employs non-linear regression over few profile runs
on sample data (no data statistics needed) to model rela-
tional operators and UDFs alike. 2) The Performance esti-
mator uses (a) analytical models to reason about parallelism
optimization of BigData execution frameworks and (b) hard-
ware calibration to generalize time estimates over different
cluster configurations.

We showcase the flexibility of our models (§ 6), by em-
bedding them in two scenario-specific optimizers: 1) pro-
visioning of cloud-based clusters, and 2) reservation of re-
source skylines for SLA jobs in on-prem settings [10].

We then thoroughly validate its performance on popular
benchmarks [15] and production workloads from Microsoft.
The results (§ 7) are very encouraging, PerfOrator’s data
size estimator systematically outperforms production sys-
tems like Hive by up to 7 orders of magnitude. It provides
very accurate runtime estimates, within a factor 2, for all
tested queries. At provisioning cluster on the cloud, PerfOra-
tor is on average within 0.6% of optimal. By contrast, base-
line approaches or optimal, fixed strategies incur extra costs
of 45% or more. Moreover, PerfOrator performs 13x better
than an expert at the most challenging Resource Optimiza-
tion task: skyline prediction.
Limitations Our solution solves Resource Optimization as
an orthogonal problem to Query Optimization. We do so
to highlight the potential benefits of resource optimization
in the BigData setting. Our solution is broad and can also
be applied directly to resource optimize hand coded non-
declarative BigData jobs. Designing a joint optimizer is part
of our future research agenda.

2. Problem Settings
The problem can be formulated as follows:

Resource Optimization: given a fixed computational
task and input data, select a bounded, time-varying allo-
cation of hardware resources that maximizes an objective
function f , where f is a function of the task’s performance
and resource consumption.

In tackling this problem we assume the following:

1. The computational task, also referred to as a query or
job, is fully defined (e.g., a query with a chosen execution
plan, and known input data.).

2. The hardware alternatives are well-defined and bounded
(e.g., ability to assign up to n VM instances from k known
types, in each of t time intervals.).

416

Figure 2. Comparison of cardinality estimates for UDA’s and
deep pipelines. The figure shows the ratio error (predicted/actual)
for different estimators. HybGEE-x and HybSkew-x are sampling
based distinct value estimators (x is the sampling rate). HIVE CBO
is the statistics based estimator used by Hive. PerfOrator is our
system. Note : errors are plotted in log scale.

3. Our system is allowed to perform off-line calibration
on each hardware type (e.g., ran a few purpose-built queries
on each VM type.).

4. Our system has access to bounded amounts of re-
sources of one type at optimization time (e.g., to profile the
query on sample data.).

A solution to this problem is likely to consist of: (i) a faithful
resource-to-performance model and (ii) an algorithm that
repeatedly invokes this model to explore the O(n ∗ k ∗ t)
solution space, to optimize the function f .
Solution alternatives Next we contrast our solution with
existing approaches in related settings. Our solution to (i)
builds on two components, a data size estimator and a per-
formance estimator, we begin with these.

Data size estimation The data size estimation problem is
similar to the problem of cardinality estimation, one that is
studied richly in the context of relational databases [14]. The
problem of data size estimation for BigData queries is espe-
cially hard because of the common use of UDFs and UDAs
besides more traditional relational operators. Our analysis of
a five month long trace of production Hive sessions reveals
that about 40% of the queries use UDFs. This is consistent
with previous studies [5]. Second, even with SQL operators,
deep pipelines, complex predicates and correlation among
data produce compounded errors of up to multiple orders
of magnitude (see [26] for a recent analysis). Third, most
cardinality estimation techniques rely on having good statis-
tics on the input data. Such statistics may not be available
as data is of most value as it arrives (gathering statistics can
take hours) and is often stored in formats that require pre-
processing (decompression/deserialization) as part of query
execution. Last, since performance is affected by physical
IO (and not logical record count), we must focus on actual
data-size vs cardinality, to account for storage formats and
compression.

In Figure 2 we show the error in cardinalities predicted by
the Hive cost-based optimizer [2] for the example queries.

It also compares with distinct-value estimators from litera-
ture [7, 16] when applied directly to UDA’s and deep queries.
We observed orders of magnitude errors for most practical
cases. We need to push sample sizes for the state-of-the-art
approaches all the way to 50% (impractical) to obtain esti-
mates within a factor 2. To address these challenges, we pro-
pose a new regression based data-size estimator, discussed
in § 4. Figure 2 also shows our approach, with estimation
errors of less than 10% at sample sizes of 1,2 and 3%.

Performance estimation Estimating performance in this
context is particularly hard, because a BigData job runs on
a massively parallel system. In particular for resource opti-
mization estimation across different cluster types (without
profiling the query on each) and modeling different frame-
works is non-trivial.

Recent related work [11, 22, 25, 33, 35] has recognized
the relevance of this problem and achieved solid results
on slightly simplified variants: runtime estimation on the
same hardware where queries are profiled, or for single VM
execution of queries on different cloud VM types, instead of
full-skyline estimation on different hardware for arbitrarily
deep SQL-based DAGs. A complete discussion of related
work appears in § 8. PerfOrator addresses these challenges
using a gray box model that offloads query independent
modeling to offline calibration (see § 5).

Searching over a solution space Our solution to (ii) above
is related to the problem of finding an optimal query plan
over a space of possible solutions. Our current search algo-
rithms avoid exploring a large space by exploiting scenario
specific strategies (more details in § 6). In particular they
avoid having to explore over the dense time dimension (t)
making the problem more tractable. In future when we in-
tegrate query and resource optimization we hope to lever-
age work on parametric and multi-objective query optimiza-
tion [20, 28, 30] to efficiently search the combined space.

3. Overview
In this section we provide an overview of our solution. The
path of a query (Figure 3) through the system is as follows:
(step 1) the query is fed to an existing query-optimizer,
(step 2) the resulting execution plan is analyzed to derive
the resource-to-performance model, (step 3) the model is
used to pick the best resource allocation and to enforce it by
interacting with the underlying resource management layer.

Step 1 This step is language/application specific. Our cur-
rent implementation leverages Hive’s query optimizer, and
its pre-execution hooks to integrate with Step 2. We are cur-
rently exploring integration with Cosmos [6] and Spark [37].

Step 2 This step forms the core of this paper. PerfOrator
consists of two parts, a data-size estimator (§ 4), and a per-
formance estimator (§ 5) as shown in Figure 3. The various
stages are discussed in more detail below:

417

Figure 3. Resource optimization flow

Sampling (online, cacheable) The input tables of the
query are identified using a semantics analyzer and sam-
ples of different sizes for such tables are created if they
do not already exist. The cost of sampling is amortized by
reusing samples across queries.

Profiling (online) The query is rewritten to run on the
samples of the input tables and the data sizes at the input
and output of each stage are collected. The CPU cycles
spent processing each stage are also collected. Note that,
in settings where online profiling is deemed too expensive,
PerfOrator can leverage historical models or statistics based
cardinality estimators. We showcase our integration with
Hive’s cardinality estimator and its impact on quality in § 7.

Non-linear regression (online) Non-linear regression is
used to learn a function that relates input to output data
sizes for each stage, as well the relationship between the
input data size of a stage and the CPU cycles required.
Once the functions are learned from the samples, the system
propagates the sizes for the original query throughout all
the stages, and thus estimates the full-scale data sizes and
computation requirements for all stages of the query.

Hardware modeling (predominantly offline) Hardware
performance profiles are used to translate data-sizes in bytes
into time components in seconds. In particular they are used
to estimate the time needed for reading, writing and shuf-
fling data in each stage. They also translate estimated com-
pute time on the profile run to corresponding estimates on
alternative hardware configurations. The performance pro-
files are themselves gathered offline in a black box manner
by employing calibration queries for different hardware re-
sources (memory, disk, HDFS, Azure store, network, CPU)
on each cluster type. The calibrations queries are run many
times to estimate variance in hardware performance.

Framework modeling (online) PerfOrator employs white-
box analytical models to reason about the effectiveness of
parallelization optimizations used by different execution

frameworks. The models take as input a parallelization sum-
mary for an execution framework (constructed offline from
performance logs and through code inspection) and deter-
mine which time components are critical and contribute to
execution time of the stage and which can be hidden due
to parallelism. It estimates both the mean and variance in
execution time of each stage. The model also estimates the
degree of parallelism by mimicking the algorithm that the
execution framework uses. We currently target MapReduce
and Tez execution frameworks. Note that the models are
abstract and easily extensible to other frameworks (§ 5.3).

The above process terminates once a complete model for the
query is constructed, this model can then be cheaply probed
(< 1ms) to explore the performance of a query on different
type and amount of hardware resources.

Step 3 This step is specific to the optimization one wants
to perform (§ 6). We implement two variants integrating
PerfOrator with Azure’s resource provisioner, and YARN’s
reservation subsystem [10]. Our cloud integration module
allows users to specify a range of hardware configurations
to consider, and asks the system to minimize either the total
dollar cost or execution time of queries. The integration with
YARN is designed to provide the skyline of a job’s resource
demand. This is used by YARN’s reservation system API,
that, in turn, ensures enough resources are booked for the
job to complete within a user-specified SLA [10].

4. Data size estimation
Algorithm 1 shows the pseudo code for our data size estima-
tor. The code has three parts corresponding to the sampling,
profiling and regression steps. We begin with a description
of the regression step which forms the core of our technique.
We describe the sampling and profiling steps later in Sec-
tions 4.2 and 4.3 respectively.

4.1 Non-linear regression
Non linear regression is a statistical process for estimating
the relationship between input variables and their dependent
observed variables. Given a function form F with some un-
known variables statistical techniques are used to find the
values for the unknowns that fit the observations best. In our
setting we are interested in discovering the relationship be-
tween the data sizes of successive stages. That is the relation-
ship between the size of the input to a stage and its output,
and also between the size of output of previous stages and
the input to a stage. In this paper we explore functions of the
form out put = b(input)c where input is a measure of stage
input, out put is the observed variable representing the output
data size, b and c are the unknown parameters. This function
can fit super-linear, sub-linear and linear relationships. We
show in § 4.1.1 that this captures the input-output relations
that we expect relational operators and UDFs to exhibit. In
addition this function has two other desirable features.

418

Algorithm 1 DataSizeEstimator (Q, sampleRates)
1: inputTables = getAllInputTables(Q)
2: fn = Function(“b∗ xc”)
3: for s in sampleRates do

// Generate samples
4: for t in inputTables do
5: createSampleTableIfNotExist(t,s)
6: end for

// Profile query on samples of data
7: Qs = rewriteQuery(Q,s)
8: Ps = runQuery(Qs)
9: annotatedPlan = annotateQuery(Q, Ps)

10: end for

// Estimate data sizes
11: for v in topDownTraversal(annotatedPlan) do

// Estimate data transferred along each edge
12: for u in v.inputVertices do
13: params = regression(v.inSizes, u.outSizes, fn)
14: EstinSize + = eval(fn, u.EstinSize, params)
15: end for

//Estimate output size from input
16: params = regression(v.inSizes,v.outSizes,fn)
17: EstoutSize = eval(fn, EstinSize, params)

//Estimate CPU cycles
18: params = regression(v.inSizes,v.cpuCycles, fn)
19: EstcpuCyclesv = eval(fn,EstinSize, params)
20: annotatedPlan = annotateQuery(annotatedPlan, Est)
21: end for
22: return annotatedPlan

Simplicity The overhead of the estimator depends on the
number of samples needed. The more the unknowns the
larger the number of samples needed and larger the over-
head. This function has only two unknowns and, as we
demonstrate through experiments, we make good predic-
tions with just three observations.

Composabilty We are only interested in data sizes at
stage boundaries. The desired relationship is just a compo-
sition of the functions for individual operators. Composabil-
ity allows us to directly observe and predict the input-output
relationship at stage boundaries.

We use the non-linear regression module lm that is part of the
R statistical analysis tool. It uses the LevenbergMarquardt
algorithm [1] for regression. We make predictions for stages
by traversing down the plan from source stages (refer Algo-
rithm 1). At each stage we learn one function per incoming
edge for the size of the data transferred along that edge and
a function that relates the input and output sizes of a stage.
We estimate the size of data transferred along each edge by
applying the corresponding function to the predicted output
of the corresponding source stage. The predicted input size
of a stage is the sum of such sizes. We predict the output

Figure 4. Input-output relationships: (on the left) values of c in
out put = b(input)c for all stages of BigBench queries; (on the
right) input-to-output behavior for four selected operators.

size of a stage by applying the learnt input-output function
at the predicted input. In addition to data sizes PerfOrator
also uses regression to estimate the CPU cycles spent on the
computation within a stage.

4.1.1 Analysis of operators
Figure 4 shows the function forms observed in practice. It
plots the function exponent against the output size on a log
scale. While there are many exponents near 1 a majority
of the functions are non-linear (validating our choice of
functions). On close inspection we find that even within the
stages of a single query non-trivial sub-linear, super-linear
and near-constant relationships are seen in arbitrary order,
and across queries similar operators exhibit very different
behavior.

Our observations are consistent with function forms re-
lational operators and UDFs are expected to exhibit (from
analysis of cardinality estimation literature and manual in-
spection of UDFs respectively). We summarize the expected
behavior of operators below.

Selection, projection and simple 1:1 UDFs Most unary
relational operators (selections and projections) are expected
to exhibit a linear behavior with truly random samples of the
input to them [17], c = 1,b≤ 1. Sampling based techniques
are known to estimate the selectivity (ratio of the output to
the input) of such operators well. In practice we find that
while selectivity can be estimated with high accuracy the
estimated output cardinalities can still be off as the size of
the input to the operator itself could be hard to estimate.
Simple 1:1 UDFs can produce at-most one output record per
input record and can be expected to have a similar behavior.

Grouping Aggregations and UDAs SQL comes with a
fixed set of aggregations that all only emit a single output
per group. The output cardinality of an aggregation depends
on the number distinct values that the grouping key can take
and distinct value estimators have been designed [7, 16] to

419

estimate their cardinality. UDA’s and custom reducers gen-
eralize grouping aggregations by allowing users to write ar-
bitrary aggregation functions that can produce zero or more
rows per group. DVE does not directly apply to UDA’s as
many times the output cardinality of the aggregation is not
proportional to the number of distinct values (The UDA of
Q1 is an example). In section 2 we saw how using DVE for
UDA’s and multi-stage queries leads to poor estimates.

We find that while grouping SQL aggregations are sub-
linear or linear c≤ 1, UDA’s can be super-linear as well c >
0. Sometimes there are very few groups and the relationship
appears like a constant function c = 0.

Joins and 1:many UDFs Natural joins are richly studied
in literature. It is impossible to cover all literature here. Of-
ten joins are performed on a primary key. For such joins typi-
cally c= 1. For other natural joins we expect the relationship
to be super-linear (c > 1) [17].

Other forms of joins like semi-joins and outer-joins are
less common but do occur in practice. Notice that while joins
are binary operators, our function directly relates the input
size (sum of the sizes of the two tables) to the size of the
join output. Other forms of functions could be explored but
our evaluation reveals that this simple function works well
in practice. 1:many UDFs can produce zero or more output
records for every input record, they are expected have c > 1.

Count(*) and limit The last few stages often use operators
like count(*) and limit. The size of the output here is typi-
cally a constant b, independent of the size of the input c = 0.

In summary we find that input-output relationships can be
super-linear, sub-linear, linear or constant. The function
form out put = b(input)c can fit all these shapes.

4.2 The sampling step
The key challenge with sampling is to generate samples that
(i) can flow through the entire query (ii) can be generated at
a low overhead. Early database cardinality estimators build
on uniform and independent samples of different tables [7,
16, 17]. [17] shows that sampling blocks of data instead of
rows still produces unbiased estimates. A major drawback of
sampling the tables independently is that join attribute values
that appear rarely in one table can appear frequently in the
other table and the estimate can be off if such values are not
part of the sample. Literature shows that better sampling can
be done if the possible joins relationships are known upfront
(for example, referential integrity constraints for primay key
based joins) or once the query is submitted [12, 23, 32, 36].

With big-data systems like Hive constraints between in-
put tables are not explicitly specified. Also in our setting
sampling online (once the query is available) can signifi-
cantly increase the estimation overhead. In this paper we
propose a simple practical sampling strategy that does not
need explicit information about the schema of the data. We
follow a skewed sampling strategy where we only create uni-

form random samples of large tables while we use complete
small tables even during sample runs. This strategy is based
on the observation [36] that joins are typically performed
between, large fact tables that contain the information that
needs to be analyzed, and small dimension tables that con-
tain descriptive attributes for entries in the fact table. For
such joins we expect to see some output when our skewed
samples are joined, avoiding the sampling coverage prob-
lem. Further, the use of multiple samples to perform regres-
sion reduces the chances of poor coverage.

To amortize sampling overhead we reuse samples across
queries and handle data modifications through triggers on
Hive-DDL. Further we implement a block sampling strategy
for distributed stores that allows us to sample data without
scanning entire tables. Such stores split the data into multiple
blocks and distribute them over the cluster. We implement
block sampling by accessing the meta data about where
the block are stored and choosing a subset of the blocks
uniformly at random. We then collect the blocks in parallel.

4.3 The profiling step
We generate observations for regression through profile runs
of the query on multiple samples of the input tables. The
samples we use are typically small enough that we can run
multiple profile runs concurrently on the same cluster. We
create concurrent Hive sessions, that each run the query on
one sample and collect statistics from the statistics server.
The observations include the sizes of data at input and output
of each stage, the size of data at source and target of each
edge and CPU cycles spent in each stage. These observations
are then fed into the regression step in Algorithm 1.

5. Performance estimation
Figure 5 shows our running example (BigBench Q1), flow-
ing through PerfOrator. To recap, first a query plan is gen-
erated by a standard query optimizer. Next the data-size es-
timator annotates the plan with functions learned via non-
linear regression. At this point the performance estimator
kicks in (Algorithm 2). It parses the query plan top-down
and does the following for each stage. First (§ 5.1), it lever-
ages hardware profile to estimate how much time it would
take for each task to read, write, process, and shuffle the
amount of data estimated in the previous step. All estimated
time components are Gaussian random variates with a mean
and a variance. Next (§ 5.2), the system leverages an ex-
plicit model of framework parallelism to determine which
time components are on the critical path and how much do
they contribute to execution time. It also estimates the degree
of parallelism for the stage by mimicking the algorithm used
by the execution framework3. The result is a skyline of the
parallelism and time taken for each stage. Other interesting
metrics like overall execution time and dollar cost of running
a query can be derived from the skyline.

3 In the interest of space we do not describe the complete algorithm here.

420

Cluster 3
profile

Data size
estimator

Hardware
Modeling

Framework
modeling

Query
optimizer

size= 1.2𝑥1.5

𝑐𝑝𝑢 = 1.02𝑥0.99

1.87TB 41MB

size= 0.86𝑥0.98

𝑐𝑝𝑢 = 0.83𝑥0.7
size= 0.98𝑥0.02

𝑐𝑝𝑢 = 1.87𝑥0.04

size= 0.3𝑥0.003

𝑐𝑝𝑢 = 1.2𝑥0.83

ts=0±0,
𝑡𝑟=1640±380
𝑡𝑐=90±18,
𝑡𝑤=129±13

ts=0±0,
𝑡𝑟=0.5±0.01
𝑡𝑐=90±18,
𝑡𝑤=0.01±0.03

ts=490±160,
𝑡𝑟=82±2
𝑡𝑐=117±21,
𝑡𝑤=769±152

ts=760±232,
𝑡𝑟=102±3
𝑡𝑐=73±0.01,
𝑡𝑤=0.8±0

Cluster 2
profileCluster 1

profile

time

co
n

ta
in

er
s

time

co
n

ta
in

er
s

time

co
n

ta
in

er
s

$163

$73

$91
ts=0±0,
𝑡𝑟=1640±380
𝑡𝑐=90±18,
𝑡𝑤=129±13

ts=0±0,
𝑡𝑟=0.5±0.01
𝑡𝑐=90±18,
𝑡𝑤=0.01±0.03

ts=490±160,
𝑡𝑟=82±2
𝑡𝑐=117±21,
𝑡𝑤=769±152

ts=760±232,
𝑡𝑟=102±3
𝑡𝑐=73±0.01,
𝑡𝑤=0.8±0

ts=0±0,
𝑡𝑟=1640±380
𝑡𝑐=90±18,
𝑡𝑤=129±13

ts=0±0,
𝑡𝑟=0.5±0.01
𝑡𝑐=90±18,
𝑡𝑤=0.01±0.03

ts=490±160,
𝑡𝑟=82±2
𝑡𝑐=117±21,
𝑡𝑤=769±152

ts=760±232,
𝑡𝑟=102±3
𝑡𝑐=73±0.01,
𝑡𝑤=0.8±0

Figure 5. Figure shows the flow of bigBench query1 through PerfOrator illustrating the output of each component.

Resources Parameters Query

Write
HDFS, Disk,
AzureStore,
in-mem store

sizePerTask, rowSize,
rCount, storeType

Two stage query, the map stage uses a single task to produce one row per
reducer and the reduce stage uses rCount reducers to write sizePerTask

rowSize
random rows of rowSize MB. The time spent in the second stage is recorded.

Read
HDFS, Disk,
AzureStore,
in-mem Store

sizePerTask, rowSize,
taskCount, storeType

Single stage query that reads back appropriate data written by a write
calibration query. The time spent in the stage is recorded.

Shuffle network mCount, rCount, size
Two stage query that transfers size MB of data from each of mCount
mappers to rCount reducers. The time spent in the shuffle phase is recorded.

Compute CPU loopCount, numTasks
Single stage job that loops for loopCount iterations and performs a compute
intensive hash function. The time spent in the stage is recorded.

Table 1. Calibration queries

Algorithm 2 PerformanceEstimator (annotatedPlan, cluster,
framework)

1: Pro f ile = getClusterProfile(cluster)
2: GaussianVar skyline, t∗
3: for stage in topDownTraversal(query) do
4: tasks = NumberOfTasks(stage)
5: for u in v.inputVertices do
6: tshu f f le + = SHUFFLE[u.outSize, u.tasks, v.tasks]
7: end for
8: tread = READ[stage.inSize, tasks, stage.InStoreType]
9: twrite = WRITE[stage.outSize, tasks, stage.OutStoreType]

10: tcompute = COMPUTE[stage.cpuCycles, tasks, cluster,
SampleRunCluster]

11: skylinweheight [stage] = Max(tasks,cluster.capacity)
12: skylinewidth[stage] = FrameworkModel(t∗, framework)
13: end for
14: return skyline

5.1 Hardware Modeling
A major part of the hardware modeling is gathering perfor-
mance profiles, this is query independent and done offline.

Cluster performance profiling via calibration queries Per-
formance profiles are used to answer the following three
questions about the performance characteristics of a cluster.
1) How much time would it take to read or write a given

amount of data using a given number of tasks from a storage
component? 2) How much time would it take to transfer a
given amount of data over the network and store it at the
target using a given number of source and target tasks? 3)
How many compute cycles would it take to perform a fixed
computation with a given number of tasks? PerfOrator runs
Hive formulations of the calibration queries shown in ta-
ble 1) to construct such profiles. We calibrate separately for
MapReduce and Tez to capture the overheads of the frame-
work when accessing the resources. We bound the calibra-
tion space by collecting profiles at a subset of data-size/task
combinations and use linear interpolation for intermediate
points. We vary the data size in powers of two starting with
1MB up to 20TB. And we vary the number of tasks from 1 to
20× cluster capacity, where cluster capacity is the maxi-
mum number of tasks that the cluster can run concurrently.
We run each query multiple times (about 100 times) and fit
a normal distribution to the observations across runs. Note
that the profiles intrinsically capture the effects of data par-
allelism as they are parameterized by number of tasks/data-
blocks to use. So while the estimates are per-task, they ac-
count for cross-task effects.

From data-sizes to time components The hardware pro-
files constructed above are used to translate the estimated
data sizes and computational requirements (from § 4) into
4 time components per stage. Translation is made assuming

421

that the load is equally divided among all the tasks. Detect-
ing skew and modeling it is a challenging problem that we do
not address here. For each of shuffle, read, compute, write,
the hardware profiles constructed offline are accessed with
appropriate parameters (data size, number of tasks, store-
Type etc) and time estimate (both mean and variance) de-
rived. As reads and writes could be performed, depending
on the framework to main-memory, local disk, remote stor-
age, appropriate hardware profiles are picked based on the
execution plan. For shuffle, in case a stage has multiple pre-
decessors we add-up the costs of shuffling data from each
of them. For computation, we translate the estimated CPU-
cycles (from Algorithm 1) on the sample run cluster to each
target cluster. The translation is performed based on their rel-
ative compute performance as measured by the calibration
queries. This way we estimate the performance on different
clusters without having to profile online on each of them.

5.2 Framework Modeling
If an execution framework were to only exploit data par-
allelism then the execution time of a stage would simply
be a sum of all the above time components for that stage
(The analytical model proposed in Bazaar [22] is of this
form). However, the execution framework typically exploits
pipeline parallelism to overlap access to different hardware
resources. When successive phases (shuffle, read, compute
or write) are completely pipelined the time taken to complete
them depends on the maximum of their time components.

Through a combination of log analysis and manual
code inspection we construct offline parallelization sum-
maries for two popular execution frameworks, namely Tez
and MapReduce. The summaries identify what part of
tread , twrite, tcompute, tshu f f le can run in parallel and from these
execution time estimates are derived as below.

Tez The cost for each stage of Tez is as given below.

tstagei = tshu f f lePar + tshu f f leSeq + ttask

tshu f f lePar = Max
(
tshu f f le×

(w−1)
w

−
tprev

w
,0
)

tshu f f leSeq =
tshu f f le

w
ttask = max(tread , tcompute, twrite)

Where:
prev = stagek st. tstagek = max j∈Pred(Stagei){tstage j}

w =

⌈
tasks[stageprev]

cluster capacity

⌉
Tez completely pipelines read, compute and write phases

so the time to complete these phases is just the max of their
costs. This is captured by the third term (ttask). Shuffle is
more interesting, shuffle is typically overlapped with the last
wave of tasks (a wave consists of cluster capacity tasks) for
the previous stage4. We model shuffle with two terms, the

4 If there are multiple predecessor stages we consider the overlap with the
execution of the slowest of such stages (prev in equations).

first term accounts for the parallelism between the shuffle
of output produced by all but the last wave of tasks and the
execution of the last wave. The second term accounts for the
shuffle of the last wave of tasks, which happens sequentially.

Hadoop MapReduce Due to heavy use of disks and ineffi-
ciencies in implementation (as pointed out in [37] as well)
MapReduce is unable to pipeline read and write phases.
The model for MapReduce therefore has an additive term
for writes. With MapReduce the DAG contains alternating
map and reduce stages. Reduce stages shuffle data in from
the previous map stage. Maps read in their data from HDFS
(where reducers write) and do not have a shuffle phase.

For map stages:

tstage = treadcompute + twrite

treadCompute = max(tread , tcompute)

For reduce stages:

tstagei = tshu f f lePar + tshu f f leSeq+

treadCompute + twrite

tshu f f lePar = max
(
tshu f f le×

(w−1)
w

−
tprev

w
,0
)

tshu f f lePar =
tshu f f le

w
treadCompute = max(tread , tcompute)

Note that MapReduce ends up accessing more latency in-
tensive resources and this can further slow down execution.
This will be captured by the calibration queries.

Solving analytical equations
As described above, given time components for a query, the
appropriate analytical equations are setup based on the par-
allelism summary for the execution framework. Note that
solving the equations is trivial if the time components were
point estimates. For PerfOrator the components are Gaus-
sian random variables and we want to estimate a distribu-
tion for the stage time. The sum of two Gaussian distribu-
tions is also a Gaussian distribution N(µ1,σ1)+N(µ2,σ2) =
N(µ1 + µ2,σ1 + σ2). The max of two Gaussians does not
have a closed form solution. We use a sampling based to ap-
proach to fit a Gaussian over a max of two Gaussians. We
construct many sample pairs by sampling each Input Gaus-
sian independently. We construct an output set which con-
sists of the max value for each pair. A reasonable approxi-
mation for the output distribution is a Gaussian with mean
and variance of the output set.

5.3 Discussion
The performance estimator captures the effects of pipeline
and data parallelism at a high-level. It also captures the ef-
fects of memory optimizations employed by modern frame-
works. It took us about 2 man months to extend the model
from MapReduce to Tez. Other frameworks (Cosmos [6],
Spark [37]) employ similar optimizations and we believe our
models can be extended to them with a similar effort.

422

6. Resource Optimizers
Cloud Provisioning This resource optimizer explores the
space of different cluster provisioning options offered by the
cloud provider (Azure in our case) and provisions the op-
timal cluster. The optimality criteria is defined by any ob-
jective function of completion time and cost incurred. The
search space size is O(n ∗ k ∗ t) where n is the maximum
size of the cluster, k is the number of VM types available
and t is the maximum number of time intervals considered
for provisioning. In a typical setting, n can range from 1
to few thousands, k ranges from 10 to 50, and since time
granularity is in the order of hours t is typically between 0
and few tens. The optimizer explores the space exhaustively
along (n,k) dimensions by invoking PerfOrator on each (n,k)
point and obtaining an estimated t̂ per point. From this it
can find the point that is optimal with respect to the objec-
tive function. After profiling, each invocation of PerfOrator
is rather cheap (0.35 milliseconds). During experiments re-
source provisioning decision took 1.3 secs on average and
never more than 4 secs. Trivial further speed ups can be
achieved via parallel exploration.
YARN resource reservation A key challenge in shared Big-
Data clusters is to offer Service Level Agreements(SLA) for
production jobs, while keeping clusters highly utilized [10].
Cluster resource managers such as Hadoop/YARN provide
users with the ability to “reserve” resources for production
jobs. This consists in specifying ahead of job execution a
skyline of resource needs. The resource manager accepting
such reservation requests will ensure dedicated access to re-
served resources, thus guaranteeing execution SLAs.

The key challenge here is to find the “tightest” skyline
that can ensure that the SLA will be met. PerfOrator is a
natural fit for this. Further, its ability to estimate per-stage
average and variance is key to make principled decisions
between safely over-estimating the job’s need (but possibly
wasting resources), and under-estimating the resource needs
thus violating SLAs (but allowing better cluster utilization).

Practical issues such as stragglers, make handling this
trade-off very difficult. The resource optimizer employs a
clever trick to handle this. Instead of allocating rectangles of
allocation, it produces for each stage an ”L” shaped alloca-
tion, where lots of parallelism is given for the predicted time,
but a “tail” is also allocated to account for stragglers (see
Figure 7 for an illustration). This significantly mitigates SLA
violation due to stragglers, with a low resource wastage.

7. Evaluation
Workloads We evaluate PerfOrator on: 1) BigBench [15], a
benchmark suite for BigData systems currently in consider-
ation for TPC standardization, 26 queries on a 10TB dataset,
and 2) several production queries analyzing Bing logs, on a
dataset of 7.5TB.
Hardware and framework settings Evaluation is per-
formed on multiple Azure clusters, comprised of 3 different

VM Type cores RAM Disk Price
D3 4 14GB 200GB 0.62 USD/Hr
D4 8 28GB 400GB 1.24 USD/Hr
D12 4 28GB 200GB 0.76 USD/Hr

Table 2. VM types

VM types (see Table 2), with different bandwidth to storage
(not published), and in different data-centers (Central US,
East US, South East Asia). We also evaluate on a production
grade on-prem cluster with 80 nodes each equipped with 32
CPU cores, 12 HDD, with a 10GBs flat network. We evalu-
ate queries on both the execution frameworks we model.
Comparisons We compare against optimal allocations when-
ever known, and spotAdapt a baseline estimator from past
literature [25]. The baseline, proposed for single node query
evaluation, employs regression to directly estimate execu-
tion time of each stage (as opposed to cardinality) on dif-
ferent AWS VMs. Just like PerfOrator it uses observations
from sample runs as input to regression. Unless otherwise
mentioned we use samples at 1,2 and 3% for both PerfOra-
torand the baseline. The profiling overhead of the baseline
is the same as that of PerfOrator.
PerfOrator variants In order to show the different contri-
butions of our data-size estimator and performance estima-
tor, we report the performance of PerfOrator using different
data-size estimators: 1) our estimator from § 4 (simply called
PerfOrator), 2) an oracle providing perfect data-size infor-
mation (called OracleDS+PerfOrator in figures), and 3) the
estimator used in the Hive optimizer (Hive-DS+PerfOrator).
Note that to enable this scenario we allow the Hive optimizer
to create statistics on data. This implies the data cannot be
operated upon for a few hours after it has been bulk loaded.
However, this option does avoid profiling and represents our
proposed solution for scenarios in which even the limited
profiling cost of our data-size estimator (analyzed in § 7.2.1),
is not acceptable.

7.1 Resource optimization results
We begin by presenting results for the resource optimization
scenario’s of § 6. Later we provide a breakdown of the results
for each estimator. To account for variance across runs we
run each query at-least 5 times for each cluster configuration.
Resource provisioning We demonstrate the utility of PerfO-
rator towards picking the best (cheapest) cloud-based cluster
configuration for each query in BigBench, this is akin to our
motivational user-experiments in § 1. We consider six Azure
clusters, made up of 3 VM types (D3, D12 and D4) and ei-
ther 32 or 128 VMs each. Clusters are spread across three
different data centers with different storage bandwidths, to
further differentiate the options (hence stressing our hard-
ware profiling models). PerfOrator observes a profile run for
each query in BigBench on one cluster type/size, and esti-
mates the performance across all cluster options, and then
our cloud provisioner picks the cheapest option.

423

Figure 6. Cloud provisioning for BigBench.

Figure 7. Actual and predicted skylines for Q1.

Figure 6, shows the CDF of the costs incurred by all
the queries under different allocations strategies. PerfOrator
perfectly matches the optimal strategy for all but a couple of
queries, for which it picks the second-best option (which is
very close to optimal). The best-one-cluster solution is an
optimal strategy if only one cluster can be chosen for all
queries. While this looks good for most queries, the average
cost increase over PerfOrator’s pick is 45% (due to few re-
ally poorly matched queries). Finally the baseline performs
poorly, a regression on execution time does not seem suffi-
cient to rank different cluster alternatives. A positive surprise
for us, was how well Hive-DS+PerfOrator behaved. This
strategy is our fallback in case online profiling is deemed
too expensive. Discussion The reason Hive’s results are so
good is that this scenario is a “relative” comparison of allo-
cation plans, much like what happens in query optimization
where multiple options for the same query are compared.
However, using the same strategy for allocating an entire
workload (where comparisons across queries matter) leads
to substantially worse results. Hive-DS+PerfOrator’s errors
grow by over 25%, while PerfOrator has the same accuracy
because it is better suited to compare across queries.
Resource reservation (for job SLAs)

For this application PerfOrator estimatess skylines to re-
serve resources on a YARN cluster [10]. This is by far the
hardest challenge for PerfOrator and for the human experts.

Figure 8. PerfOrator vs Humans: skyline prediction.

Figure 9. CDF of skyline area error per query run (Big-
Bench + Bing).

Figure 7 showcases the skyline reservations we gener-
ate (using PerfOrator’s mean and sigma estimates for each
stage) for BigBench Q1 on a cluster capable of 1024 parallel
containers. The core challenge is the trade-off between over-
and under-allocation—which in turn affect SLA attainment
and cluster utilization (overallocation is safe but wasteful).

In order to put our results in perspective, we compare
(on a 8-query subset of BigBench) PerfOrator against two
users (one expert, and one regular user), who were given
the chance to run several profile runs, and inspect the data
(for a substantial amount of time). The results are shown in
Figure 8. To account for both over and under allocation, we
calculate area error as ∑ |predicted−actual|

∑actual (see Figure 7 for an
illustration). PerfOrator’s error is typically at least an order
of magnitude less than the one incurred by the users. Note
that while the expert user more diligently profiled each run
and manually interpolated the results, the “normal user”,
tried to generalize across queries, relying on their intuition
of what the queries would do. Both incur very high errors,
this confirms that skyline prediction is one of the hardest
challenges in Resource Optimization.

Figure 9 summarizes the accuracy of skyline reservations
in terms of an error CDF. We treat each run of the query sep-
arately, as we are interested in reserving sufficient resources
even for slow runs. As can be seen PerfOrator does very

424

Figure 10. Accuracy of data-size estimation for PerfOrator
S〈1,2,3〉 (above) and Hive (below). The plot is in log-log
scale. Different colors are used to capture the depth of a stage
within the query execution plan.

well, 90+% of runs have an error of less than 2×. Baseline
trails significantly. Allocating at µ +σ does not increase the
area error by much, and lowers the risk of SLA violation to
< 5%. Allocating at µ+2σ further lowers the SLA violation
risk, but substantially increases the error. In this context, the
Hive data-size estimator is not sufficiently precise and error
remains very large for the top 10% of queries.

7.2 Analysis of estimators
7.2.1 Data size estimation
To examine the accuracy and overhead of our regression
based data-size estimator we experimented with profile runs
for several sample combinations. We create samples at 10
different sample rates of the input data (0.1%, 0.2%, 0.3%,
1%, 2%, 3%, 4%, 5%, 10%, and 15%). We periodically re-
generated samples to make sure that our results are not bi-
ased by specific samples. We gathered accuracy and over-
head results for many different combinations of the sample
rates. We use the shorthand S〈x1,x2...xn〉 to represent esti-
mations using sample runs at x1 to xn percent. For exam-
ple S〈1,2,3〉 represents estimations made by using sampling
rates 1%,2%,3% in algorithm 1.
Estimation Accuracy Figure 10 compares the actual data
sizes with our estimates and Hive optimizer estimates on
a log-log plot. PerfOrator(S〈1,2,3〉) is very accurate with
97% estimates within the 10x error margin and about 90%
of the estimates within the 2x margin. This is a significant
improvement over cardinality estimates currently used by
the optimizer in Hive where 41% of the estimates are off

Figure 11. Accuracy of PerfOrator with profile runs at dif-
ferent sample rate combinations. The plot shows both the ac-
tual and predicted data-sizes for S〈0.1,0.2,0.3〉, S〈5,10,15〉.
The plot is in log-log scale

by more than 10x and close to 65% are off by more than
2x. The estimates are as good for stages with UDFs as for
other stages. Also unlike Hive where the accuracy drops
significantly with increase in query depth, the degradation
in accuracy is more gradual in PerfOrator.

Figure 11 shows the results for smaller/larger samples
sizes. Interestingly, even S〈0.1,0.2,0.3〉 achieves good es-
timations with 82% estimates within a factor of 2. Unsur-
prisingly larger samples, such as S〈5,10,15〉 achieve better
estimation, but the benefits are not likely worth the increased
overhead (discussed next). We find S〈1,2,3〉 to be a very
good practical compromise.

Figure 12. Estimation overhead as a fraction of execution
time and cost.

Estimation overhead Figures 12 compares the estimation
overheads in terms of time and resource consumption. The
overheads are measured as the fraction of execution time
and cost respectively of running the actual query. The plots
shows CDFs for three different observations. As can be
seen S〈0.1,0.2,0.3〉 has negligible overheads. In fact the
time overheads are comparable to the overhead of the query
optimizer in Hive today. S〈1,2,3〉 also has limited overhead
(9% of runtime and 6% of resources in average), while
S〈5,10,15〉 has substantial overhead for many queries.

425

Figure 13. CDF of execution time estimation errors.

We also measure the overhead of sampling the tables at
different sampling rates compared to full scans, but given
we perform block-level sampling and cache samples across
queries, this cost can be in first approximation ignored.

7.2.2 Performance prediction
Figure 13 shows the CDF of runtime estimation error for
PerfOrator (in 3 variants), and two variants of the base-
line. In addition to using 3 samples at 1,2 and 3%, we also
evaluate spotAdapt when using one more observation at 5%
(spotAdapt4samples in Figure). We plot the estimates for
both execution frameworks in one CDF as both have very
similar trends. As can be seen PerfOrator makes rather ac-
curate estimates. Most importantly, we note that these errors
cannot be lowered much further, as on average the actual
execution time has a standard deviation of about 20%. The
improvement over the baselines is very substantial. While
adding an additional point improves the accuray the errors
with the baseline remain very high. Similar to what we
observed for cost estimation, Hive-DS+PerfOrator achieves
reasonable runtime estimations. This is a good option in set-
tings where online profiling is not possible.

8. Related Work
The overall problem we target, Resource Optimization, is
rather novel, and to the best of our knowledge no system
addresses it in its entirety. Ernest [33] comes closest, it pro-
poses black-box models to pick the best cloud-based cluster
for a job. Like PerfOrator, Ernest relies on profile runs, but
there are a few important differences: Ernest does not implic-
itly generalize across hardware types, and it requires profile
runs of the job on each VM-type; non-linear operators are
supported, but through a manual process; most importantly,
Ernest does not derive complete skylines of resources.

Query optimization Cardinality estimation is a well-studied
subproblem of classical query costing. Statistics-based tech-
niques collect and propagate statistics about data through
operators [9, 21]. Propagation is sound under simplifying as-
sumptions that may not hold in practice and sometimes lead
to poor estimates [29]. High-velocity and unstructured data
make it even harder to apply these techniques in our setting.

Sampling based techniques, focus on select-project-join +
aggregation queries, and leverage sampling and operator-
specific models [7, 8, 17, 18]. These techniques do not gen-
eralize arbitrary UDFs. Also deep queries pose a challenge.

BigData performance estimation Prior work has focused
on simpler variants of the problem we address. Bazaar [22]
employs white-box models for MapReduce jobs and derives
relative costing of options—we focus on wallclock time es-
timates and a broader class of application frameworks. Spot
adapt [25] estimates the execution time and cost of queries
running on a single VM instance. It employs linear regres-
sion to extrapolate the execution time from runs on sam-
ples of the data on a few VM options. While this works
well for single node execution, our evaluation reveals that
this approach does not capture the effects of parallel ex-
ecution well, leading to significant mis-predictions. Pack-
ing light [11] predicts the throughput of a workload on the
cloud based on machine learning. However, the estimator re-
quires full runs on a testbed, making it prohibitively expen-
sive in BigData settings. Detailed white box model to predict
the execution time of MapReduce jobs have been proposed
in [27, 35]. The models are closely tied to the specific imple-
mentation details of MapReduce and do not easily translate
to other frameworks. Other black-box techniques [13] have
been used to estimate performance metrics for purely rela-
tional queries (no UDFs) running with fixed hardware. The
accuracy of their technique depends on precise cardinality
estimates. DYNO [24] proposes a profile driven optimizer to
dynamically optimize BigData queries with UDFs. Finally,
morpheus [4] a parallel effort, estimates full skylines for re-
curring production jobs. With PerfOrator we tackle a more
challenging variant of these problems.

9. Conclusions
Hardware has been traditionally considered a “constant” in
query optimization. Large cluster and pay-as-you-go clouds
create a new non-trivial problem for BigData workloads: Re-
source Optimization. This consists of finding the best hard-
ware resources for a given execution plan. We demonstrated
that this problem is far from trivial and that solving it can
have substantial impact on query performance and cost.

Our main contribution is a novel approach to model
resource-to-performance behavior of arbitrary BigData queries,
which we package in a system called PerfOrator. PerfOra-
tor is capable of predicting the overall resource skyline of
a query, thus also cost and runtime, across hardware types
(without the need to profile the query on each). PerfOra-
tor employs non-linear regression, hardware calibration,
and analytical modeling to handle high-velocity unstruc-
tured data, UDFs, and heterogeneous hardware. PerfOrator
is integrated with both the Azure cloud and Hadoop/YARN.
Validation against production workloads as well as standard
benchmarks demonstrates PerfOrator’s practicality.

426

References
[1] https://en.wikipedia.org/wiki/Levenberg-

Marquardt algorithm.

[2] Apache Calcite. http://calcite.apache.org/.

[3] Azure vm pricing. https://azure.microsoft.com/en-
us/pricing/details/virtual-machines/, 2016.

[4] S. Abdu Jyothi et. al. Morpheus : Towards automated slas for
enterprise clusters. OSDI’16.

[5] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan,
S. Madden, B. Mozafari, and I. Stoica. Knowing when you’re
wrong: Building fast and reliable approximate query process-
ing systems. SIGMOD ’14.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou. Apollo: Scalable and coordinated
scheduling for cloud-scale computing. OSDI’14.

[7] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya.
Towards estimation error guarantees for distinct values. PODS
’00.

[8] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of
block-level sampling in statistics estimation. SIGMOD ’04.

[9] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Found. Trends databases, 2012.

[10] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ra-
makrishnan, and S. Rao. Reservation-based scheduling: If
you’re late don’t blame us! SoCC ’14.

[11] J. Duggan, Y. Chi, H. Hacigm, S. Zhu, and U. etintemel.
Packing light: Portable workload performance prediction for
the cloud. ICDEW’13.

[12] C. Estan and J. F. Naughton. End-biased samples for join
cardinality estimation. ICDE ’06.

[13] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox,
M. Jordan, and D. Patterson. Predicting multiple metrics for
queries: Better decisions enabled by machine learning. ICDE
’09.

[14] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall Press, 2 edition,
2008.

[15] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte,
and H.-A. Jacobsen. Bigbench: Towards an industry standard
benchmark for big data analytics. SIGMOD ’13.

[16] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct values
of an attribute. VLDB ’95.

[17] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami.
Selectivity and cost estimation for joins based on random
sampling. J. Comput. Syst. Sci. June 1996.

[18] H. Hacigumus, Y. Chi, W. Wu, S. Zhu, J. Tatemura, and J. F.
Naughton. Predicting query execution time: Are optimizer
cost models really unusable? ICDE ’13.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: a platform
for fine-grained resource sharing in the data center. NSDI’11.

[20] A. Hulgeri and S. Sudarshan. Parametric query optimization
for linear and piecewise linear cost functions. VLDB ’02.

[21] Y. Ioannidis. The history of histograms (abridged). VLDB
’03.

[22] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron. Bridging the tenant-provider gap in cloud services.
SoCC ’12.

[23] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl,
S. Chaudhuri, and B. Ding. Quickr: Lazily approximating
complex adhoc queries in bigdata clusters. SIGMOD ’16.

[24] K. Karanasos, A. Balmin, M. Kutsch, F. Ozcan, V. Ercegovac,
C. Xia, and J. Jackson. Dynamically optimizing queries over
large scale data platforms. SIGMOD ’14.

[25] D. Kaulakienė, C. Thomsen, T. B. Pedersen, U. Çetintemel,
and T. Kraska. Spotadapt: Spot-aware (re-)deployment of
analytical processing tasks on amazon ec2. DOLAP ’15.

[26] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann. How good are query optimizers, really? VLDB
2015.

[27] H. Lim, H. Herodotou, and S. Babu. Stubby: A
transformation-based optimizer for mapreduce workflows.
VLDB 2012.

[28] C. H. Papadimitriou and M. Yannakakis. Multiobjective query
optimization. PODS ’01.

[29] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. Leo -
db2’s learning optimizer. VLDB ’01.

[30] I. Trummer and C. Koch. Multi-objective parametric query
optimization.

[31] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache hadoop yarn: Yet another resource
negotiator. SOCC ’13.

[32] D. Vengerov, A. C. Menck, M. Zait, and S. P. Chakkappen.
Join size estimation subject to filter conditions. VLDB 2015.

[33] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Sto-
ica. Ernest: Efficient performance prediction for large-scale
advanced analytics. NSDI, 2016.

[34] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management at
Google with Borg. EuroSys 2015.

[35] Y. Wang, Y. Xu, Y. Liu, J. Chen, and S. Hu. Qmapper for
smart grid: Migrating sql-based application to hive. SIGMOD
’15.

[36] F. Yu, W.-C. Hou, C. Luo, D. Che, and M. Zhu. Cs2: A new
database synopsis for query estimation. SIGMOD ’13.

[37] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. Hot-
Cloud’10.

427

